1
0
mirror of https://github.com/golang/go synced 2024-11-18 11:55:01 -07:00

runtime: merge signal[12]_unix.go into signal_unix.go

Requires adding a sigfwd function for Solaris, as previously
signal2_unix.go was not built for Solaris.

Change-Id: Iea3ff0ddfa15af573813eb075bead532b324a3fc
Reviewed-on: https://go-review.googlesource.com/29550
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
This commit is contained in:
Ian Lance Taylor 2016-09-21 14:21:11 -07:00
parent 5db80c30e6
commit 9e028b70ea
4 changed files with 410 additions and 420 deletions

View File

@ -1,350 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin dragonfly freebsd linux netbsd openbsd solaris
package runtime
import (
"runtime/internal/sys"
"unsafe"
)
const (
_SIG_DFL uintptr = 0
_SIG_IGN uintptr = 1
)
// Stores the signal handlers registered before Go installed its own.
// These signal handlers will be invoked in cases where Go doesn't want to
// handle a particular signal (e.g., signal occurred on a non-Go thread).
// See sigfwdgo() for more information on when the signals are forwarded.
//
// Signal forwarding is currently available only on Darwin and Linux.
var fwdSig [_NSIG]uintptr
// sigmask represents a general signal mask compatible with the GOOS
// specific sigset types: the signal numbered x is represented by bit x-1
// to match the representation expected by sigprocmask.
type sigmask [(_NSIG + 31) / 32]uint32
// channels for synchronizing signal mask updates with the signal mask
// thread
var (
disableSigChan chan uint32
enableSigChan chan uint32
maskUpdatedChan chan struct{}
)
func init() {
// _NSIG is the number of signals on this operating system.
// sigtable should describe what to do for all the possible signals.
if len(sigtable) != _NSIG {
print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n")
throw("bad sigtable len")
}
}
var signalsOK bool
// Initialize signals.
// Called by libpreinit so runtime may not be initialized.
//go:nosplit
//go:nowritebarrierrec
func initsig(preinit bool) {
if !preinit {
// It's now OK for signal handlers to run.
signalsOK = true
}
// For c-archive/c-shared this is called by libpreinit with
// preinit == true.
if (isarchive || islibrary) && !preinit {
return
}
for i := int32(0); i < _NSIG; i++ {
t := &sigtable[i]
if t.flags == 0 || t.flags&_SigDefault != 0 {
continue
}
fwdSig[i] = getsig(i)
if !sigInstallGoHandler(i) {
// Even if we are not installing a signal handler,
// set SA_ONSTACK if necessary.
if fwdSig[i] != _SIG_DFL && fwdSig[i] != _SIG_IGN {
setsigstack(i)
}
continue
}
t.flags |= _SigHandling
setsig(i, funcPC(sighandler), true)
}
}
//go:nosplit
//go:nowritebarrierrec
func sigInstallGoHandler(sig int32) bool {
// For some signals, we respect an inherited SIG_IGN handler
// rather than insist on installing our own default handler.
// Even these signals can be fetched using the os/signal package.
switch sig {
case _SIGHUP, _SIGINT:
if fwdSig[sig] == _SIG_IGN {
return false
}
}
t := &sigtable[sig]
if t.flags&_SigSetStack != 0 {
return false
}
// When built using c-archive or c-shared, only install signal
// handlers for synchronous signals.
if (isarchive || islibrary) && t.flags&_SigPanic == 0 {
return false
}
return true
}
func sigenable(sig uint32) {
if sig >= uint32(len(sigtable)) {
return
}
t := &sigtable[sig]
if t.flags&_SigNotify != 0 {
ensureSigM()
enableSigChan <- sig
<-maskUpdatedChan
if t.flags&_SigHandling == 0 {
t.flags |= _SigHandling
fwdSig[sig] = getsig(int32(sig))
setsig(int32(sig), funcPC(sighandler), true)
}
}
}
func sigdisable(sig uint32) {
if sig >= uint32(len(sigtable)) {
return
}
t := &sigtable[sig]
if t.flags&_SigNotify != 0 {
ensureSigM()
disableSigChan <- sig
<-maskUpdatedChan
// If initsig does not install a signal handler for a
// signal, then to go back to the state before Notify
// we should remove the one we installed.
if !sigInstallGoHandler(int32(sig)) {
t.flags &^= _SigHandling
setsig(int32(sig), fwdSig[sig], true)
}
}
}
func sigignore(sig uint32) {
if sig >= uint32(len(sigtable)) {
return
}
t := &sigtable[sig]
if t.flags&_SigNotify != 0 {
t.flags &^= _SigHandling
setsig(int32(sig), _SIG_IGN, true)
}
}
func resetcpuprofiler(hz int32) {
var it itimerval
if hz == 0 {
setitimer(_ITIMER_PROF, &it, nil)
} else {
it.it_interval.tv_sec = 0
it.it_interval.set_usec(1000000 / hz)
it.it_value = it.it_interval
setitimer(_ITIMER_PROF, &it, nil)
}
_g_ := getg()
_g_.m.profilehz = hz
}
func sigpipe() {
if sigsend(_SIGPIPE) {
return
}
dieFromSignal(_SIGPIPE)
}
// dieFromSignal kills the program with a signal.
// This provides the expected exit status for the shell.
// This is only called with fatal signals expected to kill the process.
//go:nosplit
//go:nowritebarrierrec
func dieFromSignal(sig int32) {
setsig(sig, _SIG_DFL, false)
updatesigmask(sigmask{})
raise(sig)
// That should have killed us. On some systems, though, raise
