mirror of
https://github.com/golang/go
synced 2024-11-22 20:50:05 -07:00
cmd/compile: handle aggregate OpArg in registers
Also handles case where OpArg does not escape but has its address taken. May have exposed a lurking bug in 1.16 expandCalls, if e.g., loading len(someArrayOfstructThing[0].secondStringField) from a local. Maybe. For #40724. Change-Id: I0298c4ad5d652b5e3d7ed6a62095d59e2d8819c7 Reviewed-on: https://go-review.googlesource.com/c/go/+/293396 Trust: David Chase <drchase@google.com> Reviewed-by: Cherry Zhang <cherryyz@google.com>
This commit is contained in:
parent
c4e3f6c4c7
commit
9f33dc3ca1
@ -980,8 +980,6 @@ func ssaGenValue(s *ssagen.State, v *ssa.Value) {
|
||||
ssagen.AddAux(&p.From, v)
|
||||
p.To.Type = obj.TYPE_REG
|
||||
p.To.Reg = v.Reg()
|
||||
case ssa.OpArgIntReg, ssa.OpArgFloatReg:
|
||||
ssagen.CheckArgReg(v)
|
||||
case ssa.OpAMD64LoweredGetClosurePtr:
|
||||
// Closure pointer is DX.
|
||||
ssagen.CheckLoweredGetClosurePtr(v)
|
||||
|
@ -172,7 +172,8 @@ type expandState struct {
|
||||
loRo Abi1RO
|
||||
namedSelects map[*Value][]namedVal
|
||||
sdom SparseTree
|
||||
common map[selKey]*Value
|
||||
commonSelectors map[selKey]*Value // used to de-dupe selectors
|
||||
commonArgs map[selKey]*Value // used to de-dupe OpArg/OpArgIntReg/OpArgFloatReg
|
||||
offsets map[offsetKey]*Value
|
||||
memForCall map[ID]*Value // For a call, need to know the unique selector that gets the mem.
|
||||
}
|
||||
@ -238,14 +239,20 @@ func (x *expandState) prAssignForArg(v *Value) abi.ABIParamAssignment {
|
||||
if v.Op != OpArg {
|
||||
panic(badVal("Wanted OpArg, instead saw", v))
|
||||
}
|
||||
name := v.Aux.(*ir.Name)
|
||||
fPri := x.f.OwnAux.abiInfo
|
||||
for _, a := range fPri.InParams() {
|
||||
return ParamAssignmentForArgName(x.f, v.Aux.(*ir.Name))
|
||||
}
|
||||
|
||||
// ParamAssignmentForArgName returns the ABIParamAssignment for f's arg with matching name.
|
||||
func ParamAssignmentForArgName(f *Func, name *ir.Name) abi.ABIParamAssignment {
|
||||
abiInfo := f.OwnAux.abiInfo
|
||||
// This is unfortunate, but apparently the only way.
|
||||
// TODO after register args stabilize, find a better way
|
||||
for _, a := range abiInfo.InParams() {
|
||||
if a.Name == name {
|
||||
return a
|
||||
}
|
||||
}
|
||||
panic(fmt.Errorf("Did not match param %v in prInfo %+v", name, fPri.InParams()))
|
||||
panic(fmt.Errorf("Did not match param %v in prInfo %+v", name, abiInfo.InParams()))
|
||||
}
|
||||
|
||||
// Calls that need lowering have some number of inputs, including a memory input,
|
||||
@ -284,7 +291,7 @@ func (x *expandState) rewriteSelect(leaf *Value, selector *Value, offset int64,
|
||||
case OpArg:
|
||||
if !x.isAlreadyExpandedAggregateType(selector.Type) {
|
||||
if leafType == selector.Type { // OpIData leads us here, sometimes.
