1
0
mirror of https://github.com/golang/go synced 2024-11-05 15:46:11 -07:00

[dev.link] cmd/link: delete old dodata

Change-Id: I569bbee235630baad3c35ca0c6598b8bd059307a
Reviewed-on: https://go-review.googlesource.com/c/go/+/230311
Run-TryBot: Cherry Zhang <cherryyz@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Than McIntosh <thanm@google.com>
This commit is contained in:
Cherry Zhang 2020-04-27 16:46:23 -04:00
parent 82f633a8e9
commit 98e3fdab3e
18 changed files with 2 additions and 3009 deletions

View File

@ -1,402 +0,0 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package amd64
import (
"cmd/internal/objabi"
"cmd/link/internal/ld"
"cmd/link/internal/loader"
"cmd/link/internal/sym"
"debug/elf"
)
// Temporary dumping around for sym.Symbol version of helper
// functions in asm.go, still being used for some oses.
// FIXME: get rid of this file when dodata() is completely
// converted.
func adddynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s *sym.Symbol, r *sym.Reloc) bool {
targ := r.Sym
switch r.Type {
default:
if r.Type >= objabi.ElfRelocOffset {
ld.Errorf(s, "unexpected relocation type %d (%s)", r.Type, sym.RelocName(target.Arch, r.Type))
return false
}
// Handle relocations found in ELF object files.
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_X86_64_PC32):
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected R_X86_64_PC32 relocation for dynamic symbol %s", targ.Name)
}
// TODO(mwhudson): the test of VisibilityHidden here probably doesn't make
// sense and should be removed when someone has thought about it properly.
if (targ.Type == 0 || targ.Type == sym.SXREF) && !targ.Attr.VisibilityHidden() {
ld.Errorf(s, "unknown symbol %s in pcrel", targ.Name)
}
r.Type = objabi.R_PCREL
r.Add += 4
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_X86_64_PC64):
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected R_X86_64_PC64 relocation for dynamic symbol %s", targ.Name)
}
if targ.Type == 0 || targ.Type == sym.SXREF {
ld.Errorf(s, "unknown symbol %s in pcrel", targ.Name)
}
r.Type = objabi.R_PCREL
r.Add += 8
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_X86_64_PLT32):
r.Type = objabi.R_PCREL
r.Add += 4
if targ.Type == sym.SDYNIMPORT {
addpltsym(target, syms, targ)
r.Sym = syms.PLT
r.Add += int64(targ.Plt())
}
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_X86_64_GOTPCREL),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_X86_64_GOTPCRELX),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_X86_64_REX_GOTPCRELX):
if targ.Type != sym.SDYNIMPORT {
// have symbol
if r.Off >= 2 && s.P[r.Off-2] == 0x8b {
makeWritable(s)
// turn MOVQ of GOT entry into LEAQ of symbol itself
s.P[r.Off-2] = 0x8d
r.Type = objabi.R_PCREL
r.Add += 4
return true
}
}
// fall back to using GOT and hope for the best (CMOV*)
// TODO: just needs relocation, no need to put in .dynsym
addgotsym(target, syms, targ)
r.Type = objabi.R_PCREL
r.Sym = syms.GOT
r.Add += 4
r.Add += int64(targ.Got())
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_X86_64_64):
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected R_X86_64_64 relocation for dynamic symbol %s", targ.Name)
}
r.Type = objabi.R_ADDR
if target.IsPIE() && target.IsInternal() {
// For internal linking PIE, this R_ADDR relocation cannot
// be resolved statically. We need to generate a dynamic
// relocation. Let the code below handle it.
break
}
return true
// Handle relocations found in Mach-O object files.
case objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_UNSIGNED*2 + 0,
objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_SIGNED*2 + 0,
objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_BRANCH*2 + 0:
// TODO: What is the difference between all these?
r.Type = objabi.R_ADDR
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected reloc for dynamic symbol %s", targ.Name)
}
return true
case objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_BRANCH*2 + 1:
if targ.Type == sym.SDYNIMPORT {
addpltsym(target, syms, targ)
r.Sym = syms.PLT
r.Add = int64(targ.Plt())
r.Type = objabi.R_PCREL
return true
}
fallthrough
case objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_UNSIGNED*2 + 1,
objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_SIGNED*2 + 1,
objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_SIGNED_1*2 + 1,
objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_SIGNED_2*2 + 1,
objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_SIGNED_4*2 + 1:
r.Type = objabi.R_PCREL
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected pc-relative reloc for dynamic symbol %s", targ.Name)
}
return true
case objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_GOT_LOAD*2 + 1:
if targ.Type != sym.SDYNIMPORT {
// have symbol
// turn MOVQ of GOT entry into LEAQ of symbol itself
if r.Off < 2 || s.P[r.Off-2] != 0x8b {
ld.Errorf(s, "unexpected GOT_LOAD reloc for non-dynamic symbol %s", targ.Name)
return false
}
makeWritable(s)
s.P[r.Off-2] = 0x8d
r.Type = objabi.R_PCREL
return true
}
fallthrough
case objabi.MachoRelocOffset + ld.MACHO_X86_64_RELOC_GOT*2 + 1:
if targ.Type != sym.SDYNIMPORT {
ld.Errorf(s, "unexpected GOT reloc for non-dynamic symbol %s", targ.Name)
}
addgotsym(target, syms, targ)
r.Type = objabi.R_PCREL
r.Sym = syms.GOT
r.Add += int64(targ.Got())
return true
}
switch r.Type {
case objabi.R_CALL,
objabi.R_PCREL:
if targ.Type != sym.SDYNIMPORT {
// nothing to do, the relocation will be laid out in reloc
return true
}
if target.IsExternal() {
// External linker will do this relocation.
return true
}
// Internal linking, for both ELF and Mach-O.
// Build a PLT entry and change the relocation target to that entry.
addpltsym(target, syms, targ)
r.Sym = syms.PLT
r.Add = int64(targ.Plt())
return true
case objabi.R_ADDR:
if s.Type == sym.STEXT && target.IsElf() {
if target.IsSolaris() {
addpltsym(target, syms, targ)
r.Sym = syms.PLT
r.Add += int64(targ.Plt())
return true
}
// The code is asking for the address of an external
// function. We provide it with the address of the
// correspondent GOT symbol.
addgotsym(target, syms, targ)
r.Sym = syms.GOT
r.Add += int64(targ.Got())
return true
}
// Process dynamic relocations for the data sections.
if target.IsPIE() && target.IsInternal() {
// When internally linking, generate dynamic relocations
// for all typical R_ADDR relocations. The exception
// are those R_ADDR that are created as part of generating
// the dynamic relocations and must be resolved statically.
//
// There are three phases relevant to understanding this:
//
// dodata() // we are here
// address() // symbol address assignment
// reloc() // resolution of static R_ADDR relocs
//
// At this point symbol addresses have not been
// assigned yet (as the final size of the .rela section
// will affect the addresses), and so we cannot write
// the Elf64_Rela.r_offset now. Instead we delay it
// until after the 'address' phase of the linker is
// complete. We do this via Addaddrplus, which creates
// a new R_ADDR relocation which will be resolved in
// the 'reloc' phase.
//
// These synthetic static R_ADDR relocs must be skipped
// now, or else we will be caught in an infinite loop
// of generating synthetic relocs for our synthetic
// relocs.
//
// Furthermore, the rela sections contain dynamic
// relocations with R_ADDR relocations on
// Elf64_Rela.r_offset. This field should contain the
// symbol offset as determined by reloc(), not the
// final dynamically linked address as a dynamic
// relocation would provide.
switch s.Name {
case ".dynsym", ".rela", ".rela.plt", ".got.plt", ".dynamic":
return false
}
} else {
// Either internally linking a static executable,
// in which case we can resolve these relocations
// statically in the 'reloc' phase, or externally
// linking, in which case the relocation will be
// prepared in the 'reloc' phase and passed to the
// external linker in the 'asmb' phase.
if s.Type != sym.SDATA && s.Type != sym.SRODATA {
break
}
}
if target.IsElf() {
// Generate R_X86_64_RELATIVE relocations for best
// efficiency in the dynamic linker.
//
// As noted above, symbol addresses have not been
// assigned yet, so we can't generate the final reloc
// entry yet. We ultimately want:
//
// r_offset = s + r.Off
// r_info = R_X86_64_RELATIVE
// r_addend = targ + r.Add
//
// The dynamic linker will set *offset = base address +
// addend.
//
// AddAddrPlus is used for r_offset and r_addend to
// generate new R_ADDR relocations that will update
// these fields in the 'reloc' phase.
rela := syms.Rela
rela.AddAddrPlus(target.Arch, s, int64(r.Off))
if r.Siz == 8 {
rela.AddUint64(target.Arch, ld.ELF64_R_INFO(0, uint32(elf.R_X86_64_RELATIVE)))
} else {
ld.Errorf(s, "unexpected relocation for dynamic symbol %s", targ.Name)
}
rela.AddAddrPlus(target.Arch, targ, int64(r.Add))
// Not mark r done here. So we still apply it statically,
// so in the file content we'll also have the right offset
// to the relocation target. So it can be examined statically
// (e.g. go version).
return true
}
if target.IsDarwin() && s.Size == int64(target.Arch.PtrSize) && r.Off == 0 {
// Mach-O relocations are a royal pain to lay out.
// They use a compact stateful bytecode representation
// that is too much bother to deal with.
// Instead, interpret the C declaration
// void *_Cvar_stderr = &stderr;
// as making _Cvar_stderr the name of a GOT entry
// for stderr. This is separate from the usual GOT entry,
// just in case the C code assigns to the variable,
// and of course it only works for single pointers,
// but we only need to support cgo and that's all it needs.
ld.Adddynsym(target, syms, targ)
got := syms.GOT
s.Type = got.Type
s.Attr |= sym.AttrSubSymbol
s.Outer = got
s.Sub = got.Sub
got.Sub = s
s.Value = got.Size
got.AddUint64(target.Arch, 0)
syms.LinkEditGOT.AddUint32(target.Arch, uint32(targ.Dynid))
r.Type = objabi.ElfRelocOffset // ignore during relocsym
return true
}
}
return false
}
func addpltsym(target *ld.Target, syms *ld.ArchSyms, s *sym.Symbol) {
if s.Plt() >= 0 {
return
}
ld.Adddynsym(target, syms, s)
if target.IsElf() {
plt := syms.PLT
got := syms.GOTPLT
rela := syms.RelaPLT
if plt.Size == 0 {
panic("plt is not set up")
}
// jmpq *got+size(IP)
plt.AddUint8(0xff)
plt.AddUint8(0x25)
plt.AddPCRelPlus(target.Arch, got, got.Size)
// add to got: pointer to current pos in plt
got.AddAddrPlus(target.Arch, plt, plt.Size)
// pushq $x
plt.AddUint8(0x68)
plt.AddUint32(target.Arch, uint32((got.Size-24-8)/8))
// jmpq .plt
plt.AddUint8(0xe9)
plt.AddUint32(target.Arch, uint32(-(plt.Size + 4)))
// rela
rela.AddAddrPlus(target.Arch, got, got.Size-8)
rela.AddUint64(target.Arch, ld.ELF64_R_INFO(uint32(s.Dynid), uint32(elf.R_X86_64_JMP_SLOT)))
rela.AddUint64(target.Arch, 0)
s.SetPlt(int32(plt.Size - 16))
} else if target.IsDarwin() {
// To do lazy symbol lookup right, we're supposed
// to tell the dynamic loader which library each
// symbol comes from and format the link info
// section just so. I'm too lazy (ha!) to do that
// so for now we'll just use non-lazy pointers,
// which don't need to be told which library to use.
//
// https://networkpx.blogspot.com/2009/09/about-lcdyldinfoonly-command.html
// has details about what we're avoiding.
addgotsym(target, syms, s)
plt := syms.PLT
syms.LinkEditPLT.AddUint32(target.Arch, uint32(s.Dynid))
// jmpq *got+size(IP)
s.SetPlt(int32(plt.Size))
plt.AddUint8(0xff)
plt.AddUint8(0x25)
plt.AddPCRelPlus(target.Arch, syms.GOT, int64(s.Got()))
} else {
ld.Errorf(s, "addpltsym: unsupported binary format")
}
}
func addgotsym(target *ld.Target, syms *ld.ArchSyms, s *sym.Symbol) {
if s.Got() >= 0 {
return
}
ld.Adddynsym(target, syms, s)
got := syms.GOT
s.SetGot(int32(got.Size))
got.AddUint64(target.Arch, 0)
if target.IsElf() {
rela := syms.Rela
rela.AddAddrPlus(target.Arch, got, int64(s.Got()))
rela.AddUint64(target.Arch, ld.ELF64_R_INFO(uint32(s.Dynid), uint32(elf.R_X86_64_GLOB_DAT)))
rela.AddUint64(target.Arch, 0)
} else if target.IsDarwin() {
syms.LinkEditGOT.AddUint32(target.Arch, uint32(s.Dynid))
} else {
ld.Errorf(s, "addgotsym: unsupported binary format")
}
}