// sends the signal to the whole process rather than to just
// the current thread, which means that the signal may not yet
// have been delivered. Give other threads a chance to run and
// pick up the signal.
osyield()
osyield()
osyield()
// If we are still somehow running, just exit with the wrong status.
exit(2)
}
// raisebadsignal is called when a signal is received on a non-Go
// thread, and the Go program does not want to handle it (that is, the
// program has not called os/signal.Notify for the signal).
func raisebadsignal(sig int32, c *sigctxt) {
if sig == _SIGPROF {
// Ignore profiling signals that arrive on non-Go threads.
return
}
var handler uintptr
if sig >= _NSIG {
handler = _SIG_DFL
} else {
handler = fwdSig[sig]
}
// Reset the signal handler and raise the signal.
// We are currently running inside a signal handler, so the
// signal is blocked. We need to unblock it before raising the
// signal, or the signal we raise will be ignored until we return
// from the signal handler. We know that the signal was unblocked
// before entering the handler, or else we would not have received
// it. That means that we don't have to worry about blocking it
// again.
unblocksig(sig)
setsig(sig, handler, false)
// If we're linked into a non-Go program we want to try to
// avoid modifying the original context in which the signal
// was raised. If the handler is the default, we know it
// is non-recoverable, so we don't have to worry about
// re-installing sighandler. At this point we can just
// return and the signal will be re-raised and caught by
// the default handler with the correct context.
if (isarchive || islibrary) && handler == _SIG_DFL && c.sigcode() != _SI_USER {
return
}
raise(sig)
// If the signal didn't cause the program to exit, restore the
// Go signal handler and carry on.
//
// We may receive another instance of the signal before we
// restore the Go handler, but that is not so bad: we know
// that the Go program has been ignoring the signal.
setsig(sig, funcPC(sighandler), true)
}
func crash() {
if GOOS == "darwin" {
// OS X core dumps are linear dumps of the mapped memory,
// from the first virtual byte to the last, with zeros in the gaps.
// Because of the way we arrange the address space on 64-bit systems,
// this means the OS X core file will be >128 GB and even on a zippy
// workstation can take OS X well over an hour to write (uninterruptible).
// Save users from making that mistake.
if sys.PtrSize == 8 {
return
}
}
dieFromSignal(_SIGABRT)
}
// ensureSigM starts one global, sleeping thread to make sure at least one thread
// is available to catch signals enabled for os/signal.
func ensureSigM() {
if maskUpdatedChan != nil {
return
}
maskUpdatedChan = make(chan struct{})
disableSigChan = make(chan uint32)
enableSigChan = make(chan uint32)
go func() {
// Signal masks are per-thread, so make sure this goroutine stays on one
// thread.
LockOSThread()
defer UnlockOSThread()
// The sigBlocked mask contains the signals not active for os/signal,
// initially all signals except the essential. When signal.Notify()/Stop is called,
// sigenable/sigdisable in turn notify this thread to update its signal
// mask accordingly.
var sigBlocked sigmask
for i := range sigBlocked {
sigBlocked[i] = ^uint32(0)
}
for i := range sigtable {
if sigtable[i].flags&_SigUnblock != 0 {
sigBlocked[(i-1)/32] &^= 1 << ((uint32(i) - 1) & 31)
}
}
updatesigmask(sigBlocked)
for {
select {
case sig := <-enableSigChan:
if b := sig - 1; sig > 0 {
sigBlocked[b/32] &^= (1 << (b & 31))
}
case sig := <-disableSigChan:
if b := sig - 1; sig > 0 {
sigBlocked[b/32] |= (1 << (b & 31))
}
}
updatesigmask(sigBlocked)
maskUpdatedChan <- struct{}{}
}
}()
}
// This is called when we receive a signal when there is no signal stack.
// This can only happen if non-Go code calls sigaltstack to disable the
// signal stack. This is called via cgocallback to establish a stack.
func noSignalStack(sig uint32) {
println("signal", sig, "received on thread with no signal stack")
throw("non-Go code disabled sigaltstack")
}
// This is called if we receive a signal when there is a signal stack
// but we are not on it. This can only happen if non-Go code called
// sigaction without setting the SS_ONSTACK flag.
func sigNotOnStack(sig uint32) {
println("signal", sig, "received but handler not on signal stack")
throw("non-Go code set up signal handler without SA_ONSTACK flag")
}
// This runs on a foreign stack, without an m or a g. No stack split.
//go:nosplit
//go:norace
//go:nowritebarrierrec
func badsignal(sig uintptr, c *sigctxt) {
cgocallback(unsafe.Pointer(funcPC(badsignalgo)), noescape(unsafe.Pointer(&sig)), unsafe.Sizeof(sig)+unsafe.Sizeof(c), 0)
}
func badsignalgo(sig uintptr, c *sigctxt) {
if !sigsend(uint32(sig)) {
// A foreign thread received the signal sig, and the
// Go code does not want to handle it.
raisebadsignal(int32(sig), c)
}
}