|
||||
leaf.copyOf(selector)
|
||||
x.newArgToMemOrRegs(selector, leaf, offset, regOffset, leafType, leaf.Pos)
|
||||
} else {
|
||||
x.f.Fatalf("Unexpected OpArg type, selector=%s, leaf=%s\n", selector.LongString(), leaf.LongString())
|
||||
}
|
||||
@ -297,20 +304,8 @@ func (x *expandState) rewriteSelect(leaf *Value, selector *Value, offset int64,
|
||||
case OpIData, OpStructSelect, OpArraySelect:
|
||||
leafType = removeTrivialWrapperTypes(leaf.Type)
|
||||
}
|
||||
aux := selector.Aux
|
||||
auxInt := selector.AuxInt + offset
|
||||
if leaf.Block == selector.Block {
|
||||
leaf.reset(OpArg)
|
||||
leaf.Aux = aux
|
||||
leaf.AuxInt = auxInt
|
||||
leaf.Type = leafType
|
||||
} else {
|
||||
w := selector.Block.NewValue0IA(leaf.Pos, OpArg, leafType, auxInt, aux)
|
||||
leaf.copyOf(w)
|
||||
if x.debug {
|
||||
fmt.Printf("\tnew %s\n", w.LongString())
|
||||
}
|
||||
}
|
||||
x.newArgToMemOrRegs(selector, leaf, offset, regOffset, leafType, leaf.Pos)
|
||||
|
||||
for _, s := range x.namedSelects[selector] {
|
||||
locs = append(locs, x.f.Names[s.locIndex])
|
||||
}
|
||||
@ -519,8 +514,23 @@ func (x *expandState) rewriteDereference(b *Block, base, a, mem *Value, offset,
|
||||
|
||||
// decomposeArgOrLoad is a helper for storeArgOrLoad.
|
||||
// It decomposes a Load or an Arg into smaller parts, parameterized by the decomposeOne and decomposeTwo functions
|
||||
// passed to it, and returns the new mem. If the type does not match one of the expected aggregate types, it returns nil instead.
|
||||
// passed to it, and returns the new mem.
|
||||
// If the type does not match one of the expected aggregate types, it returns nil instead.
|
||||
// Parameters:
|
||||
// pos -- the location of any generated code.
|
||||
// b -- the block into which any generated code should normally be placed
|
||||
// base -- for the stores that will ultimately be generated, the base to which the offset is applied. (Note this disappears in a future CL, folded into storeRc)
|
||||
// source -- the value, possibly an aggregate, to be stored.
|
||||
// mem -- the mem flowing into this decomposition (loads depend on it, stores updated it)
|
||||
// t -- the type of the value to be stored
|
||||
// offset -- if the value is stored in memory, it is stored at base + offset
|
||||
// loadRegOffset -- regarding source as a value in registers, the register offset in ABI1. Meaningful only if source is OpArg.
|
||||
// storeRc -- storeRC; if the value is stored in registers, this specifies the registers. StoreRc also identifies whether the target is registers or memory.
|
||||
//
|
||||
// TODO -- this needs cleanup; it just works for SSA-able aggregates, and won't fully generalize to register-args aggregates.
|
||||
func (x *expandState) decomposeArgOrLoad(pos src.XPos, b *Block, base, source, mem *Value, t *types.Type, offset int64, loadRegOffset Abi1RO, storeRc registerCursor,
|
||||
// For decompose One and Two, the additional offArg provides the offset from the beginning of "source", if it is in memory.