View File

@ -46,7 +46,6 @@ func Init() (*sys.Arch, ld.Arch) {
Dwarfregsp: dwarfRegSP,
Dwarfreglr: dwarfRegLR,
Adddynrel: adddynrel,
Adddynrel2: adddynrel2,
Archinit: archinit,
Archreloc: archreloc,

View File

@ -1,246 +0,0 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package arm
import (
"cmd/internal/objabi"
"cmd/link/internal/ld"
"cmd/link/internal/loader"
"cmd/link/internal/sym"
"debug/elf"
)
// Temporary dumping ground for sym.Symbol version of helper
// functions in asm.go, still being used for some oses.
// FIXME: get rid of this file when dodata() is completely
// converted.
func adddynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s *sym.Symbol, r *sym.Reloc) bool {
targ := r.Sym
switch r.Type {
default:
if r.Type >= objabi.ElfRelocOffset {
ld.Errorf(s, "unexpected relocation type %d (%s)", r.Type, sym.RelocName(target.Arch, r.Type))
return false
}
// Handle relocations found in ELF object files.
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_PLT32):
r.Type = objabi.R_CALLARM
if targ.Type == sym.SDYNIMPORT {
addpltsym(target, syms, targ)
r.Sym = syms.PLT
r.Add = int64(braddoff(int32(r.Add), targ.Plt()/4))
}
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_THM_PC22): // R_ARM_THM_CALL
ld.Exitf("R_ARM_THM_CALL, are you using -marm?")
return false
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_GOT32): // R_ARM_GOT_BREL
if targ.Type != sym.SDYNIMPORT {
addgotsyminternal(target, syms, targ)
} else {
addgotsym(target, syms, targ)
}
r.Type = objabi.R_CONST // write r->add during relocsym
r.Sym = nil
r.Add += int64(targ.Got())
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_GOT_PREL): // GOT(nil) + A - nil
if targ.Type != sym.SDYNIMPORT {
addgotsyminternal(target, syms, targ)
} else {
addgotsym(target, syms, targ)
}
r.Type = objabi.R_PCREL
r.Sym = syms.GOT
r.Add += int64(targ.Got()) + 4
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_GOTOFF): // R_ARM_GOTOFF32
r.Type = objabi.R_GOTOFF
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_GOTPC): // R_ARM_BASE_PREL
r.Type = objabi.R_PCREL
r.Sym = syms.GOT
r.Add += 4
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_CALL):
r.Type = objabi.R_CALLARM
if targ.Type == sym.SDYNIMPORT {
addpltsym(target, syms, targ)
r.Sym = syms.PLT
r.Add = int64(braddoff(int32(r.Add), targ.Plt()/4))
}
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_REL32): // R_ARM_REL32
r.Type = objabi.R_PCREL
r.Add += 4
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_ABS32):
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected R_ARM_ABS32 relocation for dynamic symbol %s", targ.Name)
}
r.Type = objabi.R_ADDR
return true
// we can just ignore this, because we are targeting ARM V5+ anyway
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_V4BX):
if r.Sym != nil {
// R_ARM_V4BX is ABS relocation, so this symbol is a dummy symbol, ignore it
r.Sym.Type = 0
}
r.Sym = nil
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_PC24),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_JUMP24):
r.Type = objabi.R_CALLARM
if targ.Type == sym.SDYNIMPORT {
addpltsym(target, syms, targ)
r.Sym = syms.PLT
r.Add = int64(braddoff(int32(r.Add), targ.Plt()/4))
}
return true
}
// Handle references to ELF symbols from our own object files.
if targ.Type != sym.SDYNIMPORT {
return true
}
switch r.Type {
case objabi.R_CALLARM:
if target.IsExternal() {
// External linker will do this relocation.
return true
}
addpltsym(target, syms, targ)
r.Sym = syms.PLT
r.Add = int64(targ.Plt())
return true
case objabi.R_ADDR:
if s.Type != sym.SDATA {
break
}
if target.IsElf() {
ld.Adddynsym(target, syms, targ)
rel := syms.Rel
rel.AddAddrPlus(target.Arch, s, int64(r.Off))
rel.AddUint32(target.Arch, ld.ELF32_R_INFO(uint32(targ.Dynid), uint32(elf.R_ARM_GLOB_DAT))) // we need a nil + A dynamic reloc
r.Type = objabi.R_CONST // write r->add during relocsym
r.Sym = nil
return true
}
}
return false
}
func addpltsym(target *ld.Target, syms *ld.ArchSyms, s *sym.Symbol) {
if s.Plt() >= 0 {
return
}
ld.Adddynsym(target, syms, s)
if target.IsElf() {
plt := syms.PLT
got := syms.GOTPLT
rel := syms.RelPLT
if plt.Size == 0 {
panic("plt is not set up")
}
// .got entry
s.SetGot(int32(got.Size))
// In theory, all GOT should point to the first PLT entry,
// Linux/ARM's dynamic linker will do that for us, but FreeBSD/ARM's
// dynamic linker won't, so we'd better do it ourselves.
got.AddAddrPlus(target.Arch, plt, 0)
// .plt entry, this depends on the .got entry
s.SetPlt(int32(plt.Size))
addpltreloc(plt, got, s, objabi.R_PLT0) // add lr, pc, #0xXX00000
addpltreloc(plt, got, s, objabi.R_PLT1) // add lr, lr, #0xYY000
addpltreloc(plt, got, s, objabi.R_PLT2) // ldr pc, [lr, #0xZZZ]!
// rel
rel.AddAddrPlus(target.Arch, got, int64(s.Got()))
rel.AddUint32(target.Arch, ld.ELF32_R_INFO(uint32(s.Dynid), uint32(elf.R_ARM_JUMP_SLOT)))
} else {
ld.Errorf(s, "addpltsym: unsupported binary format")
}
}
func addpltreloc(plt *sym.Symbol, got *sym.Symbol, s *sym.Symbol, typ objabi.RelocType) {
r := plt.AddRel()
r.Sym = got
r.Off = int32(plt.Size)
r.Siz = 4
r.Type = typ
r.Add = int64(s.Got()) - 8
plt.Attr |= sym.AttrReachable
plt.Size += 4
plt.Grow(plt.Size)
}
func addgotsym(target *ld.Target, syms *ld.ArchSyms, s *sym.Symbol) {
if s.Got() >= 0 {
return
}
ld.Adddynsym(target, syms, s)
got := syms.GOT
s.SetGot(int32(got.Size))
got.AddUint32(target.Arch, 0)
if target.IsElf() {
rel := syms.Rel
rel.AddAddrPlus(target.Arch, got, int64(s.Got()))
rel.AddUint32(target.Arch, ld.ELF32_R_INFO(uint32(s.Dynid), uint32(elf.R_ARM_GLOB_DAT)))
} else {
ld.Errorf(s, "addgotsym: unsupported binary format")
}
}
func addgotsyminternal(target *ld.Target, syms *ld.ArchSyms, s *sym.Symbol) {
if s.Got() >= 0 {
return
}
got := syms.GOT
s.SetGot(int32(got.Size))
got.AddAddrPlus(target.Arch, s, 0)
if target.IsElf() {
} else {
ld.Errorf(s, "addgotsyminternal: unsupported binary format")
}
}

View File

@ -46,7 +46,6 @@ func Init() (*sys.Arch, ld.Arch) {
Dwarfregsp: dwarfRegSP,
Dwarfreglr: dwarfRegLR,
Adddynrel: adddynrel,
Adddynrel2: adddynrel2,
Archinit: archinit,
Archreloc: archreloc,

