1
0
mirror of https://github.com/golang/go synced 2024-11-17 13:04:54 -07:00

crypto/rsa: refactor RSA-PSS signing and verification

Cleaned up for readability and consistency.

There is one tiny behavioral change: when PSSSaltLengthEqualsHash is
used and both hash and opts.Hash were set, hash.Size() was used for the
salt length instead of opts.Hash.Size(). That's clearly wrong because
opts.Hash is documented to override hash.

Change-Id: I3e25dad933961eac827c6d2e3bbfe45fc5a6fb0e
Reviewed-on: https://go-review.googlesource.com/c/go/+/226937
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Katie Hockman <katie@golang.org>
This commit is contained in:
Filippo Valsorda 2020-04-01 17:25:40 -04:00
parent aa4d92b8aa
commit 9baafabac9
2 changed files with 96 additions and 86 deletions

View File

@ -4,9 +4,7 @@
package rsa
// This file implements the PSS signature scheme [1].
//
// [1] https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
// This file implements the RSASSA-PSS signature scheme according to RFC 8017.
import (
"bytes"
@ -17,8 +15,22 @@ import (
"math/big"
)
// Per RFC 8017, Section 9.1
//
// EM = MGF1 xor DB || H( 8*0x00 || mHash || salt ) || 0xbc
//
// where
//
// DB = PS || 0x01 || salt
//
// and PS can be empty so
//
// emLen = dbLen + hLen + 1 = psLen + sLen + hLen + 2
//
func emsaPSSEncode(mHash []byte, emBits int, salt []byte, hash hash.Hash) ([]byte, error) {
// See [1], section 9.1.1
// See RFC 8017, Section 9.1.1.
hLen := hash.Size()
sLen := len(salt)
emLen := (emBits + 7) / 8
@ -30,7 +42,7 @@ func emsaPSSEncode(mHash []byte, emBits int, salt []byte, hash hash.Hash) ([]byt
// 2. Let mHash = Hash(M), an octet string of length hLen.
if len(mHash) != hLen {
return nil, errors.New("crypto/rsa: input must be hashed message")
return nil, errors.New("crypto/rsa: input must be hashed with given hash")
}
// 3. If emLen < hLen + sLen + 2, output "encoding error" and stop.
@ -40,8 +52,9 @@ func emsaPSSEncode(mHash []byte, emBits int, salt []byte, hash hash.Hash) ([]byt
}
em := make([]byte, emLen)
db := em[:emLen-sLen-hLen-2+1+sLen]
h := em[emLen-sLen-hLen-2+1+sLen : emLen-1]
psLen := emLen - sLen - hLen - 2
db := em[:psLen+1+sLen]
h := em[psLen+1+sLen : emLen-1]
// 4. Generate a random octet string salt of length sLen; if sLen = 0,
// then salt is the empty string.
@ -69,8 +82,8 @@ func emsaPSSEncode(mHash []byte, emBits int, salt []byte, hash hash.Hash) ([]byt
// 8. Let DB = PS || 0x01 || salt; DB is an octet string of length
// emLen - hLen - 1.
db[emLen-sLen-hLen-2] = 0x01
copy(db[emLen-sLen-hLen-1:], salt)
db[psLen] = 0x01
copy(db[psLen+1:], salt)
// 9. Let dbMask = MGF(H, emLen - hLen - 1).
//
@ -81,47 +94,57 @@ func emsaPSSEncode(mHash []byte, emBits int, salt []byte, hash hash.Hash) ([]byt
// 11. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in
// maskedDB to zero.
db[0] &= (0xFF >> uint(8*emLen-emBits))
db[0] &= 0xff >> (8*emLen - emBits)
// 12. Let EM = maskedDB || H || 0xbc.
em[emLen-1] = 0xBC
em[emLen-1] = 0xbc
// 13. Output EM.
return em, nil
}
func emsaPSSVerify(mHash, em []byte, emBits, sLen int, hash hash.Hash) error {
// See RFC 8017, Section 9.1.2.
hLen := hash.Size()
if sLen == PSSSaltLengthEqualsHash {
sLen = hLen
}
emLen := (emBits + 7) / 8
if emLen != len(em) {
return errors.New("rsa: internal error: inconsistent length")
}
// 1. If the length of M is greater than the input limitation for the
// hash function (2^61 - 1 octets for SHA-1), output "inconsistent"
// and stop.
//
// 2. Let mHash = Hash(M), an octet string of length hLen.
hLen := hash.Size()
if hLen != len(mHash) {
return ErrVerification
}
// 3. If emLen < hLen + sLen + 2, output "inconsistent" and stop.
emLen := (emBits + 7) / 8
if emLen < hLen+sLen+2 {
return ErrVerification
}
// 4. If the rightmost octet of EM does not have hexadecimal value
// 0xbc, output "inconsistent" and stop.
if em[len(em)-1] != 0xBC {
if em[emLen-1] != 0xbc {
return ErrVerification
}
// 5. Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and
// let H be the next hLen octets.
db := em[:emLen-hLen-1]
h := em[emLen-hLen-1 : len(em)-1]
h := em[emLen-hLen-1 : emLen-1]
// 6. If the leftmost 8 * emLen - emBits bits of the leftmost octet in
// maskedDB are not all equal to zero, output "inconsistent" and
// stop.
if em[0]&(0xFF<<uint(8-(8*emLen-emBits))) != 0 {
var bitMask byte = 0xff >> (8*emLen - emBits)
if em[0] & ^bitMask != 0 {
return ErrVerification
}
@ -132,37 +155,30 @@ func emsaPSSVerify(mHash, em []byte, emBits, sLen int, hash hash.Hash) error {
// 9. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in DB
// to zero.
db[0] &= (0xFF >> uint(8*emLen-emBits))
db[0] &= bitMask
// If we don't know the salt length, look for the 0x01 delimiter.
if sLen == PSSSaltLengthAuto {
FindSaltLength:
for sLen = emLen - (hLen + 2); sLen >= 0; sLen-- {
switch db[emLen-hLen-sLen-2] {
case 1:
break FindSaltLength
case 0:
continue
default:
return ErrVerification
}
}
if sLen < 0 {
psLen := bytes.IndexByte(db, 0x01)
if psLen < 0 {
return ErrVerification
}
} else {
// 10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not zero
// or if the octet at position emLen - hLen - sLen - 1 (the leftmost
// position is "position 1") does not have hexadecimal value 0x01,
// output "inconsistent" and stop.
for _, e := range db[:emLen-hLen-sLen-2] {
if e != 0x00 {
return ErrVerification
}
}
if db[emLen-hLen-sLen-2] != 0x01 {
sLen = len(db) - psLen - 1
}