|
||||
// offStore is combined to base to obtain a store destionation, like "offset" of decomposeArgOrLoad
|
||||
decomposeOne func(x *expandState, pos src.XPos, b *Block, base, source, mem *Value, t1 *types.Type, offArg, offStore int64, loadRegOffset Abi1RO, storeRc registerCursor) *Value,
|
||||
decomposeTwo func(x *expandState, pos src.XPos, b *Block, base, source, mem *Value, t1, t2 *types.Type, offArg, offStore int64, loadRegOffset Abi1RO, storeRc registerCursor) *Value) *Value {
|
||||
u := source.Type
|
||||
@ -530,7 +540,7 @@ func (x *expandState) decomposeArgOrLoad(pos src.XPos, b *Block, base, source, m
|
||||
elemRO := x.regWidth(elem)
|
||||
for i := int64(0); i < u.NumElem(); i++ {
|
||||
elemOff := i * elem.Size()
|
||||
mem = decomposeOne(x, pos, b, base, source, mem, elem, source.AuxInt+elemOff, offset+elemOff, loadRegOffset, storeRc.next(elem))
|
||||
mem = decomposeOne(x, pos, b, base, source, mem, elem, elemOff, offset+elemOff, loadRegOffset, storeRc.next(elem))
|
||||
loadRegOffset += elemRO
|
||||
pos = pos.WithNotStmt()
|
||||
}
|
||||
@ -538,7 +548,7 @@ func (x *expandState) decomposeArgOrLoad(pos src.XPos, b *Block, base, source, m
|
||||
case types.TSTRUCT:
|
||||
for i := 0; i < u.NumFields(); i++ {
|
||||
fld := u.Field(i)
|
||||
mem = decomposeOne(x, pos, b, base, source, mem, fld.Type, source.AuxInt+fld.Offset, offset+fld.Offset, loadRegOffset, storeRc.next(fld.Type))
|
||||
mem = decomposeOne(x, pos, b, base, source, mem, fld.Type, fld.Offset, offset+fld.Offset, loadRegOffset, storeRc.next(fld.Type))
|
||||
loadRegOffset += x.regWidth(fld.Type)
|
||||
pos = pos.WithNotStmt()
|
||||
}
|
||||
@ -548,20 +558,20 @@ func (x *expandState) decomposeArgOrLoad(pos src.XPos, b *Block, base, source, m
|
||||
break
|
||||
}
|
||||
tHi, tLo := x.intPairTypes(t.Kind())
|
||||
mem = decomposeOne(x, pos, b, base, source, mem, tHi, source.AuxInt+x.hiOffset, offset+x.hiOffset, loadRegOffset+x.hiRo, storeRc.plus(x.hiRo))
|
||||
mem = decomposeOne(x, pos, b, base, source, mem, tHi, x.hiOffset, offset+x.hiOffset, loadRegOffset+x.hiRo, storeRc.plus(x.hiRo))
|
||||
pos = pos.WithNotStmt()
|
||||
return decomposeOne(x, pos, b, base, source, mem, tLo, source.AuxInt+x.lowOffset, offset+x.lowOffset, loadRegOffset+x.loRo, storeRc.plus(x.loRo))
|
||||
return decomposeOne(x, pos, b, base, source, mem, tLo, x.lowOffset, offset+x.lowOffset, loadRegOffset+x.loRo, storeRc.plus(x.loRo))
|
||||
case types.TINTER:
|
||||
return decomposeTwo(x, pos, b, base, source, mem, x.typs.Uintptr, x.typs.BytePtr, source.AuxInt, offset, loadRegOffset, storeRc)
|
||||
return decomposeTwo(x, pos, b, base, source, mem, x.typs.Uintptr, x.typs.BytePtr, 0, offset, loadRegOffset, storeRc)
|
||||
case types.TSTRING:
|
||||
return decomposeTwo(x, pos, b, base, source, mem, x.typs.BytePtr, x.typs.Int, source.AuxInt, offset, loadRegOffset, storeRc)
|
||||
return decomposeTwo(x, pos, b, base, source, mem, x.typs.BytePtr, x.typs.Int, 0, offset, loadRegOffset, storeRc)
|
||||
case types.TCOMPLEX64:
|
||||
return decomposeTwo(x, pos, b, base, source, mem, x.typs.Float32, x.typs.Float32, source.AuxInt, offset, loadRegOffset, storeRc)
|
||||
return decomposeTwo(x, pos, b, base, source, mem, x.typs.Float32, x.typs.Float32, 0, offset, loadRegOffset, storeRc)
|
||||
case types.TCOMPLEX128:
|
||||
return decomposeTwo(x, pos, b, base, source, mem, x.typs.Float64, x.typs.Float64, source.AuxInt, offset, loadRegOffset, storeRc)
|
||||
return decomposeTwo(x, pos, b, base, source, mem, x.typs.Float64, x.typs.Float64, 0, offset, loadRegOffset, storeRc)
|
||||
case types.TSLICE:
|
||||
mem = decomposeOne(x, pos, b, base, source, mem, x.typs.BytePtr, source.AuxInt, offset, loadRegOffset, storeRc.next(x.typs.BytePtr))
|
||||
return decomposeTwo(x, pos, b, base, source, mem, x.typs.Int, x.typs.Int, source.AuxInt+x.ptrSize, offset+x.ptrSize, loadRegOffset+RO_slice_len, storeRc)
|
||||
mem = decomposeOne(x, pos, b, base, source, mem, x.typs.BytePtr, 0, offset, loadRegOffset, storeRc.next(x.typs.BytePtr))
|
||||
return decomposeTwo(x, pos, b, base, source, mem, x.typs.Int, x.typs.Int, x.ptrSize, offset+x.ptrSize, loadRegOffset+RO_slice_len, storeRc)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
@ -570,10 +580,11 @@ func (x *expandState) decomposeArgOrLoad(pos src.XPos, b *Block, base, source, m
|
||||
// pos and b locate the store instruction, base is the base of the store target, source is the "base" of the value input,
|
||||
// mem is the input mem, t is the type in question, and offArg and offStore are the offsets from the respective bases.