View File

@ -1,312 +0,0 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package arm64
import (
"cmd/internal/objabi"
"cmd/link/internal/ld"
"cmd/link/internal/loader"
"cmd/link/internal/sym"
"debug/elf"
)
// Temporary dumping ground for sym.Symbol version of helper
// functions in asm.go, still being used for some oses.
// FIXME: get rid of this file when dodata() is completely
// converted.
func adddynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s *sym.Symbol, r *sym.Reloc) bool {
targ := r.Sym
switch r.Type {
default:
if r.Type >= objabi.ElfRelocOffset {
ld.Errorf(s, "unexpected relocation type %d (%s)", r.Type, sym.RelocName(target.Arch, r.Type))
return false
}
// Handle relocations found in ELF object files.
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_PREL32):
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected R_AARCH64_PREL32 relocation for dynamic symbol %s", targ.Name)
}
// TODO(mwhudson): the test of VisibilityHidden here probably doesn't make
// sense and should be removed when someone has thought about it properly.
if (targ.Type == 0 || targ.Type == sym.SXREF) && !targ.Attr.VisibilityHidden() {
ld.Errorf(s, "unknown symbol %s in pcrel", targ.Name)
}
r.Type = objabi.R_PCREL
r.Add += 4
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_PREL64):
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected R_AARCH64_PREL64 relocation for dynamic symbol %s", targ.Name)
}
if targ.Type == 0 || targ.Type == sym.SXREF {
ld.Errorf(s, "unknown symbol %s in pcrel", targ.Name)
}
r.Type = objabi.R_PCREL
r.Add += 8
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_CALL26),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_JUMP26):
if targ.Type == sym.SDYNIMPORT {
addpltsym(target, syms, targ)
r.Sym = syms.PLT
r.Add += int64(targ.Plt())
}
if (targ.Type == 0 || targ.Type == sym.SXREF) && !targ.Attr.VisibilityHidden() {
ld.Errorf(s, "unknown symbol %s in callarm64", targ.Name)
}
r.Type = objabi.R_CALLARM64
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_ADR_GOT_PAGE),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_LD64_GOT_LO12_NC):
if targ.Type != sym.SDYNIMPORT {
// have symbol
// TODO: turn LDR of GOT entry into ADR of symbol itself
}
// fall back to using GOT
// TODO: just needs relocation, no need to put in .dynsym
addgotsym(target, syms, targ)
r.Type = objabi.R_ARM64_GOT
r.Sym = syms.GOT
r.Add += int64(targ.Got())
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_ADR_PREL_PG_HI21),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_ADD_ABS_LO12_NC):
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected relocation for dynamic symbol %s", targ.Name)
}
if targ.Type == 0 || targ.Type == sym.SXREF {
ld.Errorf(s, "unknown symbol %s", targ.Name)
}
r.Type = objabi.R_ARM64_PCREL
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_ABS64):
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected R_AARCH64_ABS64 relocation for dynamic symbol %s", targ.Name)
}
r.Type = objabi.R_ADDR
if target.IsPIE() && target.IsInternal() {
// For internal linking PIE, this R_ADDR relocation cannot
// be resolved statically. We need to generate a dynamic
// relocation. Let the code below handle it.
break
}
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_LDST8_ABS_LO12_NC):
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected relocation for dynamic symbol %s", targ.Name)
}
r.Type = objabi.R_ARM64_LDST8
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_LDST32_ABS_LO12_NC):
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected relocation for dynamic symbol %s", targ.Name)
}
r.Type = objabi.R_ARM64_LDST32
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_LDST64_ABS_LO12_NC):
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected relocation for dynamic symbol %s", targ.Name)
}
r.Type = objabi.R_ARM64_LDST64
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_LDST128_ABS_LO12_NC):
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected relocation for dynamic symbol %s", targ.Name)
}
r.Type = objabi.R_ARM64_LDST128
return true
}
switch r.Type {
case objabi.R_CALL,
objabi.R_PCREL,
objabi.R_CALLARM64:
if targ.Type != sym.SDYNIMPORT {
// nothing to do, the relocation will be laid out in reloc
return true
}
if target.IsExternal() {
// External linker will do this relocation.
return true
}
case objabi.R_ADDR:
if s.Type == sym.STEXT && target.IsElf() {
// The code is asking for the address of an external
// function. We provide it with the address of the
// correspondent GOT symbol.
addgotsym(target, syms, targ)
r.Sym = syms.GOT
r.Add += int64(targ.Got())
return true
}
// Process dynamic relocations for the data sections.
if target.IsPIE() && target.IsInternal() {
// When internally linking, generate dynamic relocations
// for all typical R_ADDR relocations. The exception
// are those R_ADDR that are created as part of generating
// the dynamic relocations and must be resolved statically.
//
// There are three phases relevant to understanding this:
//
// dodata() // we are here
// address() // symbol address assignment
// reloc() // resolution of static R_ADDR relocs
//
// At this point symbol addresses have not been
// assigned yet (as the final size of the .rela section
// will affect the addresses), and so we cannot write
// the Elf64_Rela.r_offset now. Instead we delay it
// until after the 'address' phase of the linker is
// complete. We do this via Addaddrplus, which creates
// a new R_ADDR relocation which will be resolved in
// the 'reloc' phase.
//
// These synthetic static R_ADDR relocs must be skipped
// now, or else we will be caught in an infinite loop
// of generating synthetic relocs for our synthetic
// relocs.
//
// Furthermore, the rela sections contain dynamic
// relocations with R_ADDR relocations on
// Elf64_Rela.r_offset. This field should contain the
// symbol offset as determined by reloc(), not the
// final dynamically linked address as a dynamic
// relocation would provide.
switch s.Name {
case ".dynsym", ".rela", ".rela.plt", ".got.plt", ".dynamic":
return false
}
} else {
// Either internally linking a static executable,
// in which case we can resolve these relocations
// statically in the 'reloc' phase, or externally
// linking, in which case the relocation will be
// prepared in the 'reloc' phase and passed to the
// external linker in the 'asmb' phase.
if s.Type != sym.SDATA && s.Type != sym.SRODATA {
break
}
}
if target.IsElf() {
// Generate R_AARCH64_RELATIVE relocations for best
// efficiency in the dynamic linker.
//
// As noted above, symbol addresses have not been
// assigned yet, so we can't generate the final reloc
// entry yet. We ultimately want:
//
// r_offset = s + r.Off
// r_info = R_AARCH64_RELATIVE
// r_addend = targ + r.Add
//
// The dynamic linker will set *offset = base address +
// addend.
//
// AddAddrPlus is used for r_offset and r_addend to
// generate new R_ADDR relocations that will update
// these fields in the 'reloc' phase.
rela := syms.Rela
rela.AddAddrPlus(target.Arch, s, int64(r.Off))
if r.Siz == 8 {
rela.AddUint64(target.Arch, ld.ELF64_R_INFO(0, uint32(elf.R_AARCH64_RELATIVE)))
} else {
ld.Errorf(s, "unexpected relocation for dynamic symbol %s", targ.Name)
}
rela.AddAddrPlus(target.Arch, targ, int64(r.Add))
// Not mark r done here. So we still apply it statically,
// so in the file content we'll also have the right offset
// to the relocation target. So it can be examined statically
// (e.g. go version).
return true
}
}
return false
}
func addpltsym(target *ld.Target, syms *ld.ArchSyms, s *sym.Symbol) {
if s.Plt() >= 0 {
return
}
ld.Adddynsym(target, syms, s)
if target.IsElf() {
plt := syms.PLT
gotplt := syms.GOTPLT
rela := syms.RelaPLT
if plt.Size == 0 {
panic("plt is not set up")
}
// adrp x16, &got.plt[0]
plt.AddAddrPlus4(gotplt, gotplt.Size)
plt.SetUint32(target.Arch, plt.Size-4, 0x90000010)
plt.R[len(plt.R)-1].Type = objabi.R_ARM64_GOT
// <offset> is the offset value of &got.plt[n] to &got.plt[0]
// ldr x17, [x16, <offset>]
plt.AddAddrPlus4(gotplt, gotplt.Size)
plt.SetUint32(target.Arch, plt.Size-4, 0xf9400211)
plt.R[len(plt.R)-1].Type = objabi.R_ARM64_GOT
// add x16, x16, <offset>
plt.AddAddrPlus4(gotplt, gotplt.Size)
plt.SetUint32(target.Arch, plt.Size-4, 0x91000210)
plt.R[len(plt.R)-1].Type = objabi.R_ARM64_PCREL
// br x17
plt.AddUint32(target.Arch, 0xd61f0220)
// add to got.plt: pointer to plt[0]
gotplt.AddAddrPlus(target.Arch, plt, 0)
// rela
rela.AddAddrPlus(target.Arch, gotplt, gotplt.Size-8)
rela.AddUint64(target.Arch, ld.ELF64_R_INFO(uint32(s.Dynid), uint32(elf.R_AARCH64_JUMP_SLOT)))
rela.AddUint64(target.Arch, 0)
s.SetPlt(int32(plt.Size - 16))
} else {
ld.Errorf(s, "addpltsym: unsupported binary format")
}
}
func addgotsym(target *ld.Target, syms *ld.ArchSyms, s *sym.Symbol) {
if s.Got() >= 0 {
return
}
ld.Adddynsym(target, syms, s)
got := syms.GOT
s.SetGot(int32(got.Size))
got.AddUint64(target.Arch, 0)
if target.IsElf() {
rela := syms.Rela
rela.AddAddrPlus(target.Arch, got, int64(s.Got()))
rela.AddUint64(target.Arch, ld.ELF64_R_INFO(uint32(s.Dynid), uint32(elf.R_AARCH64_GLOB_DAT)))
rela.AddUint64(target.Arch, 0)
} else {
ld.Errorf(s, "addgotsym: unsupported binary format")
}
}

View File

@ -46,7 +46,6 @@ func Init() (*sys.Arch, ld.Arch) {
Dwarfregsp: dwarfRegSP,
Dwarfreglr: dwarfRegLR,
Adddynrel: adddynrel,
Adddynrel2: adddynrel2,
Archinit: archinit,
Archreloc: archreloc,