// 10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not zero
// or if the octet at position emLen - hLen - sLen - 1 (the leftmost
// position is "position 1") does not have hexadecimal value 0x01,
// output "inconsistent" and stop.
psLen := emLen - hLen - sLen - 2
for _, e := range db[:psLen] {
if e != 0x00 {
return ErrVerification
}
}
if db[psLen] != 0x01 {
return ErrVerification
}
// 11. Let salt be the last sLen octets of DB.
salt := db[len(db)-sLen:]
@ -181,19 +197,19 @@ func emsaPSSVerify(mHash, em []byte, emBits, sLen int, hash hash.Hash) error {
h0 := hash.Sum(nil)
// 14. If H = H', output "consistent." Otherwise, output "inconsistent."
if !bytes.Equal(h0, h) {
if !bytes.Equal(h0, h) { // TODO: constant time?
return ErrVerification
}
return nil
}
// signPSSWithSalt calculates the signature of hashed using PSS [1] with specified salt.
// signPSSWithSalt calculates the signature of hashed using PSS with specified salt.
// Note that hashed must be the result of hashing the input message using the
// given hash function. salt is a random sequence of bytes whose length will be
// later used to verify the signature.
func signPSSWithSalt(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed, salt []byte) (s []byte, err error) {
nBits := priv.N.BitLen()
em, err := emsaPSSEncode(hashed, nBits-1, salt, hash.New())
emBits := priv.N.BitLen() - 1
em, err := emsaPSSEncode(hashed, emBits, salt, hash.New())
if err != nil {
return
}
@ -202,7 +218,7 @@ func signPSSWithSalt(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed,
if err != nil {
return
}
s = make([]byte, (nBits+7)/8)
s = make([]byte, priv.Size())
copyWithLeftPad(s, c.Bytes())
return
}
@ -223,16 +239,15 @@ type PSSOptions struct {
// PSSSaltLength constants.
SaltLength int
// Hash, if not zero, overrides the hash function passed to SignPSS.
// This is the only way to specify the hash function when using the
// crypto.Signer interface.
// Hash is the hash function used to generate the message digest. If not
// zero, it overrides the hash function passed to SignPSS. It's required
// when using PrivateKey.Sign.
Hash crypto.Hash
}
// HashFunc returns pssOpts.Hash so that PSSOptions implements
// crypto.SignerOpts.
func (pssOpts *PSSOptions) HashFunc() crypto.Hash {
return pssOpts.Hash
// HashFunc returns opts.Hash so that PSSOptions implements crypto.SignerOpts.
func (opts *PSSOptions) HashFunc() crypto.Hash {
return opts.Hash
}
func (opts *PSSOptions) saltLength() int {
@ -242,56 +257,50 @@ func (opts *PSSOptions) saltLength() int {
return opts.SaltLength
}
// SignPSS calculates the signature of hashed using RSASSA-PSS [1].
// Note that hashed must be the result of hashing the input message using the
// given hash function. The opts argument may be nil, in which case sensible
// defaults are used.
func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte, opts *PSSOptions) ([]byte, error) {
// SignPSS calculates the signature of digest using PSS.
//
// digest must be the result of hashing the input message using the given hash
// function. The opts argument may be nil, in which case sensible defaults are
// used. If opts.Hash is set, it overrides hash.
func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, digest []byte, opts *PSSOptions) ([]byte, error) {
if opts != nil && opts.Hash != 0 {
hash = opts.Hash
}
saltLength := opts.saltLength()
switch saltLength {
case PSSSaltLengthAuto:
saltLength = (priv.N.BitLen()+7)/8 - 2 - hash.Size()
saltLength = priv.Size() - 2 - hash.Size()
case PSSSaltLengthEqualsHash:
saltLength = hash.Size()
}
if opts != nil && opts.Hash != 0 {
hash = opts.Hash
}
salt := make([]byte, saltLength)
if _, err := io.ReadFull(rand, salt); err != nil {
return nil, err
}
return signPSSWithSalt(rand, priv, hash, hashed, salt)
return signPSSWithSalt(rand, priv, hash, digest, salt)
}
// VerifyPSS verifies a PSS signature.
// hashed is the result of hashing the input message using the given hash
// function and sig is the signature. A valid signature is indicated by
// returning a nil error. The opts argument may be nil, in which case sensible
// defaults are used.
func VerifyPSS(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte, opts *PSSOptions) error {
return verifyPSS(pub, hash, hashed, sig, opts.saltLength())
}
// verifyPSS verifies a PSS signature with the given salt length.
func verifyPSS(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte, saltLen int) error {
nBits := pub.N.BitLen()
if len(sig) != (nBits+7)/8 {
//
// A valid signature is indicated by returning a nil error. digest must be the
// result of hashing the input message using the given hash function. The opts
// argument may be nil, in which case sensible defaults are used. opts.Hash is
// ignored.
func VerifyPSS(pub *PublicKey, hash crypto.Hash, digest []byte, sig []byte, opts *PSSOptions) error {
if len(sig) != pub.Size() {
return ErrVerification
}
s := new(big.Int).SetBytes(sig)
m := encrypt(new(big.Int), pub, s)
emBits := nBits - 1
emBits := pub.N.BitLen() - 1
emLen := (emBits + 7) / 8
if emLen < len(m.Bytes()) {
emBytes := m.Bytes()
if emLen < len(emBytes) {
return ErrVerification
}
em := make([]byte, emLen)
copyWithLeftPad(em, m.Bytes())
if saltLen == PSSSaltLengthEqualsHash {
saltLen = hash.Size()
}
return emsaPSSVerify(hashed, em, emBits, saltLen, hash.New())
copyWithLeftPad(em, emBytes)
return emsaPSSVerify(digest, em, emBits, opts.saltLength(), hash.New())
}