|
||||
func storeOneArg(x *expandState, pos src.XPos, b *Block, base, source, mem *Value, t *types.Type, offArg, offStore int64, loadRegOffset Abi1RO, storeRc registerCursor) *Value {
|
||||
w := x.common[selKey{source, offArg, t.Width, t}]
|
||||
w := x.commonArgs[selKey{source, offArg, t.Width, t}]
|
||||
if w == nil {
|
||||
w = source.Block.NewValue0IA(source.Pos, OpArg, t, offArg, source.Aux)
|
||||
x.common[selKey{source, offArg, t.Width, t}] = w
|
||||
// w = source.Block.NewValue0IA(source.Pos, OpArg, t, offArg, source.Aux)
|
||||
w = x.newArgToMemOrRegs(source, w, offArg, loadRegOffset, t, pos)
|
||||
// x.commonArgs[selKey{source, offArg, t.Width, t}] = w
|
||||
}
|
||||
return x.storeArgOrLoad(pos, b, base, w, mem, t, offStore, loadRegOffset, storeRc)
|
||||
}
|
||||
@ -867,7 +878,7 @@ func expandCalls(f *Func) {
|
||||
ptrSize: f.Config.PtrSize,
|
||||
namedSelects: make(map[*Value][]namedVal),
|
||||
sdom: f.Sdom(),
|
||||
common: make(map[selKey]*Value),
|
||||
commonArgs: make(map[selKey]*Value),
|
||||
offsets: make(map[offsetKey]*Value),
|
||||
memForCall: make(map[ID]*Value),
|
||||
}
|
||||
@ -1110,7 +1121,7 @@ func expandCalls(f *Func) {
|
||||
}
|
||||
}
|
||||
|
||||
x.common = make(map[selKey]*Value)
|
||||
x.commonSelectors = make(map[selKey]*Value)
|
||||
// Rewrite duplicate selectors as copies where possible.
|
||||
for i := len(allOrdered) - 1; i >= 0; i-- {
|
||||
v := allOrdered[i]
|
||||
@ -1153,15 +1164,15 @@ func expandCalls(f *Func) {
|
||||
offset = size
|
||||
}
|
||||
sk := selKey{from: w, size: size, offset: offset, typ: typ}
|
||||
dupe := x.common[sk]
|
||||
dupe := x.commonSelectors[sk]
|
||||
if dupe == nil {
|
||||
x.common[sk] = v
|
||||
x.commonSelectors[sk] = v
|
||||
} else if x.sdom.IsAncestorEq(dupe.Block, v.Block) {
|
||||
v.copyOf(dupe)
|
||||
} else {
|
||||
// Because values are processed in dominator order, the old common[s] will never dominate after a miss is seen.
|
||||
// Installing the new value might match some future values.