View File

@ -5,16 +5,8 @@
package ld
import (
"cmd/internal/gcprog"
"cmd/internal/objabi"
"cmd/link/internal/loader"
"cmd/link/internal/sym"
"fmt"
"log"
"os"
"sort"
"strings"
"sync"
)
// Temporary dumping around for sym.Symbol version of helper
@ -22,206 +14,6 @@ import (
// FIXME: get rid of this file when dodata() is completely
// converted.
func (ctxt *Link) dodata() {
// Give zeros sized symbols space if necessary.
fixZeroSizedSymbols(ctxt)
// Collect data symbols by type into data.
state := dodataState{ctxt: ctxt}
for _, s := range ctxt.loader.Syms {
if s == nil {
continue
}
if !s.Attr.Reachable() || s.Attr.Special() || s.Attr.SubSymbol() {
continue
}
if s.Type <= sym.STEXT || s.Type >= sym.SXREF {
continue
}
state.data[s.Type] = append(state.data[s.Type], s)
}
// Now that we have the data symbols, but before we start
// to assign addresses, record all the necessary
// dynamic relocations. These will grow the relocation
// symbol, which is itself data.
//
// On darwin, we need the symbol table numbers for dynreloc.
if ctxt.HeadType == objabi.Hdarwin {
panic("not supported")
//machosymorder(ctxt)
}
state.dynreloc(ctxt)
// Move any RO data with relocations to a separate section.
state.makeRelroForSharedLib(ctxt)
// Temporary for debugging.
symToIdx := make(map[*sym.Symbol]loader.Sym)
for s := loader.Sym(1); s < loader.Sym(ctxt.loader.NSym()); s++ {
sp := ctxt.loader.Syms[s]
if sp != nil {
symToIdx[sp] = s
}
}
// Sort symbols.
var wg sync.WaitGroup
for symn := range state.data {
symn := sym.SymKind(symn)
wg.Add(1)
go func() {
state.data[symn], state.dataMaxAlign[symn] = dodataSect(ctxt, symn, state.data[symn], symToIdx)
wg.Done()
}()
}
wg.Wait()
if ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal {
// These symbols must have the same alignment as their section.
// Otherwize, ld might change the layout of Go sections.
ctxt.Syms.ROLookup("runtime.data", 0).Align = state.dataMaxAlign[sym.SDATA]
ctxt.Syms.ROLookup("runtime.bss", 0).Align = state.dataMaxAlign[sym.SBSS]
}
// Create *sym.Section objects and assign symbols to sections for
// data/rodata (and related) symbols.
state.allocateDataSections(ctxt)
// Create *sym.Section objects and assign symbols to sections for
// DWARF symbols.
state.allocateDwarfSections(ctxt)
/* number the sections */
n := int16(1)
for _, sect := range Segtext.Sections {
sect.Extnum = n
n++
}
for _, sect := range Segrodata.Sections {
sect.Extnum = n
n++
}
for _, sect := range Segrelrodata.Sections {
sect.Extnum = n
n++
}
for _, sect := range Segdata.Sections {
sect.Extnum = n
n++
}
for _, sect := range Segdwarf.Sections {
sect.Extnum = n
n++
}
}
// makeRelroForSharedLib creates a section of readonly data if necessary.
func (state *dodataState) makeRelroForSharedLib(target *Link) {
if !target.UseRelro() {
return
}
// "read only" data with relocations needs to go in its own section
// when building a shared library. We do this by boosting objects of
// type SXXX with relocations to type SXXXRELRO.
for _, symnro := range sym.ReadOnly {
symnrelro := sym.RelROMap[symnro]
ro := []*sym.Symbol{}
relro := state.data[symnrelro]
for _, s := range state.data[symnro] {
isRelro := len(s.R) > 0
switch s.Type {
case sym.STYPE, sym.STYPERELRO, sym.SGOFUNCRELRO:
// Symbols are not sorted yet, so it is possible
// that an Outer symbol has been changed to a
// relro Type before it reaches here.
isRelro = true
case sym.SFUNCTAB:
if target.IsAIX() && s.Name == "runtime.etypes" {
// runtime.etypes must be at the end of
// the relro datas.
isRelro = true
}
}
if isRelro {
s.Type = symnrelro
if s.Outer != nil {
s.Outer.Type = s.Type
}
relro = append(relro, s)
} else {
ro = append(ro, s)
}
}
// Check that we haven't made two symbols with the same .Outer into
// different types (because references two symbols with non-nil Outer
// become references to the outer symbol + offset it's vital that the
// symbol and the outer end up in the same section).
for _, s := range relro {
if s.Outer != nil && s.Outer.Type != s.Type {
Errorf(s, "inconsistent types for symbol and its Outer %s (%v != %v)",
s.Outer.Name, s.Type, s.Outer.Type)
}
}
state.data[symnro] = ro
state.data[symnrelro] = relro
}
}
func dynrelocsym(ctxt *Link, s *sym.Symbol) {
target := &ctxt.Target
ldr := ctxt.loader
syms := &ctxt.ArchSyms
for ri := range s.R {
r := &s.R[ri]
if ctxt.BuildMode == BuildModePIE && ctxt.LinkMode == LinkInternal {
// It's expected that some relocations will be done
// later by relocsym (R_TLS_LE, R_ADDROFF), so
// don't worry if Adddynrel returns false.
thearch.Adddynrel(target, ldr, syms, s, r)
continue
}
if r.Sym != nil && r.Sym.Type == sym.SDYNIMPORT || r.Type >= objabi.ElfRelocOffset {
if r.Sym != nil && !r.Sym.Attr.Reachable() {
Errorf(s, "dynamic relocation to unreachable symbol %s", r.Sym.Name)
}
if !thearch.Adddynrel(target, ldr, syms, s, r) {
Errorf(s, "unsupported dynamic relocation for symbol %s (type=%d (%s) stype=%d (%s))", r.Sym.Name, r.Type, sym.RelocName(ctxt.Arch, r.Type), r.Sym.Type, r.Sym.Type)
}
}
}
}
func (state *dodataState) dynreloc(ctxt *Link) {
if ctxt.HeadType == objabi.Hwindows {
return
}
// -d suppresses dynamic loader format, so we may as well not
// compute these sections or mark their symbols as reachable.
if *FlagD {
return
}
for _, s := range ctxt.Textp {
dynrelocsym(ctxt, s)
}
for _, syms := range state.data {
for _, s := range syms {
dynrelocsym(ctxt, s)
}
}
if ctxt.IsELF {
elfdynhash(ctxt)
}
}
func Addstring(s *sym.Symbol, str string) int64 {
if s.Type == 0 {
s.Type = sym.SNOPTRDATA
@ -257,686 +49,3 @@ func symalign(s *sym.Symbol) int32 {
s.Align = align
return align
}
func aligndatsize(datsize int64, s *sym.Symbol) int64 {
return Rnd(datsize, int64(symalign(s)))
}
type GCProg struct {
ctxt *Link
sym *sym.Symbol
w gcprog.Writer
}
func (p *GCProg) Init(ctxt *Link, name string) {
p.ctxt = ctxt
p.sym = ctxt.Syms.Lookup(name, 0)
p.w.Init(p.writeByte(ctxt))
if debugGCProg {
fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name)
p.w.Debug(os.Stderr)
}
}
func (p *GCProg) writeByte(ctxt *Link) func(x byte) {
return func(x byte) {
p.sym.AddUint8(x)
}
}
func (p *GCProg) End(size int64) {
p.w.ZeroUntil(size / int64(p.ctxt.Arch.PtrSize))
p.w.End()
if debugGCProg {
fmt.Fprintf(os.Stderr, "ld: end GCProg\n")
}
}
func (p *GCProg) AddSym(s *sym.Symbol) {
typ := s.Gotype
// Things without pointers should be in sym.SNOPTRDATA or sym.SNOPTRBSS;
// everything we see should have pointers and should therefore have a type.
if typ == nil {
switch s.Name {
case "runtime.data", "runtime.edata", "runtime.bss", "runtime.ebss":
// Ignore special symbols that are sometimes laid out
// as real symbols. See comment about dyld on darwin in
// the address function.
return
}
Errorf(s, "missing Go type information for global symbol: size %d", s.Size)
return
}
ptrsize := int64(p.ctxt.Arch.PtrSize)
nptr := decodetypePtrdata(p.ctxt.Arch, typ.P) / ptrsize
if debugGCProg {
fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", s.Name, s.Value, s.Value/ptrsize, nptr)
}
if decodetypeUsegcprog(p.ctxt.Arch, typ.P) == 0 {
// Copy pointers from mask into program.
mask := decodetypeGcmask(p.ctxt, typ)
for i := int64(0); i < nptr; i++ {
if (mask[i/8]>>uint(i%8))&1 != 0 {
p.w.Ptr(s.Value/ptrsize + i)
}
}
return
}
// Copy program.
prog := decodetypeGcprog(p.ctxt, typ)
p.w.ZeroUntil(s.Value / ptrsize)
p.w.Append(prog[4:], nptr)
}
// dataSortKey is used to sort a slice of data symbol *sym.Symbol pointers.
// The sort keys are kept inline to improve cache behavior while sorting.
type dataSortKey struct {
size int64
name string
sym *sym.Symbol
symIdx loader.Sym
}
type bySizeAndName []dataSortKey
func (d bySizeAndName) Len() int { return len(d) }
func (d bySizeAndName) Swap(i, j int) { d[i], d[j] = d[j], d[i] }
func (d bySizeAndName) Less(i, j int) bool {
s1, s2 := d[i], d[j]
if s1.size != s2.size {
return s1.size < s2.size
}
if s1.name != s2.name {
return s1.name < s2.name
}
return s1.symIdx < s2.symIdx
}
// fixZeroSizedSymbols gives a few special symbols with zero size some space.
func fixZeroSizedSymbols(ctxt *Link) {
// The values in moduledata are filled out by relocations
// pointing to the addresses of these special symbols.
// Typically these symbols have no size and are not laid
// out with their matching section.
//
// However on darwin, dyld will find the special symbol
// in the first loaded module, even though it is local.
//
// (An hypothesis, formed without looking in the dyld sources:
// these special symbols have no size, so their address
// matches a real symbol. The dynamic linker assumes we
// want the normal symbol with the same address and finds
// it in the other module.)
//
// To work around this we lay out the symbls whose
// addresses are vital for multi-module programs to work
// as normal symbols, and give them a little size.
//
// On AIX, as all DATA sections are merged together, ld might not put
// these symbols at the beginning of their respective section if there
// aren't real symbols, their alignment might not match the
// first symbol alignment. Therefore, there are explicitly put at the
// beginning of their section with the same alignment.
if !(ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin) && !(ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal) {
return
}
bss := ctxt.Syms.Lookup("runtime.bss", 0)
bss.Size = 8
bss.Attr.Set(sym.AttrSpecial, false)
ctxt.Syms.Lookup("runtime.ebss", 0).Attr.Set(sym.AttrSpecial, false)
data := ctxt.Syms.Lookup("runtime.data", 0)
data.Size = 8
data.Attr.Set(sym.AttrSpecial, false)
edata := ctxt.Syms.Lookup("runtime.edata", 0)
edata.Attr.Set(sym.AttrSpecial, false)
if ctxt.HeadType == objabi.Haix {
// XCOFFTOC symbols are part of .data section.
edata.Type = sym.SXCOFFTOC
}
types := ctxt.Syms.Lookup("runtime.types", 0)
types.Type = sym.STYPE
types.Size = 8
types.Attr.Set(sym.AttrSpecial, false)
etypes := ctxt.Syms.Lookup("runtime.etypes", 0)
etypes.Type = sym.SFUNCTAB
etypes.Attr.Set(sym.AttrSpecial, false)
if ctxt.HeadType == objabi.Haix {
rodata := ctxt.Syms.Lookup("runtime.rodata", 0)
rodata.Type = sym.SSTRING
rodata.Size = 8
rodata.Attr.Set(sym.AttrSpecial, false)
ctxt.Syms.Lookup("runtime.erodata", 0).Attr.Set(sym.AttrSpecial, false)
}
}
// allocateDataSectionForSym creates a new sym.Section into which a a
// single symbol will be placed. Here "seg" is the segment into which
// the section will go, "s" is the symbol to be placed into the new
// section, and "rwx" contains permissions for the section.
func (state *dodataState) allocateDataSectionForSym(seg *sym.Segment, s *sym.Symbol, rwx int) *sym.Section {
sect := addsection(state.ctxt.loader, state.ctxt.Arch, seg, s.Name, rwx)
sect.Align = symalign(s)
state.datsize = Rnd(state.datsize, int64(sect.Align))
sect.Vaddr = uint64(state.datsize)
return sect
}
// assignDsymsToSection assigns a collection of data symbols to a
// newly created section. "sect" is the section into which to place
// the symbols, "syms" holds the list of symbols to assign,
// "forceType" (if non-zero) contains a new sym type to apply to each
// sym during the assignment, and "aligner" is a hook to call to
// handle alignment during the assignment process.
func (state *dodataState) assignDsymsToSection(sect *sym.Section, syms []*sym.Symbol, forceType sym.SymKind, aligner func(datsize int64, s *sym.Symbol) int64) {
for _, s := range syms {
state.datsize = aligner(state.datsize, s)
s.Sect = sect
if forceType != sym.Sxxx {
s.Type = forceType
}
s.Value = int64(uint64(state.datsize) - sect.Vaddr)
state.datsize += s.Size
}
sect.Length = uint64(state.datsize) - sect.Vaddr
}
func (state *dodataState) assignToSection(sect *sym.Section, symn sym.SymKind, forceType sym.SymKind) {
state.assignDsymsToSection(sect, state.data[symn], forceType, aligndatsize)
state.checkdatsize(symn)
}
// allocateSingleSymSections walks through the bucketed data symbols
// with type 'symn', creates a new section for each sym, and assigns
// the sym to a newly created section. Section name is set from the
// symbol name. "Seg" is the segment into which to place the new
// section, "forceType" is the new sym.SymKind to assign to the symbol
// within the section, and "rwx" holds section permissions.
func (state *dodataState) allocateSingleSymSections(seg *sym.Segment, symn sym.SymKind, forceType sym.SymKind, rwx int) {
for _, s := range state.data[symn] {
sect := state.allocateDataSectionForSym(seg, s, rwx)
s.Sect = sect
s.Type = forceType
s.Value = int64(uint64(state.datsize) - sect.Vaddr)
state.datsize += s.Size
sect.Length = uint64(state.datsize) - sect.Vaddr
}
state.checkdatsize(symn)
}
// allocateNamedSectionAndAssignSyms creates a new section with the
// specified name, then walks through the bucketed data symbols with
// type 'symn' and assigns each of them to this new section. "Seg" is
// the segment into which to place the new section, "secName" is the
// name to give to the new section, "forceType" (if non-zero) contains
// a new sym type to apply to each sym during the assignment, and
// "rwx" holds section permissions.
func (state *dodataState) allocateNamedSectionAndAssignSyms(seg *sym.Segment, secName string, symn sym.SymKind, forceType sym.SymKind, rwx int) *sym.Section {
sect := state.allocateNamedDataSection(seg, secName, []sym.SymKind{symn}, rwx)
state.assignDsymsToSection(sect, state.data[symn], forceType, aligndatsize)
return sect
}
// allocateDataSections allocates sym.Section objects for data/rodata
// (and related) symbols, and then assigns symbols to those sections.
func (state *dodataState) allocateDataSections(ctxt *Link) {