View File

@ -2,7 +2,7 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package rsa implements RSA encryption as specified in PKCS#1.
// Package rsa implements RSA encryption as specified in PKCS#1 and RFC 8017.
//
// RSA is a single, fundamental operation that is used in this package to
// implement either public-key encryption or public-key signatures.
@ -10,13 +10,13 @@
// The original specification for encryption and signatures with RSA is PKCS#1
// and the terms "RSA encryption" and "RSA signatures" by default refer to
// PKCS#1 version 1.5. However, that specification has flaws and new designs
// should use version two, usually called by just OAEP and PSS, where
// should use version 2, usually called by just OAEP and PSS, where
// possible.
//
// Two sets of interfaces are included in this package. When a more abstract
// interface isn't necessary, there are functions for encrypting/decrypting
// with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract
// over the public-key primitive, the PrivateKey struct implements the
// over the public key primitive, the PrivateKey type implements the
// Decrypter and Signer interfaces from the crypto package.
//
// The RSA operations in this package are not implemented using constant-time algorithms.
@ -111,7 +111,8 @@ func (priv *PrivateKey) Public() crypto.PublicKey {
// Sign signs digest with priv, reading randomness from rand. If opts is a
// *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will
// be used.
// be used. digest must be the result of hashing the input message using
// opts.HashFunc().
//
// This method implements crypto.Signer, which is an interface to support keys
// where the private part is kept in, for example, a hardware module. Common