View File

@ -1,69 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin dragonfly freebsd linux netbsd openbsd
package runtime
import "unsafe"
//go:noescape
func sigfwd(fn uintptr, sig uint32, info *siginfo, ctx unsafe.Pointer)
// Determines if the signal should be handled by Go and if not, forwards the
// signal to the handler that was installed before Go's. Returns whether the
// signal was forwarded.
// This is called by the signal handler, and the world may be stopped.
//go:nosplit
//go:nowritebarrierrec
func sigfwdgo(sig uint32, info *siginfo, ctx unsafe.Pointer) bool {
if sig >= uint32(len(sigtable)) {
return false
}
fwdFn := fwdSig[sig]
if !signalsOK {
// The only way we can get here is if we are in a
// library or archive, we installed a signal handler
// at program startup, but the Go runtime has not yet
// been initialized.
if fwdFn == _SIG_DFL {
dieFromSignal(int32(sig))
} else {
sigfwd(fwdFn, sig, info, ctx)
}
return true
}
flags := sigtable[sig].flags
// If there is no handler to forward to, no need to forward.
if fwdFn == _SIG_DFL {
return false
}
// If we aren't handling the signal, forward it.
if flags&_SigHandling == 0 {
sigfwd(fwdFn, sig, info, ctx)
return true
}
// Only forward synchronous signals.
c := &sigctxt{info, ctx}
if c.sigcode() == _SI_USER || flags&_SigPanic == 0 {
return false
}
// Determine if the signal occurred inside Go code. We test that:
// (1) we were in a goroutine (i.e., m.curg != nil), and
// (2) we weren't in CGO (i.e., m.curg.syscallsp == 0).
g := getg()
if g != nil && g.m != nil && g.m.curg != nil && g.m.curg.syscallsp == 0 {
return false
}
// Signal not handled by Go, forward it.
if fwdFn != _SIG_IGN {
sigfwd(fwdFn, sig, info, ctx)
}
return true
}