// Allocate sections.
// Data is processed before segtext, because we need
// to see all symbols in the .data and .bss sections in order
// to generate garbage collection information.
// Writable data sections that do not need any specialized handling.
writable := []sym.SymKind{
sym.SBUILDINFO,
sym.SELFSECT,
sym.SMACHO,
sym.SMACHOGOT,
sym.SWINDOWS,
}
for _, symn := range writable {
state.allocateSingleSymSections(&Segdata, symn, sym.SDATA, 06)
}
// .got (and .toc on ppc64)
if len(state.data[sym.SELFGOT]) > 0 {
sect := state.allocateNamedSectionAndAssignSyms(&Segdata, ".got", sym.SELFGOT, sym.SDATA, 06)
if ctxt.IsPPC64() {
for _, s := range state.data[sym.SELFGOT] {
// Resolve .TOC. symbol for this object file (ppc64)
toc := ctxt.Syms.ROLookup(".TOC.", int(s.Version))
if toc != nil {
toc.Sect = sect
toc.Outer = s
toc.Sub = s.Sub
s.Sub = toc
toc.Value = 0x8000
}
}
}
}
/* pointer-free data */
sect := state.allocateNamedSectionAndAssignSyms(&Segdata, ".noptrdata", sym.SNOPTRDATA, sym.SDATA, 06)
ctxt.Syms.Lookup("runtime.noptrdata", 0).Sect = sect
ctxt.Syms.Lookup("runtime.enoptrdata", 0).Sect = sect
hasinitarr := ctxt.linkShared
/* shared library initializer */
switch ctxt.BuildMode {
case BuildModeCArchive, BuildModeCShared, BuildModeShared, BuildModePlugin:
hasinitarr = true
}
if ctxt.HeadType == objabi.Haix {
if len(state.data[sym.SINITARR]) > 0 {
Errorf(nil, "XCOFF format doesn't allow .init_array section")
}
}
if hasinitarr && len(state.data[sym.SINITARR]) > 0 {
state.allocateNamedSectionAndAssignSyms(&Segdata, ".init_array", sym.SINITARR, sym.Sxxx, 06)
}
/* data */
sect = state.allocateNamedSectionAndAssignSyms(&Segdata, ".data", sym.SDATA, sym.SDATA, 06)
ctxt.Syms.Lookup("runtime.data", 0).Sect = sect
ctxt.Syms.Lookup("runtime.edata", 0).Sect = sect
dataGcEnd := state.datsize - int64(sect.Vaddr)
// On AIX, TOC entries must be the last of .data
// These aren't part of gc as they won't change during the runtime.
state.assignToSection(sect, sym.SXCOFFTOC, sym.SDATA)
state.checkdatsize(sym.SDATA)
sect.Length = uint64(state.datsize) - sect.Vaddr
/* bss */
sect = state.allocateNamedSectionAndAssignSyms(&Segdata, ".bss", sym.SBSS, sym.Sxxx, 06)
ctxt.Syms.Lookup("runtime.bss", 0).Sect = sect
ctxt.Syms.Lookup("runtime.ebss", 0).Sect = sect
bssGcEnd := state.datsize - int64(sect.Vaddr)
// Emit gcdata for bcc symbols now that symbol values have been assigned.
gcsToEmit := []struct {
symName string
symKind sym.SymKind
gcEnd int64
}{
{"runtime.gcdata", sym.SDATA, dataGcEnd},
{"runtime.gcbss", sym.SBSS, bssGcEnd},
}
for _, g := range gcsToEmit {
var gc GCProg
gc.Init(ctxt, g.symName)
for _, s := range state.data[g.symKind] {
gc.AddSym(s)
}
gc.End(g.gcEnd)
}
/* pointer-free bss */
sect = state.allocateNamedSectionAndAssignSyms(&Segdata, ".noptrbss", sym.SNOPTRBSS, sym.Sxxx, 06)
ctxt.Syms.Lookup("runtime.noptrbss", 0).Sect = sect
ctxt.Syms.Lookup("runtime.enoptrbss", 0).Sect = sect
ctxt.Syms.Lookup("runtime.end", 0).Sect = sect
// Coverage instrumentation counters for libfuzzer.
if len(state.data[sym.SLIBFUZZER_EXTRA_COUNTER]) > 0 {
state.allocateNamedSectionAndAssignSyms(&Segdata, "__libfuzzer_extra_counters", sym.SLIBFUZZER_EXTRA_COUNTER, sym.Sxxx, 06)
}
if len(state.data[sym.STLSBSS]) > 0 {
var sect *sym.Section
// FIXME: not clear why it is sometimes necessary to suppress .tbss section creation.
if (ctxt.IsELF || ctxt.HeadType == objabi.Haix) && (ctxt.LinkMode == LinkExternal || !*FlagD) {
sect = addsection(ctxt.loader, ctxt.Arch, &Segdata, ".tbss", 06)
sect.Align = int32(ctxt.Arch.PtrSize)
// FIXME: why does this need to be set to zero?
sect.Vaddr = 0
}
state.datsize = 0
for _, s := range state.data[sym.STLSBSS] {
state.datsize = aligndatsize(state.datsize, s)
s.Sect = sect
s.Value = state.datsize
state.datsize += s.Size
}
state.checkdatsize(sym.STLSBSS)
if sect != nil {
sect.Length = uint64(state.datsize)
}
}
/*
* We finished data, begin read-only data.
* Not all systems support a separate read-only non-executable data section.
* ELF and Windows PE systems do.
* OS X and Plan 9 do not.
* And if we're using external linking mode, the point is moot,
* since it's not our decision; that code expects the sections in
* segtext.
*/
var segro *sym.Segment
if ctxt.IsELF && ctxt.LinkMode == LinkInternal {
segro = &Segrodata
} else if ctxt.HeadType == objabi.Hwindows {
segro = &Segrodata
} else {
segro = &Segtext
}
state.datsize = 0
/* read-only executable ELF, Mach-O sections */
if len(state.data[sym.STEXT]) != 0 {
Errorf(nil, "dodata found an sym.STEXT symbol: %s", state.data[sym.STEXT][0].Name)
}
state.allocateSingleSymSections(&Segtext, sym.SELFRXSECT, sym.SRODATA, 04)
/* read-only data */
sect = state.allocateNamedDataSection(segro, ".rodata", sym.ReadOnly, 04)
ctxt.Syms.Lookup("runtime.rodata", 0).Sect = sect
ctxt.Syms.Lookup("runtime.erodata", 0).Sect = sect
if !ctxt.UseRelro() {
ctxt.Syms.Lookup("runtime.types", 0).Sect = sect
ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect
}
for _, symn := range sym.ReadOnly {
symnStartValue := state.datsize
state.assignToSection(sect, symn, sym.SRODATA)
if ctxt.HeadType == objabi.Haix {
// Read-only symbols might be wrapped inside their outer
// symbol.
// XCOFF symbol table needs to know the size of
// these outer symbols.
xcoffUpdateOuterSize(ctxt, state.datsize-symnStartValue, symn)
}
}
/* read-only ELF, Mach-O sections */
state.allocateSingleSymSections(segro, sym.SELFROSECT, sym.SRODATA, 04)
state.allocateSingleSymSections(segro, sym.SMACHOPLT, sym.SRODATA, 04)
// There is some data that are conceptually read-only but are written to by
// relocations. On GNU systems, we can arrange for the dynamic linker to
// mprotect sections after relocations are applied by giving them write
// permissions in the object file and calling them ".data.rel.ro.FOO". We
// divide the .rodata section between actual .rodata and .data.rel.ro.rodata,
// but for the other sections that this applies to, we just write a read-only
// .FOO section or a read-write .data.rel.ro.FOO section depending on the
// situation.
// TODO(mwhudson): It would make sense to do this more widely, but it makes
// the system linker segfault on darwin.
const relroPerm = 06
const fallbackPerm = 04
relroSecPerm := fallbackPerm
genrelrosecname := func(suffix string) string {
return suffix
}
seg := segro
if ctxt.UseRelro() {
segrelro := &Segrelrodata
if ctxt.LinkMode == LinkExternal && ctxt.HeadType != objabi.Haix {
// Using a separate segment with an external
// linker results in some programs moving
// their data sections unexpectedly, which
// corrupts the moduledata. So we use the
// rodata segment and let the external linker
// sort out a rel.ro segment.
segrelro = segro
} else {
// Reset datsize for new segment.
state.datsize = 0
}
genrelrosecname = func(suffix string) string {
return ".data.rel.ro" + suffix
}
relroReadOnly := []sym.SymKind{}
for _, symnro := range sym.ReadOnly {
symn := sym.RelROMap[symnro]
relroReadOnly = append(relroReadOnly, symn)
}
seg = segrelro
relroSecPerm = relroPerm
/* data only written by relocations */
sect = state.allocateNamedDataSection(segrelro, genrelrosecname(""), relroReadOnly, relroSecPerm)
ctxt.Syms.Lookup("runtime.types", 0).Sect = sect
ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect
for i, symnro := range sym.ReadOnly {
if i == 0 && symnro == sym.STYPE && ctxt.HeadType != objabi.Haix {
// Skip forward so that no type
// reference uses a zero offset.
// This is unlikely but possible in small
// programs with no other read-only data.
state.datsize++
}
symn := sym.RelROMap[symnro]
symnStartValue := state.datsize
for _, s := range state.data[symn] {
if s.Outer != nil && s.Outer.Sect != nil && s.Outer.Sect != sect {
Errorf(s, "s.Outer (%s) in different section from s, %s != %s", s.Outer.Name, s.Outer.Sect.Name, sect.Name)
}
}
state.assignToSection(sect, symn, sym.SRODATA)
if ctxt.HeadType == objabi.Haix {
// Read-only symbols might be wrapped inside their outer
// symbol.
// XCOFF symbol table needs to know the size of
// these outer symbols.
xcoffUpdateOuterSize(ctxt, state.datsize-symnStartValue, symn)
}
}
sect.Length = uint64(state.datsize) - sect.Vaddr
}
/* typelink */
sect = state.allocateNamedDataSection(seg, genrelrosecname(".typelink"), []sym.SymKind{sym.STYPELINK}, relroSecPerm)
typelink := ctxt.Syms.Lookup("runtime.typelink", 0)
typelink.Sect = sect
typelink.Type = sym.SRODATA
state.datsize += typelink.Size
state.checkdatsize(sym.STYPELINK)
sect.Length = uint64(state.datsize) - sect.Vaddr
/* itablink */
sect = state.allocateNamedSectionAndAssignSyms(seg, genrelrosecname(".itablink"), sym.SITABLINK, sym.Sxxx, relroSecPerm)
ctxt.Syms.Lookup("runtime.itablink", 0).Sect = sect
ctxt.Syms.Lookup("runtime.eitablink", 0).Sect = sect
if ctxt.HeadType == objabi.Haix {
// Store .itablink size because its symbols are wrapped
// under an outer symbol: runtime.itablink.
xcoffUpdateOuterSize(ctxt, int64(sect.Length), sym.SITABLINK)
}
/* gosymtab */
sect = state.allocateNamedSectionAndAssignSyms(seg, genrelrosecname(".gosymtab"), sym.SSYMTAB, sym.SRODATA, relroSecPerm)
ctxt.Syms.Lookup("runtime.symtab", 0).Sect = sect
ctxt.Syms.Lookup("runtime.esymtab", 0).Sect = sect
/* gopclntab */
sect = state.allocateNamedSectionAndAssignSyms(seg, genrelrosecname(".gopclntab"), sym.SPCLNTAB, sym.SRODATA, relroSecPerm)
ctxt.Syms.Lookup("runtime.pclntab", 0).Sect = sect
ctxt.Syms.Lookup("runtime.epclntab", 0).Sect = sect
// 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits.
if state.datsize != int64(uint32(state.datsize)) {
Errorf(nil, "read-only data segment too large: %d", state.datsize)
}
for symn := sym.SELFRXSECT; symn < sym.SXREF; symn++ {
ctxt.datap = append(ctxt.datap, state.data[symn]...)
}
}
// allocateDwarfSections allocates sym.Section objects for DWARF
// symbols, and assigns symbols to sections.
func (state *dodataState) allocateDwarfSections(ctxt *Link) {
alignOne := func(datsize int64, s *sym.Symbol) int64 { return datsize }
for i := 0; i < len(dwarfp); i++ {
// First the section symbol.
s := dwarfp[i].secSym()
sect := state.allocateNamedDataSection(&Segdwarf, s.Name, []sym.SymKind{}, 04)
sect.Sym = s
s.Sect = sect
curType := s.Type
s.Type = sym.SRODATA
s.Value = int64(uint64(state.datsize) - sect.Vaddr)
state.datsize += s.Size
// Then any sub-symbols for the section symbol.
subSyms := dwarfp[i].subSyms()
state.assignDsymsToSection(sect, subSyms, sym.SRODATA, alignOne)
for j := 0; j < len(subSyms); j++ {
s := subSyms[j]
if ctxt.HeadType == objabi.Haix && curType == sym.SDWARFLOC {
// Update the size of .debug_loc for this symbol's
// package.
addDwsectCUSize(".debug_loc", s.File, uint64(s.Size))
}
}
sect.Length = uint64(state.datsize) - sect.Vaddr
state.checkdatsize(curType)
}
}
func dodataSect(ctxt *Link, symn sym.SymKind, syms []*sym.Symbol, symToIdx map[*sym.Symbol]loader.Sym) (result []*sym.Symbol, maxAlign int32) {
if ctxt.HeadType == objabi.Hdarwin {
// Some symbols may no longer belong in syms
// due to movement in machosymorder.
newSyms := make([]*sym.Symbol, 0, len(syms))
for _, s := range syms {
if s.Type == symn {
newSyms = append(newSyms, s)
}
}
syms = newSyms
}
var head, tail *sym.Symbol
symsSort := make([]dataSortKey, 0, len(syms))
for _, s := range syms {
if s.Attr.OnList() {
log.Fatalf("symbol %s listed multiple times", s.Name)
}
s.Attr |= sym.AttrOnList
switch {
case s.Size < int64(len(s.P)):
Errorf(s, "initialize bounds (%d < %d)", s.Size, len(s.P))
case s.Size < 0:
Errorf(s, "negative size (%d bytes)", s.Size)
case s.Size > cutoff:
Errorf(s, "symbol too large (%d bytes)", s.Size)
}
// If the usually-special section-marker symbols are being laid
// out as regular symbols, put them either at the beginning or
// end of their section.
if (ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin) || (ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal) {
switch s.Name {
case "runtime.text", "runtime.bss", "runtime.data", "runtime.types", "runtime.rodata":
head = s
continue
case "runtime.etext", "runtime.ebss", "runtime.edata", "runtime.etypes", "runtime.erodata":
tail = s
continue
}
}
key := dataSortKey{
size: s.Size,
name: s.Name,
sym: s,
symIdx: symToIdx[s],
}
switch s.Type {
case sym.SELFGOT:
// For ppc64, we want to interleave the .got and .toc sections
// from input files. Both are type sym.SELFGOT, so in that case
// we skip size comparison and fall through to the name
// comparison (conveniently, .got sorts before .toc).
key.size = 0
}
symsSort = append(symsSort, key)
}
sort.Sort(bySizeAndName(symsSort))
off := 0
if head != nil {
syms[0] = head
off++
}
for i, symSort := range symsSort {
syms[i+off] = symSort.sym
align := symalign(symSort.sym)
if maxAlign < align {
maxAlign = align
}
}
if tail != nil {
syms[len(syms)-1] = tail
}
if ctxt.IsELF && symn == sym.SELFROSECT {
// Make .rela and .rela.plt contiguous, the ELF ABI requires this
// and Solaris actually cares.
reli, plti := -1, -1
for i, s := range syms {
switch s.Name {
case ".rel.plt", ".rela.plt":
plti = i
case ".rel", ".rela":
reli = i
}
}
if reli >= 0 && plti >= 0 && plti != reli+1 {
var first, second int
if plti > reli {
first, second = reli, plti
} else {
first, second = plti, reli
}
rel, plt := syms[reli], syms[plti]
copy(syms[first+2:], syms[first+1:second])
syms[first+0] = rel
syms[first+1] = plt
// Make sure alignment doesn't introduce a gap.
// Setting the alignment explicitly prevents
// symalign from basing it on the size and
// getting it wrong.
rel.Align = int32(ctxt.Arch.RegSize)
plt.Align = int32(ctxt.Arch.RegSize)
}
}
return syms, maxAlign
}