|
||||
x.common[sk] = v
|
||||
x.commonSelectors[sk] = v
|
||||
}
|
||||
}
|
||||
|
||||
@ -1207,30 +1218,7 @@ func expandCalls(f *Func) {
|
||||
for _, v := range b.Values {
|
||||
switch v.Op {
|
||||
case OpArg:
|
||||
pa := x.prAssignForArg(v)
|
||||
switch len(pa.Registers) {
|
||||
case 0:
|
||||
frameOff := v.Aux.(*ir.Name).FrameOffset()
|
||||
if pa.Offset() != int32(frameOff+x.f.ABISelf.LocalsOffset()) {
|
||||
panic(fmt.Errorf("Parameter assignment %d and OpArg.Aux frameOffset %d disagree, op=%s\n",
|
||||
pa.Offset(), frameOff, v.LongString()))
|
||||
}
|
||||
case 1:
|
||||
r := pa.Registers[0]
|
||||
i := f.ABISelf.FloatIndexFor(r)
|
||||
// TODO seems like this has implications for debugging. How does this affect the location?
|
||||
if i >= 0 { // float PR
|
||||
v.Op = OpArgFloatReg
|
||||
} else {
|
||||
v.Op = OpArgIntReg
|
||||
i = int64(r)
|
||||
}
|
||||
v.AuxInt = i
|
||||
|
||||
default:
|
||||
panic(badVal("Saw unexpanded OpArg", v))
|
||||
}
|
||||
|
||||
x.rewriteArgToMemOrRegs(v)
|
||||
case OpStaticLECall:
|
||||
v.Op = OpStaticCall
|
||||
// TODO need to insert all the register types.
|
||||
@ -1263,3 +1251,107 @@ func expandCalls(f *Func) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// rewriteArgToMemOrRegs converts OpArg v in-place into the register version of v,
|
||||
// if that is appropriate.
|
||||
func (x *expandState) rewriteArgToMemOrRegs(v *Value) *Value {
|
||||
pa := x.prAssignForArg(v)
|
||||
switch len(pa.Registers) {
|
||||
case 0:
|
||||
frameOff := v.Aux.(*ir.Name).FrameOffset()
|
||||
if pa.Offset() != int32(frameOff+x.f.ABISelf.LocalsOffset()) {
|
||||
panic(fmt.Errorf("Parameter assignment %d and OpArg.Aux frameOffset %d disagree, op=%s",
|
||||
pa.Offset(), frameOff, v.LongString()))
|
||||
}
|
||||
case 1:
|
||||
r := pa.Registers[0]
|
||||
i := x.f.ABISelf.FloatIndexFor(r)
|
||||
// TODO seems like this has implications for debugging. How does this affect the location?
|
||||
if i >= 0 { // float PR
|
||||
v.Op = OpArgFloatReg
|
||||
} else {
|
||||
v.Op = OpArgIntReg
|
||||
i = int64(r)
|
||||
}
|
||||
v.Aux = &AuxNameOffset{v.Aux.(*ir.Name), 0}
|
||||
v.AuxInt = i
|
||||
|
||||
default:
|
||||
panic(badVal("Saw unexpanded OpArg", v))
|
||||
}
|
||||
return v
|
||||
}
|
||||
|
||||
// newArgToMemOrRegs either rewrites toReplace into an OpArg referencing memory or into an OpArgXXXReg to a register,
|
||||
// or rewrites it into a copy of the appropriate OpArgXXX. The actual OpArgXXX is determined by combining baseArg (an OpArg)
|
||||
// with offset, regOffset, and t to determine which portion of it reference (either all or a part, in memory or in registers).
