1
0
mirror of https://github.com/golang/go synced 2024-11-11 19:01:37 -07:00

Revert "crypto/internal/nistec: refactor scalar multiplication"

This reverts CL 471256, except for its new tests, which are expanded to
cover the case in #60717.

Updates #60717

Change-Id: I712bbcd05bf3ea4a2c9aecc9e0f02841b21aadfa
Reviewed-on: https://go-review.googlesource.com/c/go/+/502477
TryBot-Result: Gopher Robot <gobot@golang.org>
Reviewed-by: David Chase <drchase@google.com>
Run-TryBot: Filippo Valsorda <filippo@golang.org>
Auto-Submit: Filippo Valsorda <filippo@golang.org>
Reviewed-by: Roland Shoemaker <roland@golang.org>
This commit is contained in:
Filippo Valsorda 2023-06-12 18:38:51 +02:00 committed by Gopher Robot
parent 3367475e83
commit a674c6376f
2 changed files with 82 additions and 103 deletions

View File

@ -184,6 +184,23 @@ func testScalarMult[P nistPoint[P]](t *testing.T, newPoint func() P, c elliptic.
t.Error("[k]G != ScalarBaseMult(k)")
}
expectInfinity := new(big.Int).Mod(new(big.Int).SetBytes(scalar), c.Params().N).Sign() == 0
if expectInfinity {
if !bytes.Equal(p1.Bytes(), newPoint().Bytes()) {
t.Error("ScalarBaseMult(k) != ∞")
}
if !bytes.Equal(p2.Bytes(), newPoint().Bytes()) {
t.Error("[k]G != ∞")
}
} else {
if bytes.Equal(p1.Bytes(), newPoint().Bytes()) {
t.Error("ScalarBaseMult(k) == ∞")
}
if bytes.Equal(p2.Bytes(), newPoint().Bytes()) {
t.Error("[k]G == ∞")
}
}
d := new(big.Int).SetBytes(scalar)
d.Sub(c.Params().N, d)
d.Mod(d, c.Params().N)
@ -222,9 +239,14 @@ func testScalarMult[P nistPoint[P]](t *testing.T, newPoint func() P, c elliptic.
checkScalar(t, s.FillBytes(make([]byte, byteLen)))
})
}
// Test N-32...N+32 since they risk overlapping with precomputed table values
for i := 0; i <= 64; i++ {
t.Run(fmt.Sprintf("%d", i), func(t *testing.T) {
checkScalar(t, big.NewInt(int64(i)).FillBytes(make([]byte, byteLen)))
})
}
// Test N-64...N+64 since they risk overlapping with precomputed table values
// in the final additions.
for i := int64(-32); i <= 32; i++ {
for i := int64(-64); i <= 64; i++ {
t.Run(fmt.Sprintf("N%+d", i), func(t *testing.T) {
checkScalar(t, new(big.Int).Add(c.Params().N, big.NewInt(i)).Bytes())
})