View File

@ -5,12 +5,9 @@
package ld
import (
"bytes"
"cmd/internal/objabi"
"cmd/internal/sys"
"cmd/link/internal/sym"
"debug/elf"
"fmt"
)
// Decoding the type.* symbols. This has to be in sync with
@ -29,23 +26,6 @@ const (
tflagExtraStar = 1 << 1
)
func decodeReloc(s *sym.Symbol, off int32) *sym.Reloc {
for i := range s.R {
if s.R[i].Off == off {
return &s.R[i]
}
}
return nil
}
func decodeRelocSym(s *sym.Symbol, off int32) *sym.Symbol {
r := decodeReloc(s, off)
if r == nil {
return nil
}
return r.Sym
}
func decodeInuxi(arch *sys.Arch, p []byte, sz int) uint64 {
switch sz {
case 2:
@ -103,26 +83,6 @@ func findShlibSection(ctxt *Link, path string, addr uint64) *elf.Section {
return nil
}
// Type.commonType.gc
func decodetypeGcprog(ctxt *Link, s *sym.Symbol) []byte {
if s.Type == sym.SDYNIMPORT {
addr := decodetypeGcprogShlib(ctxt, s.P)
sect := findShlibSection(ctxt, s.File, addr)
if sect != nil {
// A gcprog is a 4-byte uint32 indicating length, followed by
// the actual program.
progsize := make([]byte, 4)
sect.ReadAt(progsize, int64(addr-sect.Addr))
progbytes := make([]byte, ctxt.Arch.ByteOrder.Uint32(progsize))
sect.ReadAt(progbytes, int64(addr-sect.Addr+4))
return append(progsize, progbytes...)
}
Exitf("cannot find gcprog for %s", s.Name)
return nil
}
return decodeRelocSym(s, 2*int32(ctxt.Arch.PtrSize)+8+1*int32(ctxt.Arch.PtrSize)).P
}
func decodetypeGcprogShlib(ctxt *Link, data []byte) uint64 {
if ctxt.Arch.Family == sys.ARM64 {
return 0
@ -130,51 +90,6 @@ func decodetypeGcprogShlib(ctxt *Link, data []byte) uint64 {
return decodeInuxi(ctxt.Arch, data[2*int32(ctxt.Arch.PtrSize)+8+1*int32(ctxt.Arch.PtrSize):], ctxt.Arch.PtrSize)
}
func decodetypeGcmask(ctxt *Link, s *sym.Symbol) []byte {
if s.Type == sym.SDYNIMPORT {
addr := decodetypeGcprogShlib(ctxt, s.P)
ptrdata := decodetypePtrdata(ctxt.Arch, s.P)
sect := findShlibSection(ctxt, s.File, addr)
if sect != nil {
r := make([]byte, ptrdata/int64(ctxt.Arch.PtrSize))
sect.ReadAt(r, int64(addr-sect.Addr))
return r
}
Exitf("cannot find gcmask for %s", s.Name)
return nil
}
mask := decodeRelocSym(s, 2*int32(ctxt.Arch.PtrSize)+8+1*int32(ctxt.Arch.PtrSize))
return mask.P
}
// Type.ArrayType.elem and Type.SliceType.Elem
func decodetypeArrayElem(arch *sys.Arch, s *sym.Symbol) *sym.Symbol {
return decodeRelocSym(s, int32(commonsize(arch))) // 0x1c / 0x30
}
func decodetypeArrayLen(arch *sys.Arch, s *sym.Symbol) int64 {
return int64(decodeInuxi(arch, s.P[commonsize(arch)+2*arch.PtrSize:], arch.PtrSize))
}
// Type.PtrType.elem
func decodetypePtrElem(arch *sys.Arch, s *sym.Symbol) *sym.Symbol {
return decodeRelocSym(s, int32(commonsize(arch))) // 0x1c / 0x30
}
// Type.MapType.key, elem
func decodetypeMapKey(arch *sys.Arch, s *sym.Symbol) *sym.Symbol {
return decodeRelocSym(s, int32(commonsize(arch))) // 0x1c / 0x30
}
func decodetypeMapValue(arch *sys.Arch, s *sym.Symbol) *sym.Symbol {
return decodeRelocSym(s, int32(commonsize(arch))+int32(arch.PtrSize)) // 0x20 / 0x38
}
// Type.ChanType.elem
func decodetypeChanElem(arch *sys.Arch, s *sym.Symbol) *sym.Symbol {
return decodeRelocSym(s, int32(commonsize(arch))) // 0x1c / 0x30
}
// Type.FuncType.dotdotdot
func decodetypeFuncDotdotdot(arch *sys.Arch, p []byte) bool {
return uint16(decodeInuxi(arch, p[commonsize(arch)+2:], 2))&(1<<15) != 0
@ -189,75 +104,6 @@ func decodetypeFuncOutCount(arch *sys.Arch, p []byte) int {
return int(uint16(decodeInuxi(arch, p[commonsize(arch)+2:], 2)) & (1<<15 - 1))
}
func decodetypeFuncInType(arch *sys.Arch, s *sym.Symbol, i int) *sym.Symbol {
uadd := commonsize(arch) + 4
if arch.PtrSize == 8 {
uadd += 4
}
if decodetypeHasUncommon(arch, s.P) {
uadd += uncommonSize()
}
return decodeRelocSym(s, int32(uadd+i*arch.PtrSize))
}
func decodetypeFuncOutType(arch *sys.Arch, s *sym.Symbol, i int) *sym.Symbol {
return decodetypeFuncInType(arch, s, i+decodetypeFuncInCount(arch, s.P))
}
// Type.StructType.fields.Slice::length
func decodetypeStructFieldCount(arch *sys.Arch, s *sym.Symbol) int {
return int(decodeInuxi(arch, s.P[commonsize(arch)+2*arch.PtrSize:], arch.PtrSize))
}
func decodetypeStructFieldArrayOff(arch *sys.Arch, s *sym.Symbol, i int) int {
off := commonsize(arch) + 4*arch.PtrSize
if decodetypeHasUncommon(arch, s.P) {
off += uncommonSize()
}
off += i * structfieldSize(arch)
return off
}
// decodetypeStr returns the contents of an rtype's str field (a nameOff).
func decodetypeStr(arch *sys.Arch, s *sym.Symbol) string {
str := decodetypeName(s, 4*arch.PtrSize+8)
if s.P[2*arch.PtrSize+4]&tflagExtraStar != 0 {
return str[1:]
}
return str
}
// decodetypeName decodes the name from a reflect.name.
func decodetypeName(s *sym.Symbol, off int) string {
r := decodeReloc(s, int32(off))
if r == nil {
return ""
}
data := r.Sym.P
namelen := int(uint16(data[1])<<8 | uint16(data[2]))
return string(data[3 : 3+namelen])
}
func decodetypeStructFieldName(arch *sys.Arch, s *sym.Symbol, i int) string {
off := decodetypeStructFieldArrayOff(arch, s, i)
return decodetypeName(s, off)
}
func decodetypeStructFieldType(arch *sys.Arch, s *sym.Symbol, i int) *sym.Symbol {
off := decodetypeStructFieldArrayOff(arch, s, i)
return decodeRelocSym(s, int32(off+arch.PtrSize))
}
func decodetypeStructFieldOffs(arch *sys.Arch, s *sym.Symbol, i int) int64 {
return decodetypeStructFieldOffsAnon(arch, s, i) >> 1
}
func decodetypeStructFieldOffsAnon(arch *sys.Arch, s *sym.Symbol, i int) int64 {
off := decodetypeStructFieldArrayOff(arch, s, i)
return int64(decodeInuxi(arch, s.P[off+2*arch.PtrSize:], arch.PtrSize))
}
// InterfaceType.methods.length
func decodetypeIfaceMethodCount(arch *sys.Arch, p []byte) int64 {
return int64(decodeInuxi(arch, p[commonsize(arch)+2*arch.PtrSize:], arch.PtrSize))
@ -279,91 +125,3 @@ const (
kindStruct = 25
kindMask = (1 << 5) - 1
)
// decodeMethodSig decodes an array of method signature information.
// Each element of the array is size bytes. The first 4 bytes is a
// nameOff for the method name, and the next 4 bytes is a typeOff for
// the function type.
//
// Conveniently this is the layout of both runtime.method and runtime.imethod.
func decodeMethodSig(arch *sys.Arch, s *sym.Symbol, off, size, count int) []methodsig {
var buf bytes.Buffer
var methods []methodsig
for i := 0; i < count; i++ {
buf.WriteString(decodetypeName(s, off))
mtypSym := decodeRelocSym(s, int32(off+4))
buf.WriteRune('(')
inCount := decodetypeFuncInCount(arch, mtypSym.P)
for i := 0; i < inCount; i++ {
if i > 0 {
buf.WriteString(", ")
}
buf.WriteString(decodetypeFuncInType(arch, mtypSym, i).Name)
}
buf.WriteString(") (")
outCount := decodetypeFuncOutCount(arch, mtypSym.P)
for i := 0; i < outCount; i++ {
if i > 0 {
buf.WriteString(", ")
}
buf.WriteString(decodetypeFuncOutType(arch, mtypSym, i).Name)
}
buf.WriteRune(')')
off += size
methods = append(methods, methodsig(buf.String()))
buf.Reset()
}
return methods
}
func decodeIfaceMethods(arch *sys.Arch, s *sym.Symbol) []methodsig {
if decodetypeKind(arch, s.P)&kindMask != kindInterface {
panic(fmt.Sprintf("symbol %q is not an interface", s.Name))
}
r := decodeReloc(s, int32(commonsize(arch)+arch.PtrSize))
if r == nil {
return nil
}
if r.Sym != s {
panic(fmt.Sprintf("imethod slice pointer in %q leads to a different symbol", s.Name))
}
off := int(r.Add) // array of reflect.imethod values
numMethods := int(decodetypeIfaceMethodCount(arch, s.P))
sizeofIMethod := 4 + 4
return decodeMethodSig(arch, s, off, sizeofIMethod, numMethods)
}
func decodetypeMethods(arch *sys.Arch, s *sym.Symbol) []methodsig {
if !decodetypeHasUncommon(arch, s.P) {
panic(fmt.Sprintf("no methods on %q", s.Name))
}
off := commonsize(arch) // reflect.rtype
switch decodetypeKind(arch, s.P) & kindMask {
case kindStruct: // reflect.structType
off += 4 * arch.PtrSize
case kindPtr: // reflect.ptrType
off += arch.PtrSize
case kindFunc: // reflect.funcType
off += arch.PtrSize // 4 bytes, pointer aligned
case kindSlice: // reflect.sliceType
off += arch.PtrSize
case kindArray: // reflect.arrayType
off += 3 * arch.PtrSize
case kindChan: // reflect.chanType
off += 2 * arch.PtrSize
case kindMap: // reflect.mapType
off += 4*arch.PtrSize + 8
case kindInterface: // reflect.interfaceType
off += 3 * arch.PtrSize
default:
// just Sizeof(rtype)
}
mcount := int(decodeInuxi(arch, s.P[off+4:], 2))
moff := int(decodeInuxi(arch, s.P[off+4+2+2:], 4))
off += moff // offset to array of reflect.method values
const sizeofMethod = 4 * 4 // sizeof reflect.method in program
return decodeMethodSig(arch, s, off, sizeofMethod, mcount)
}