View File

@ -6,7 +6,10 @@
package runtime
import _ "unsafe" // for go:linkname
import (
"runtime/internal/sys"
"unsafe"
)
//go:linkname os_sigpipe os.sigpipe
func os_sigpipe() {
@ -19,3 +22,401 @@ func signame(sig uint32) string {
}
return sigtable[sig].name
}
const (
_SIG_DFL uintptr = 0
_SIG_IGN uintptr = 1
)
// Stores the signal handlers registered before Go installed its own.
// These signal handlers will be invoked in cases where Go doesn't want to
// handle a particular signal (e.g., signal occurred on a non-Go thread).
// See sigfwdgo() for more information on when the signals are forwarded.
//
// Signal forwarding is currently available only on Darwin and Linux.
var fwdSig [_NSIG]uintptr
// sigmask represents a general signal mask compatible with the GOOS
// specific sigset types: the signal numbered x is represented by bit x-1
// to match the representation expected by sigprocmask.
type sigmask [(_NSIG + 31) / 32]uint32
// channels for synchronizing signal mask updates with the signal mask
// thread
var (
disableSigChan chan uint32
enableSigChan chan uint32
maskUpdatedChan chan struct{}
)
func init() {
// _NSIG is the number of signals on this operating system.
// sigtable should describe what to do for all the possible signals.
if len(sigtable) != _NSIG {
print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n")
throw("bad sigtable len")
}
}
var signalsOK bool
// Initialize signals.
// Called by libpreinit so runtime may not be initialized.
//go:nosplit
//go:nowritebarrierrec
func initsig(preinit bool) {
if !preinit {
// It's now OK for signal handlers to run.
signalsOK = true
}
// For c-archive/c-shared this is called by libpreinit with
// preinit == true.
if (isarchive || islibrary) && !preinit {
return
}
for i := int32(0); i < _NSIG; i++ {
t := &sigtable[i]
if t.flags == 0 || t.flags&_SigDefault != 0 {
continue
}
fwdSig[i] = getsig(i)
if !sigInstallGoHandler(i) {
// Even if we are not installing a signal handler,
// set SA_ONSTACK if necessary.
if fwdSig[i] != _SIG_DFL && fwdSig[i] != _SIG_IGN {
setsigstack(i)
}
continue
}
t.flags |= _SigHandling
setsig(i, funcPC(sighandler), true)
}
}
//go:nosplit
//go:nowritebarrierrec
func sigInstallGoHandler(sig int32) bool {
// For some signals, we respect an inherited SIG_IGN handler
// rather than insist on installing our own default handler.
// Even these signals can be fetched using the os/signal package.
switch sig {
case _SIGHUP, _SIGINT:
if fwdSig[sig] == _SIG_IGN {
return false
}
}
t := &sigtable[sig]
if t.flags&_SigSetStack != 0 {
return false
}
// When built using c-archive or c-shared, only install signal
// handlers for synchronous signals.
if (isarchive || islibrary) && t.flags&_SigPanic == 0 {
return false
}
return true
}
func sigenable(sig uint32) {
if sig >= uint32(len(sigtable)) {
return
}
t := &sigtable[sig]
if t.flags&_SigNotify != 0 {
ensureSigM()
enableSigChan <- sig
<-maskUpdatedChan
if t.flags&_SigHandling == 0 {
t.flags |= _SigHandling
fwdSig[sig] = getsig(int32(sig))
setsig(int32(sig), funcPC(sighandler), true)
}
}
}
func sigdisable(sig uint32) {
if sig >= uint32(len(sigtable)) {
return
}
t := &sigtable[sig]
if t.flags&_SigNotify != 0 {
ensureSigM()
disableSigChan <- sig
<-maskUpdatedChan
// If initsig does not install a signal handler for a
// signal, then to go back to the state before Notify
// we should remove the one we installed.
if !sigInstallGoHandler(int32(sig)) {
t.flags &^= _SigHandling
setsig(int32(sig), fwdSig[sig], true)
}
}
}
func sigignore(sig uint32) {
if sig >= uint32(len(sigtable)) {
return
}
t := &sigtable[sig]
if t.flags&_SigNotify != 0 {
t.flags &^= _SigHandling
setsig(int32(sig), _SIG_IGN, true)
}
}
func resetcpuprofiler(hz int32) {
var it itimerval
if hz == 0 {