View File

@ -294,9 +294,8 @@ func p256OrdLittleToBig(res *[32]byte, in *p256OrdElement)
// [0]P is the point at infinity and it's not stored.
type p256Table [16]P256Point
// p256Select sets res to the point at index idx - 1 in the table.
// idx must be in [1, 16] or res will be set to an undefined value.
// It executes in constant time.
// p256Select sets res to the point at index idx in the table.
// idx must be in [0, 15]. It executes in constant time.
//
//go:noescape
func p256Select(res *P256Point, table *p256Table, idx int)
@ -336,25 +335,22 @@ func init() {
p256Precomputed = (*[43]p256AffineTable)(*p256PrecomputedPtr)
}
// p256SelectAffine sets res to the point at index idx - 1 in the table.
// idx must be in [1, 32] or res will be set to an undefined value.
// It executes in constant time.
// p256SelectAffine sets res to the point at index idx in the table.
// idx must be in [0, 31]. It executes in constant time.
//
//go:noescape
func p256SelectAffine(res *p256AffinePoint, table *p256AffineTable, idx int)
// Point addition with an affine point and constant time conditions.
// If zero is 0, sets res = in2. If sel is 0, sets res = in1.
// If sign is not 0, sets res = in1 + -in2. Otherwise, sets res = in1 + in2.
// If neither sel nor zero are 0 and in1 = in2, or both zero and sel are 0,
// or in1 is the infinity, res is undefined.
// If sign is not 0, sets res = in1 + -in2. Otherwise, sets res = in1 + in2
//
//go:noescape
func p256PointAddAffineAsm(res, in1 *P256Point, in2 *p256AffinePoint, sign, sel, zero int)
// Point addition. Sets res = in1 + in2 and returns zero if in1 and in2 are not
// equal. Otherwise, returns one and res is undefined. If in1 or in2 are the
// point at infinity, res and the return value are undefined.
// Point addition. Sets res = in1 + in2. Returns one if the two input points
// were equal and zero otherwise. If in1 or in2 are the point at infinity, res
// and the return value are undefined.
//
//go:noescape
func p256PointAddAsm(res, in1, in2 *P256Point) int
@ -607,93 +603,58 @@ func p256Inverse(out, in *p256Element) {
p256Mul(out, in, z)
}
// p256OrdRsh returns the 64 least significant bits of x >> n. n must be lower
// than 256. The value of n leaks through timing side-channels.
func p256OrdRsh(x *p256OrdElement, n int) uint64 {
i := n / 64
n = n % 64
res := x[i] >> n
// Shift in the more significant limb, if present.
if i := i + 1; i < len(x) {
res |= x[i] << (64 - n)
}
return res
}
func boothW5(in uint64) (int, int) {
s := ^((in >> 5) - 1)
d := (1 << 6) - in - 1
func boothW5(in uint) (int, int) {
var s uint = ^((in >> 5) - 1)
var d uint = (1 << 6) - in - 1
d = (d & s) | (in & (^s))
d = (d >> 1) + (d & 1)
return int(d), int(s & 1)
}
func boothW6(in uint64) (int, int) {
s := ^((in >> 6) - 1)
d := (1 << 7) - in - 1
func boothW6(in uint) (int, int) {
var s uint = ^((in >> 6) - 1)
var d uint = (1 << 7) - in - 1
d = (d & s) | (in & (^s))
d = (d >> 1) + (d & 1)
return int(d), int(s & 1)
}
func (p *P256Point) p256BaseMult(scalar *p256OrdElement) {
// This function works like p256ScalarMult below, but the table is fixed and
// "pre-doubled" for each iteration, so instead of doubling we move to the
// next table at each iteration.
// Start scanning the window from the most significant bits. We move by
// 6 bits at a time and need to finish at -1, so -1 + 6 * 42 = 251.
index := 251
sel, sign := boothW6(p256OrdRsh(scalar, index))
// sign is always zero because the boothW6 input here is at
// most five bits long, so the top bit is never set.
_ = sign
var t0 p256AffinePoint
p256SelectAffine(&t0, &p256Precomputed[(index+1)/6], sel)
wvalue := (scalar[0] << 1) & 0x7f
sel, sign := boothW6(uint(wvalue))
p256SelectAffine(&t0, &p256Precomputed[0], sel)
p.x, p.y, p.z = t0.x, t0.y, p256One
p256NegCond(&p.y, sign)
index := uint(5)
zero := sel
for index >= 5 {
index -= 6
if index >= 0 {
sel, sign = boothW6(p256OrdRsh(scalar, index) & 0b1111111)