|
||||
func (x *expandState) newArgToMemOrRegs(baseArg, toReplace *Value, offset int64, regOffset Abi1RO, t *types.Type, pos src.XPos) *Value {
|
||||
key := selKey{baseArg, offset, t.Width, t}
|
||||
w := x.commonArgs[key]
|
||||
if w != nil {
|
||||
if toReplace != nil {
|
||||
toReplace.copyOf(w)
|
||||
}
|
||||
return w
|
||||
}
|
||||
|
||||
pa := x.prAssignForArg(baseArg)
|
||||
switch len(pa.Registers) {
|
||||
case 0:
|
||||
frameOff := baseArg.Aux.(*ir.Name).FrameOffset()
|
||||
if pa.Offset() != int32(frameOff+x.f.ABISelf.LocalsOffset()) {
|
||||
panic(fmt.Errorf("Parameter assignment %d and OpArg.Aux frameOffset %d disagree, op=%s",
|
||||
pa.Offset(), frameOff, baseArg.LongString()))
|
||||
}
|
||||
|
||||
aux := baseArg.Aux
|
||||
auxInt := baseArg.AuxInt + offset
|
||||
if toReplace != nil && toReplace.Block == baseArg.Block {
|
||||
toReplace.reset(OpArg)
|
||||
toReplace.Aux = aux
|
||||
toReplace.AuxInt = auxInt
|
||||
toReplace.Type = t
|
||||
x.commonArgs[key] = toReplace
|
||||
return toReplace
|
||||
} else {
|
||||
w := baseArg.Block.NewValue0IA(pos, OpArg, t, auxInt, aux)
|
||||
x.commonArgs[key] = w
|
||||
if x.debug {
|
||||
fmt.Printf("\tnew %s\n", w.LongString())
|
||||
}
|
||||
if toReplace != nil {
|
||||
toReplace.copyOf(w)
|
||||
}
|
||||
return w
|
||||
}
|
||||
|
||||
default:
|
||||
r := pa.Registers[regOffset]
|
||||
auxInt := x.f.ABISelf.FloatIndexFor(r)
|
||||
op := OpArgFloatReg
|
||||
// TODO seems like this has implications for debugging. How does this affect the location?
|
||||
if auxInt < 0 { // int (not float) parameter register
|
||||
op = OpArgIntReg
|
||||
auxInt = int64(r)
|
||||
}
|
||||
aux := &AuxNameOffset{baseArg.Aux.(*ir.Name), baseArg.AuxInt + offset}
|
||||
if toReplace != nil && toReplace.Block == baseArg.Block {
|
||||
toReplace.reset(op)
|
||||
toReplace.Aux = aux
|
||||
toReplace.AuxInt = auxInt
|
||||
toReplace.Type = t
|
||||
x.commonArgs[key] = toReplace
|
||||
return toReplace
|
||||
} else {
|
||||
w := baseArg.Block.NewValue0IA(pos, op, t, auxInt, aux)
|
||||
if x.debug {
|
||||
fmt.Printf("\tnew %s\n", w.LongString())
|
||||
}
|
||||
x.commonArgs[key] = w
|
||||
if toReplace != nil {
|
||||
toReplace.copyOf(w)
|
||||
}
|
||||
return w
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -77,6 +77,16 @@ type Param struct {
|
||||
Name *ir.Name // For OwnAux, need to prepend stores with Vardefs
|
||||
}
|
||||
|
||||
type AuxNameOffset struct {
|
||||
Name *ir.Name
|
||||
Offset int64
|
||||
}
|
||||
|
||||
func (a *AuxNameOffset) CanBeAnSSAAux() {}
|
||||
func (a *AuxNameOffset) String() string {
|
||||
return fmt.Sprintf("%s+%d", a.Name.Sym().Name, a.Offset)
|
||||
}
|
||||
|
||||
type AuxCall struct {
|
||||
// TODO(register args) this information is largely redundant with ../abi information, needs cleanup once new ABI is in place.
|
||||
Fn *obj.LSym
|
||||
|
@ -1517,6 +1517,9 @@ func (s *regAllocState) regalloc(f *Func) {
|
||||
}
|
||||
s.f.setHome(v, outLocs)
|
||||
// Note that subsequent SelectX instructions will do the assignReg calls.
|
||||
} else if v.Type.IsResults() {
|
||||
// TODO register arguments need to make this work
|
||||
panic("Oops, implement this.")
|
||||
} else {
|
||||
if r := outRegs[0]; r != noRegister {
|
||||
s.assignReg(r, v, v)
|
||||
|
@ -151,13 +151,24 @@ func (s *stackAllocState) stackalloc() {
|
||||
|
||||
// Allocate args to their assigned locations.