setitimer(_ITIMER_PROF, &it, nil)
} else {
it.it_interval.tv_sec = 0
it.it_interval.set_usec(1000000 / hz)
it.it_value = it.it_interval
setitimer(_ITIMER_PROF, &it, nil)
}
_g_ := getg()
_g_.m.profilehz = hz
}
func sigpipe() {
if sigsend(_SIGPIPE) {
return
}
dieFromSignal(_SIGPIPE)
}
// dieFromSignal kills the program with a signal.
// This provides the expected exit status for the shell.
// This is only called with fatal signals expected to kill the process.
//go:nosplit
//go:nowritebarrierrec
func dieFromSignal(sig int32) {
setsig(sig, _SIG_DFL, false)
updatesigmask(sigmask{})
raise(sig)
// That should have killed us. On some systems, though, raise
// sends the signal to the whole process rather than to just
// the current thread, which means that the signal may not yet
// have been delivered. Give other threads a chance to run and
// pick up the signal.
osyield()
osyield()
osyield()
// If we are still somehow running, just exit with the wrong status.
exit(2)
}
// raisebadsignal is called when a signal is received on a non-Go
// thread, and the Go program does not want to handle it (that is, the
// program has not called os/signal.Notify for the signal).
func raisebadsignal(sig int32, c *sigctxt) {
if sig == _SIGPROF {
// Ignore profiling signals that arrive on non-Go threads.
return
}
var handler uintptr
if sig >= _NSIG {
handler = _SIG_DFL
} else {
handler = fwdSig[sig]
}
// Reset the signal handler and raise the signal.
// We are currently running inside a signal handler, so the
// signal is blocked. We need to unblock it before raising the
// signal, or the signal we raise will be ignored until we return
// from the signal handler. We know that the signal was unblocked
// before entering the handler, or else we would not have received
// it. That means that we don't have to worry about blocking it
// again.
unblocksig(sig)
setsig(sig, handler, false)
// If we're linked into a non-Go program we want to try to
// avoid modifying the original context in which the signal
// was raised. If the handler is the default, we know it
// is non-recoverable, so we don't have to worry about
// re-installing sighandler. At this point we can just
// return and the signal will be re-raised and caught by
// the default handler with the correct context.
if (isarchive || islibrary) && handler == _SIG_DFL && c.sigcode() != _SI_USER {
return
}
raise(sig)
// If the signal didn't cause the program to exit, restore the
// Go signal handler and carry on.
//
// We may receive another instance of the signal before we
// restore the Go handler, but that is not so bad: we know
// that the Go program has been ignoring the signal.
setsig(sig, funcPC(sighandler), true)
}
func crash() {
if GOOS == "darwin" {
// OS X core dumps are linear dumps of the mapped memory,
// from the first virtual byte to the last, with zeros in the gaps.
// Because of the way we arrange the address space on 64-bit systems,
// this means the OS X core file will be >128 GB and even on a zippy
// workstation can take OS X well over an hour to write (uninterruptible).
// Save users from making that mistake.
if sys.PtrSize == 8 {
return
}
}
dieFromSignal(_SIGABRT)
}
// ensureSigM starts one global, sleeping thread to make sure at least one thread
// is available to catch signals enabled for os/signal.
func ensureSigM() {
if maskUpdatedChan != nil {
return
}
maskUpdatedChan = make(chan struct{})
disableSigChan = make(chan uint32)
enableSigChan = make(chan uint32)
go func() {
// Signal masks are per-thread, so make sure this goroutine stays on one
// thread.
LockOSThread()
defer UnlockOSThread()
// The sigBlocked mask contains the signals not active for os/signal,
// initially all signals except the essential. When signal.Notify()/Stop is called,