View File

@ -2343,93 +2343,6 @@ elfobj:
}
}
func elfadddynsym(target *Target, syms *ArchSyms, s *sym.Symbol) {
if elf64 {
s.Dynid = int32(Nelfsym)
Nelfsym++
d := syms.DynSym
name := s.Extname()
d.AddUint32(target.Arch, uint32(Addstring(syms.DynStr, name)))
/* type */
t := STB_GLOBAL << 4
if s.Attr.CgoExport() && s.Type == sym.STEXT {
t |= STT_FUNC
} else {
t |= STT_OBJECT
}
d.AddUint8(uint8(t))
/* reserved */
d.AddUint8(0)
/* section where symbol is defined */
if s.Type == sym.SDYNIMPORT {
d.AddUint16(target.Arch, SHN_UNDEF)
} else {
d.AddUint16(target.Arch, 1)
}
/* value */
if s.Type == sym.SDYNIMPORT {
d.AddUint64(target.Arch, 0)
} else {
d.AddAddr(target.Arch, s)
}
/* size of object */
d.AddUint64(target.Arch, uint64(s.Size))
if target.Arch.Family == sys.AMD64 && !s.Attr.CgoExportDynamic() && s.Dynimplib() != "" && !seenlib[s.Dynimplib()] {
elfWriteDynEnt(target.Arch, syms.Dynamic, DT_NEEDED, uint64(Addstring(syms.DynStr, s.Dynimplib())))
}
} else {
s.Dynid = int32(Nelfsym)
Nelfsym++
d := syms.DynSym
/* name */
name := s.Extname()
d.AddUint32(target.Arch, uint32(Addstring(syms.DynStr, name)))
/* value */
if s.Type == sym.SDYNIMPORT {
d.AddUint32(target.Arch, 0)
} else {
d.AddAddr(target.Arch, s)
}
/* size of object */
d.AddUint32(target.Arch, uint32(s.Size))
/* type */
t := STB_GLOBAL << 4
// TODO(mwhudson): presumably the behavior should actually be the same on both arm and 386.
if target.Arch.Family == sys.I386 && s.Attr.CgoExport() && s.Type == sym.STEXT {
t |= STT_FUNC
} else if target.Arch.Family == sys.ARM && s.Attr.CgoExportDynamic() && s.Type == sym.STEXT {
t |= STT_FUNC
} else {
t |= STT_OBJECT
}
d.AddUint8(uint8(t))
d.AddUint8(0)
/* shndx */
if s.Type == sym.SDYNIMPORT {
d.AddUint16(target.Arch, SHN_UNDEF)
} else {
d.AddUint16(target.Arch, 1)
}
}
}
func elfadddynsym2(ldr *loader.Loader, target *Target, syms *ArchSyms, s loader.Sym) {
ldr.SetSymDynid(s, int32(Nelfsym))
Nelfsym++

View File

@ -5,7 +5,6 @@
package ld
import (
"cmd/internal/sys"
"cmd/link/internal/sym"
)
@ -24,146 +23,3 @@ func elfsetstring(s *sym.Symbol, str string, off int) {
elfstr[nelfstr].off = off
nelfstr++
}
func elfWriteDynEntSym(arch *sys.Arch, s *sym.Symbol, tag int, t *sym.Symbol) {
Elfwritedynentsymplus(arch, s, tag, t, 0)
}
func elfdynhash(ctxt *Link) {
if !ctxt.IsELF {
return
}
nsym := Nelfsym
s := ctxt.Syms.Lookup(".hash", 0)
s.Type = sym.SELFROSECT
s.Attr |= sym.AttrReachable
i := nsym
nbucket := 1
for i > 0 {
nbucket++
i >>= 1
}
var needlib *Elflib
need := make([]*Elfaux, nsym)
chain := make([]uint32, nsym)
buckets := make([]uint32, nbucket)
for _, sy := range ctxt.loader.Syms {
if sy == nil {
continue
}
if sy.Dynid <= 0 {
continue
}
if sy.Dynimpvers() != "" {
need[sy.Dynid] = addelflib(&needlib, sy.Dynimplib(), sy.Dynimpvers())
}
name := sy.Extname()
hc := elfhash(name)
b := hc % uint32(nbucket)
chain[sy.Dynid] = buckets[b]
buckets[b] = uint32(sy.Dynid)
}
// s390x (ELF64) hash table entries are 8 bytes
if ctxt.Arch.Family == sys.S390X {
s.AddUint64(ctxt.Arch, uint64(nbucket))
s.AddUint64(ctxt.Arch, uint64(nsym))
for i := 0; i < nbucket; i++ {
s.AddUint64(ctxt.Arch, uint64(buckets[i]))
}
for i := 0; i < nsym; i++ {
s.AddUint64(ctxt.Arch, uint64(chain[i]))
}
} else {
s.AddUint32(ctxt.Arch, uint32(nbucket))
s.AddUint32(ctxt.Arch, uint32(nsym))
for i := 0; i < nbucket; i++ {
s.AddUint32(ctxt.Arch, buckets[i])
}
for i := 0; i < nsym; i++ {
s.AddUint32(ctxt.Arch, chain[i])
}
}
// version symbols
dynstr := ctxt.Syms.Lookup(".dynstr", 0)
s = ctxt.Syms.Lookup(".gnu.version_r", 0)
i = 2
nfile := 0
for l := needlib; l != nil; l = l.next {
nfile++
// header
s.AddUint16(ctxt.Arch, 1) // table version
j := 0
for x := l.aux; x != nil; x = x.next {
j++
}
s.AddUint16(ctxt.Arch, uint16(j)) // aux count
s.AddUint32(ctxt.Arch, uint32(Addstring(dynstr, l.file))) // file string offset
s.AddUint32(ctxt.Arch, 16) // offset from header to first aux
if l.next != nil {
s.AddUint32(ctxt.Arch, 16+uint32(j)*16) // offset from this header to next
} else {
s.AddUint32(ctxt.Arch, 0)
}
for x := l.aux; x != nil; x = x.next {
x.num = i
i++
// aux struct
s.AddUint32(ctxt.Arch, elfhash(x.vers)) // hash
s.AddUint16(ctxt.Arch, 0) // flags
s.AddUint16(ctxt.Arch, uint16(x.num)) // other - index we refer to this by
s.AddUint32(ctxt.Arch, uint32(Addstring(dynstr, x.vers))) // version string offset
if x.next != nil {
s.AddUint32(ctxt.Arch, 16) // offset from this aux to next
} else {
s.AddUint32(ctxt.Arch, 0)
}
}
}
// version references
s = ctxt.Syms.Lookup(".gnu.version", 0)
for i := 0; i < nsym; i++ {
if i == 0 {
s.AddUint16(ctxt.Arch, 0) // first entry - no symbol
} else if need[i] == nil {
s.AddUint16(ctxt.Arch, 1) // global
} else {
s.AddUint16(ctxt.Arch, uint16(need[i].num))
}
}
s = ctxt.Syms.Lookup(".dynamic", 0)
elfverneed = nfile
if elfverneed != 0 {
elfWriteDynEntSym(ctxt.Arch, s, DT_VERNEED, ctxt.Syms.Lookup(".gnu.version_r", 0))
elfWriteDynEnt(ctxt.Arch, s, DT_VERNEEDNUM, uint64(nfile))
elfWriteDynEntSym(ctxt.Arch, s, DT_VERSYM, ctxt.Syms.Lookup(".gnu.version", 0))
}
sy := ctxt.Syms.Lookup(elfRelType+".plt", 0)
if sy.Size > 0 {
if elfRelType == ".rela" {
elfWriteDynEnt(ctxt.Arch, s, DT_PLTREL, DT_RELA)
} else {
elfWriteDynEnt(ctxt.Arch, s, DT_PLTREL, DT_REL)
}
elfWriteDynEntSymSize(ctxt.Arch, s, DT_PLTRELSZ, sy)
elfWriteDynEntSym(ctxt.Arch, s, DT_JMPREL, sy)
}
elfWriteDynEnt(ctxt.Arch, s, DT_NULL, 0)
}