for i := 1; i < 43; i++ {
if index < 192 {
wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x7f
} else {
// Booth encoding considers a virtual zero bit at index -1,
// so we shift left the least significant limb.
wvalue := (scalar[0] << 1) & 0b1111111
sel, sign = boothW6(wvalue)
wvalue = (scalar[index/64] >> (index % 64)) & 0x7f
}
table := &p256Precomputed[(index+1)/6]
p256SelectAffine(&t0, table, sel)
// See p256ScalarMult for the behavior of sign, sel, and zero, that here
// is all rolled into the p256PointAddAffineAsm function. We also know
// that (if sel and zero are not 0) p != t0 for a similar reason.
index += 6
sel, sign = boothW6(uint(wvalue))
p256SelectAffine(&t0, &p256Precomputed[i], sel)
p256PointAddAffineAsm(p, p, &t0, sign, sel, zero)
zero |= sel
}
// If zero is 0, the whole scalar was zero, p is undefined,
// and the correct result is the infinity.
infinity := NewP256Point()
p256MovCond(p, p, infinity, zero)
// If the whole scalar was zero, set to the point at infinity.
p256MovCond(p, p, NewP256Point(), zero)
}
func (p *P256Point) p256ScalarMult(scalar *p256OrdElement) {
// If p is the point at infinity, p256PointAddAsm's behavior below is
// undefined. We'll just return the infinity at the end.
isInfinity := p.isInfinity()
// precomp is a table of precomputed points that stores
// powers of p from p^1 to p^16.
// precomp is a table of precomputed points that stores powers of p
// from p^1 to p^16.
var precomp p256Table
var t0, t1, t2, t3 P256Point
// Prepare the table by double and adding.
// Prepare the table
precomp[0] = *p // 1
p256PointDoubleAsm(&t0, p)
@ -732,56 +693,52 @@ func (p *P256Point) p256ScalarMult(scalar *p256OrdElement) {
precomp[12] = t0 // 13
precomp[14] = t2 // 15
// Start scanning the window from the most significant bits. We move by
// 5 bits at a time and need to finish at -1, so -1 + 5 * 51 = 254.
index := 254
// Start scanning the window from top bit
index := uint(254)
var sel, sign int
sel, sign := boothW5(p256OrdRsh(scalar, index))
// sign is always zero because the boothW5 input here is at
// most two bits long, so the top bit is never set.
_ = sign
wvalue := (scalar[index/64] >> (index % 64)) & 0x3f
sel, _ = boothW5(uint(wvalue))
p256Select(p, &precomp, sel)
zero := sel
for index >= 4 {
for index > 4 {
index -= 5
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
if index >= 0 {
sel, sign = boothW5(p256OrdRsh(scalar, index) & 0b111111)
if index < 192 {
wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x3f
} else {
// Booth encoding considers a virtual zero bit at index -1,
// so we shift left the least significant limb.
wvalue := (scalar[0] << 1) & 0b111111
sel, sign = boothW5(wvalue)
wvalue = (scalar[index/64] >> (index % 64)) & 0x3f
}
sel, sign = boothW5(uint(wvalue))
p256Select(&t0, &precomp, sel)
p256NegCond(&t0.y, sign)
// We don't check the return value of p256PointAddAsm because t0 is
// [±1-16]P, while p was just doubled five times and can't have wrapped
// around because scalar is less than the group order.
p256PointAddAsm(&t1, p, &t0)
// If sel is 0, t0 was undefined and the correct result is p unmodified.
// If zero is 0, all previous sel were 0 and the correct result is t0.
// If both are 0, the result doesn't matter as it will be thrown out.
p256MovCond(&t1, &t1, p, sel)
p256MovCond(p, &t1, &t0, zero)
zero |= sel
}
// If zero is 0, the whole scalar was zero.
// If isInfinity is 1, the input point was the infinity.
// In both cases, p is undefined and the correct result is the infinity.
infinity := NewP256Point()
wantInfinity := zero & (isInfinity - 1)
p256MovCond(p, p, infinity, wantInfinity)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
wvalue = (scalar[0] << 1) & 0x3f
sel, sign = boothW5(uint(wvalue))
p256Select(&t0, &precomp, sel)
p256NegCond(&t0.y, sign)
p256PointAddAsm(&t1, p, &t0)
p256MovCond(&t1, &t1, p, sel)
p256MovCond(p, &t1, &t0, zero)
}