// sigenable/sigdisable in turn notify this thread to update its signal
// mask accordingly.
var sigBlocked sigmask
for i := range sigBlocked {
sigBlocked[i] = ^uint32(0)
}
for i := range sigtable {
if sigtable[i].flags&_SigUnblock != 0 {
sigBlocked[(i-1)/32] &^= 1 << ((uint32(i) - 1) & 31)
}
}
updatesigmask(sigBlocked)
for {
select {
case sig := <-enableSigChan:
if b := sig - 1; sig > 0 {
sigBlocked[b/32] &^= (1 << (b & 31))
}
case sig := <-disableSigChan:
if b := sig - 1; sig > 0 {
sigBlocked[b/32] |= (1 << (b & 31))
}
}
updatesigmask(sigBlocked)
maskUpdatedChan <- struct{}{}
}
}()
}
// This is called when we receive a signal when there is no signal stack.
// This can only happen if non-Go code calls sigaltstack to disable the
// signal stack. This is called via cgocallback to establish a stack.
func noSignalStack(sig uint32) {
println("signal", sig, "received on thread with no signal stack")
throw("non-Go code disabled sigaltstack")
}
// This is called if we receive a signal when there is a signal stack
// but we are not on it. This can only happen if non-Go code called
// sigaction without setting the SS_ONSTACK flag.
func sigNotOnStack(sig uint32) {
println("signal", sig, "received but handler not on signal stack")
throw("non-Go code set up signal handler without SA_ONSTACK flag")
}
// This runs on a foreign stack, without an m or a g. No stack split.
//go:nosplit
//go:norace
//go:nowritebarrierrec
func badsignal(sig uintptr, c *sigctxt) {
cgocallback(unsafe.Pointer(funcPC(badsignalgo)), noescape(unsafe.Pointer(&sig)), unsafe.Sizeof(sig)+unsafe.Sizeof(c), 0)
}
func badsignalgo(sig uintptr, c *sigctxt) {
if !sigsend(uint32(sig)) {
// A foreign thread received the signal sig, and the
// Go code does not want to handle it.
raisebadsignal(int32(sig), c)
}
}
//go:noescape
func sigfwd(fn uintptr, sig uint32, info *siginfo, ctx unsafe.Pointer)
// Determines if the signal should be handled by Go and if not, forwards the
// signal to the handler that was installed before Go's. Returns whether the
// signal was forwarded.
// This is called by the signal handler, and the world may be stopped.
//go:nosplit
//go:nowritebarrierrec
func sigfwdgo(sig uint32, info *siginfo, ctx unsafe.Pointer) bool {
if sig >= uint32(len(sigtable)) {
return false
}
fwdFn := fwdSig[sig]
if !signalsOK {
// The only way we can get here is if we are in a
// library or archive, we installed a signal handler
// at program startup, but the Go runtime has not yet
// been initialized.
if fwdFn == _SIG_DFL {
dieFromSignal(int32(sig))
} else {
sigfwd(fwdFn, sig, info, ctx)
}
return true
}
flags := sigtable[sig].flags
// If there is no handler to forward to, no need to forward.
if fwdFn == _SIG_DFL {
return false
}
// If we aren't handling the signal, forward it.
if flags&_SigHandling == 0 {
sigfwd(fwdFn, sig, info, ctx)
return true
}
// Only forward synchronous signals.
c := &sigctxt{info, ctx}
if c.sigcode() == _SI_USER || flags&_SigPanic == 0 {
return false
}
// Determine if the signal occurred inside Go code. We test that:
// (1) we were in a goroutine (i.e., m.curg != nil), and
// (2) we weren't in CGO (i.e., m.curg.syscallsp == 0).
g := getg()
if g != nil && g.m != nil && g.m.curg != nil && g.m.curg.syscallsp == 0 {
return false
}
// Signal not handled by Go, forward it.
if fwdFn != _SIG_IGN {
sigfwd(fwdFn, sig, info, ctx)
}
return true
}

View File

@ -289,6 +289,14 @@ exit:
ADDQ $184, SP
RET
TEXT runtime·sigfwd(SB),NOSPLIT,$0-32
MOVL sig+8(FP), DI
MOVQ info+16(FP), SI
MOVQ ctx+24(FP), DX
MOVQ fn+0(FP), AX
CALL AX
RET
// Called from runtime·usleep (Go). Can be called on Go stack, on OS stack,
// can also be called in cgo callback path without a g->m.
TEXT runtime·usleep1(SB),NOSPLIT,$0