|
||||
for _, v := range f.Entry.Values {
|
||||
if v.Op != OpArg {
|
||||
if v.Op != OpArg { // && v.Op != OpArgFReg && v.Op != OpArgIReg {
|
||||
continue
|
||||
}
|
||||
if v.Aux == nil {
|
||||
f.Fatalf("%s has nil Aux\n", v.LongString())
|
||||
}
|
||||
loc := LocalSlot{N: v.Aux.(*ir.Name), Type: v.Type, Off: v.AuxInt}
|
||||
var loc LocalSlot
|
||||
var name *ir.Name
|
||||
var offset int64
|
||||
if v.Op == OpArg {
|
||||
name = v.Aux.(*ir.Name)
|
||||
offset = v.AuxInt
|
||||
} else {
|
||||
nameOff := v.Aux.(*AuxNameOffset)
|
||||
name = nameOff.Name
|
||||
offset = nameOff.Offset
|
||||
}
|
||||
loc = LocalSlot{N: name, Type: v.Type, Off: offset}
|
||||
if f.pass.debug > stackDebug {
|
||||
fmt.Printf("stackalloc %s to %s\n", v, loc)
|
||||
}
|
||||
|
@ -18,7 +18,7 @@ func tighten(f *Func) {
|
||||
continue
|
||||
}
|
||||
switch v.Op {
|
||||
case OpPhi, OpArg, OpSelect0, OpSelect1, OpSelectN:
|
||||
case OpPhi, OpArg, OpArgIntReg, OpArgFloatReg, OpSelect0, OpSelect1, OpSelectN:
|
||||
// Phis need to stay in their block.
|
||||
// Arg must stay in the entry block.
|
||||
// Tuple selectors must stay with the tuple generator.
|
||||
|
@ -539,7 +539,8 @@ func buildssa(fn *ir.Func, worker int) *ssa.Func {
|
||||
|
||||
// Populate SSAable arguments.
|
||||
for _, n := range fn.Dcl {
|
||||
if n.Class == ir.PPARAM && s.canSSA(n) {
|
||||
if n.Class == ir.PPARAM {
|
||||
if s.canSSA(n) {
|
||||
var v *ssa.Value
|
||||
if n.Sym().Name == ".fp" {
|
||||
// Race-detector's get-caller-pc incantation is NOT a real Arg.
|
||||
@ -549,6 +550,21 @@ func buildssa(fn *ir.Func, worker int) *ssa.Func {
|
||||
}
|
||||
s.vars[n] = v
|
||||
s.addNamedValue(n, v) // This helps with debugging information, not needed for compilation itself.
|
||||
} else if !s.canSSAName(n) { // I.e., the address was taken. The type may or may not be okay.
|
||||
// If the value will arrive in registers,
|
||||
// AND if it can be SSA'd (if it cannot, panic for now),
|
||||
// THEN
|
||||
// (1) receive it as an OpArg (but do not store its name in the var table)
|
||||
// (2) store it to its spill location, which is its address as well.
|
||||
paramAssignment := ssa.ParamAssignmentForArgName(s.f, n)
|
||||
if len(paramAssignment.Registers) > 0 {
|
||||
if !TypeOK(n.Type()) { // TODO register args -- if v is not an SSA-able type, must decompose, here.
|
||||
panic(fmt.Errorf("Arg in registers is too big to be SSA'd, need to implement decomposition, type=%v, n=%v", n.Type(), n))
|
||||
}
|
||||
v := s.newValue0A(ssa.OpArg, n.Type(), n)
|
||||
s.store(n.Type(), s.decladdrs[n], v)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -6545,6 +6561,8 @@ func genssa(f *ssa.Func, pp *objw.Progs) {
|
||||
// memory arg needs no code
|
||||
case ssa.OpArg:
|
||||
// input args need no code
|
||||
case ssa.OpArgIntReg, ssa.OpArgFloatReg:
|
||||
CheckArgReg(v)
|
||||
case ssa.OpSP, ssa.OpSB:
|
||||
// nothing to do
|
||||
case ssa.OpSelect0, ssa.OpSelect1, ssa.OpSelectN:
|
||||
|
Loading…
Reference in New Issue
Block a user