1
0
mirror of https://github.com/golang/go synced 2024-11-18 12:04:57 -07:00

math/big: add (*Int).Sqrt

This is needed for some of the more complex primality tests
(to filter out exact squares), and while the code is simple the
boundary conditions are not obvious, so it seems worth having
in the library.

Change-Id: Ica994a6b6c1e412a6f6d9c3cf823f9b653c6bcbd
Reviewed-on: https://go-review.googlesource.com/30706
Run-TryBot: Russ Cox <rsc@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
This commit is contained in:
Russ Cox 2016-10-10 16:18:43 -04:00
parent 2190f771d8
commit 9ee21f90d2
3 changed files with 87 additions and 0 deletions

View File

@ -924,3 +924,14 @@ func (z *Int) Not(x *Int) *Int {
z.neg = true // z cannot be zero if x is positive
return z
}
// Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
// It panics if x is negative.
func (z *Int) Sqrt(x *Int) *Int {
if x.neg {
panic("square root of negative number")
}
z.neg = false
z.abs = z.abs.sqrt(x.abs)
return z
}

View File

@ -9,6 +9,7 @@ import (
"encoding/hex"
"fmt"
"math/rand"
"strings"
"testing"
"testing/quick"
)
@ -1453,3 +1454,44 @@ func TestIssue2607(t *testing.T) {
n := NewInt(10)
n.Rand(rand.New(rand.NewSource(9)), n)
}
func TestSqrt(t *testing.T) {
root := 0
r := new(Int)
for i := 0; i < 10000; i++ {
if (root+1)*(root+1) <= i {
root++
}
n := NewInt(int64(i))
r.SetInt64(-2)
r.Sqrt(n)
if r.Cmp(NewInt(int64(root))) != 0 {
t.Errorf("Sqrt(%v) = %v, want %v", n, r, root)
}
}
for i := 0; i < 1000; i += 10 {
n, _ := new(Int).SetString("1"+strings.Repeat("0", i), 10)
r := new(Int).Sqrt(n)
root, _ := new(Int).SetString("1"+strings.Repeat("0", i/2), 10)
if r.Cmp(root) != 0 {
t.Errorf("Sqrt(1e%d) = %v, want 1e%d", i, r, i/2)
}
}
// Test aliasing.
r.SetInt64(100)
r.Sqrt(r)
if r.Int64() != 10 {
t.Errorf("Sqrt(100) = %v, want 10 (aliased output)", r.Int64())
}
}
func BenchmarkSqrt(b *testing.B) {
n, _ := new(Int).SetString("1"+strings.Repeat("0", 1001), 10)
b.ResetTimer()
t := new(Int)
for i := 0; i < b.N; i++ {
t.Sqrt(n)
}
}

View File

@ -1223,3 +1223,37 @@ func (z nat) setBytes(buf []byte) nat {
return z.norm()
}
// sqrt sets z = ⌊√x⌋
func (z nat) sqrt(x nat) nat {
if x.cmp(natOne) <= 0 {
return z.set(x)
}
if alias(z, x) {
z = nil
}
// Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller.
// See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt).
// https://members.loria.fr/PZimmermann/mca/pub226.html
// If x is one less than a perfect square, the sequence oscillates between the correct z and z+1;
// otherwise it converges to the correct z and stays there.
var z1, z2 nat
z1 = z
z1 = z1.setUint64(1)
z1 = z1.shl(z1, uint(x.bitLen()/2+1)) // must be ≥ √x
for n := 0; ; n++ {
z2, _ = z2.div(nil, x, z1)
z2 = z2.add(z2, z1)
z2 = z2.shr(z2, 1)
if z2.cmp(z1) >= 0 {
// z1 is answer.
// Figure out whether z1 or z2 is currently aliased to z by looking at loop count.
if n&1 == 0 {
return z1
}
return z.set(z1)
}
z1, z2 = z2, z1
}
}