View File

@ -347,22 +347,6 @@ func Adddynsym2(ldr *loader.Loader, target *Target, syms *ArchSyms, s loader.Sym
}
}
func Adddynsym(target *Target, syms *ArchSyms, s *sym.Symbol) {
if s.Dynid >= 0 || target.LinkMode == LinkExternal {
return
}
if target.IsELF {
elfadddynsym(target, syms, s)
} else if target.HeadType == objabi.Hdarwin {
Errorf(s, "adddynsym: missed symbol (Extname=%s)", s.Extname())
} else if target.HeadType == objabi.Hwindows {
// already taken care of
} else {
Errorf(s, "adddynsym: unsupported binary format")
}
}
func fieldtrack(arch *sys.Arch, l *loader.Loader) {
var buf bytes.Buffer
for i := loader.Sym(1); i < loader.Sym(l.NSym()); i++ {

View File

@ -96,7 +96,6 @@ var (
cpuprofile = flag.String("cpuprofile", "", "write cpu profile to `file`")
memprofile = flag.String("memprofile", "", "write memory profile to `file`")
memprofilerate = flag.Int64("memprofilerate", 0, "set runtime.MemProfileRate to `rate`")
flagnewDoData = flag.Bool("newdodata", true, "New style dodata")
benchmarkFlag = flag.String("benchmark", "", "set to 'mem' or 'cpu' to enable phase benchmarking")
benchmarkFileFlag = flag.String("benchmarkprofile", "", "emit phase profiles to `base`_phase.{cpu,mem}prof")
@ -299,16 +298,10 @@ func Main(arch *sys.Arch, theArch Arch) {
dwarfGenerateDebugSyms(ctxt)
bench.Start("symtab")
symGroupType := ctxt.symtab()
if *flagnewDoData {
bench.Start("dodata")
ctxt.dodata2(symGroupType)
}
bench.Start("loadlibfull")
ctxt.loadlibfull(symGroupType) // XXX do it here for now
if !*flagnewDoData {
bench.Start("dodata")
ctxt.dodata()
}
bench.Start("address")
order := ctxt.address()
bench.Start("dwarfcompress")

View File

@ -1,140 +0,0 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ppc64
import (
"cmd/internal/objabi"
"cmd/link/internal/ld"
"cmd/link/internal/loader"
"cmd/link/internal/sym"
"debug/elf"
)
// Temporary dumping ground for sym.Symbol version of helper
// functions in asm.go, still being used for some oses.
// FIXME: get rid of this file when dodata() is completely
// converted.
func adddynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s *sym.Symbol, r *sym.Reloc) bool {
if target.IsElf() {
return addelfdynrel(target, syms, s, r)
} else if target.IsAIX() {
return ld.Xcoffadddynrel(target, ldr, s, r)
}
return false
}
func addelfdynrel(target *ld.Target, syms *ld.ArchSyms, s *sym.Symbol, r *sym.Reloc) bool {
targ := r.Sym
r.InitExt()
switch r.Type {
default:
if r.Type >= objabi.ElfRelocOffset {
ld.Errorf(s, "unexpected relocation type %d (%s)", r.Type, sym.RelocName(target.Arch, r.Type))
return false
}
// Handle relocations found in ELF object files.
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24):
r.Type = objabi.R_CALLPOWER
// This is a local call, so the caller isn't setting
// up r12 and r2 is the same for the caller and
// callee. Hence, we need to go to the local entry
// point. (If we don't do this, the callee will try
// to use r12 to compute r2.)
r.Add += int64(r.Sym.Localentry()) * 4
if targ.Type == sym.SDYNIMPORT {
// Should have been handled in elfsetupplt
ld.Errorf(s, "unexpected R_PPC64_REL24 for dyn import")
}
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC_REL32):
r.Type = objabi.R_PCREL
r.Add += 4
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected R_PPC_REL32 for dyn import")
}
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_ADDR64):
r.Type = objabi.R_ADDR
if targ.Type == sym.SDYNIMPORT {
// These happen in .toc sections
ld.Adddynsym(target, syms, targ)
rela := syms.Rela
rela.AddAddrPlus(target.Arch, s, int64(r.Off))
rela.AddUint64(target.Arch, ld.ELF64_R_INFO(uint32(targ.Dynid), uint32(elf.R_PPC64_ADDR64)))
rela.AddUint64(target.Arch, uint64(r.Add))
r.Type = objabi.ElfRelocOffset // ignore during relocsym
}
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16):
r.Type = objabi.R_POWER_TOC
r.Variant = sym.RV_POWER_LO | sym.RV_CHECK_OVERFLOW
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO):
r.Type = objabi.R_POWER_TOC
r.Variant = sym.RV_POWER_LO
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HA):
r.Type = objabi.R_POWER_TOC
r.Variant = sym.RV_POWER_HA | sym.RV_CHECK_OVERFLOW
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HI):
r.Type = objabi.R_POWER_TOC
r.Variant = sym.RV_POWER_HI | sym.RV_CHECK_OVERFLOW
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_DS):
r.Type = objabi.R_POWER_TOC
r.Variant = sym.RV_POWER_DS | sym.RV_CHECK_OVERFLOW
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO_DS):
r.Type = objabi.R_POWER_TOC
r.Variant = sym.RV_POWER_DS
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_LO):
r.Type = objabi.R_PCREL
r.Variant = sym.RV_POWER_LO
r.Add += 2 // Compensate for relocation size of 2
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HI):
r.Type = objabi.R_PCREL
r.Variant = sym.RV_POWER_HI | sym.RV_CHECK_OVERFLOW
r.Add += 2
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HA):
r.Type = objabi.R_PCREL
r.Variant = sym.RV_POWER_HA | sym.RV_CHECK_OVERFLOW
r.Add += 2
return true
}
// Handle references to ELF symbols from our own object files.
if targ.Type != sym.SDYNIMPORT {
return true
}
// TODO(austin): Translate our relocations to ELF
return false
}

View File

@ -49,7 +49,6 @@ func Init() (*sys.Arch, ld.Arch) {
Dwarfregsp: dwarfRegSP,
Dwarfreglr: dwarfRegLR,
Adddynrel: adddynrel,
Adddynrel2: adddynrel2,
Archinit: archinit,
Archreloc: archreloc,

View File

@ -1,231 +0,0 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package s390x
import (
"cmd/internal/objabi"
"cmd/link/internal/ld"
"cmd/link/internal/loader"
"cmd/link/internal/sym"
"debug/elf"
)
func adddynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s *sym.Symbol, r *sym.Reloc) bool {
targ := r.Sym
r.InitExt()
switch r.Type {
default:
if r.Type >= objabi.ElfRelocOffset {
ld.Errorf(s, "unexpected relocation type %d", r.Type)
return false
}
// Handle relocations found in ELF object files.
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_12),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_GOT12):
ld.Errorf(s, "s390x 12-bit relocations have not been implemented (relocation type %d)", r.Type-objabi.ElfRelocOffset)
return false
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_8),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_16),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_32),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_64):
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected R_390_nn relocation for dynamic symbol %s", targ.Name)
}
r.Type = objabi.R_ADDR
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_PC16),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_PC32),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_PC64):
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected R_390_PCnn relocation for dynamic symbol %s", targ.Name)
}
// TODO(mwhudson): the test of VisibilityHidden here probably doesn't make
// sense and should be removed when someone has thought about it properly.
if (targ.Type == 0 || targ.Type == sym.SXREF) && !targ.Attr.VisibilityHidden() {
ld.Errorf(s, "unknown symbol %s in pcrel", targ.Name)
}
r.Type = objabi.R_PCREL
r.Add += int64(r.Siz)
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_GOT16),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_GOT32),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_GOT64):
ld.Errorf(s, "unimplemented S390x relocation: %v", r.Type-objabi.ElfRelocOffset)
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_PLT16DBL),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_PLT32DBL):
r.Type = objabi.R_PCREL
r.Variant = sym.RV_390_DBL
r.Add += int64(r.Siz)
if targ.Type == sym.SDYNIMPORT {
addpltsym(target, syms, targ)
r.Sym = syms.PLT
r.Add += int64(targ.Plt())
}
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_PLT32),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_PLT64):
r.Type = objabi.R_PCREL
r.Add += int64(r.Siz)
if targ.Type == sym.SDYNIMPORT {
addpltsym(target, syms, targ)
r.Sym = syms.PLT
r.Add += int64(targ.Plt())
}
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_COPY):
ld.Errorf(s, "unimplemented S390x relocation: %v", r.Type-objabi.ElfRelocOffset)
return false
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_GLOB_DAT):
ld.Errorf(s, "unimplemented S390x relocation: %v", r.Type-objabi.ElfRelocOffset)
return false
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_JMP_SLOT):
ld.Errorf(s, "unimplemented S390x relocation: %v", r.Type-objabi.ElfRelocOffset)
return false
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_RELATIVE):
ld.Errorf(s, "unimplemented S390x relocation: %v", r.Type-objabi.ElfRelocOffset)
return false
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_GOTOFF):
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected R_390_GOTOFF relocation for dynamic symbol %s", targ.Name)
}
r.Type = objabi.R_GOTOFF
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_GOTPC):
r.Type = objabi.R_PCREL
r.Sym = syms.GOT
r.Add += int64(r.Siz)
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_PC16DBL),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_PC32DBL):
r.Type = objabi.R_PCREL
r.Variant = sym.RV_390_DBL
r.Add += int64(r.Siz)
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected R_390_PCnnDBL relocation for dynamic symbol %s", targ.Name)
}
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_GOTPCDBL):
r.Type = objabi.R_PCREL
r.Variant = sym.RV_390_DBL
r.Sym = syms.GOT
r.Add += int64(r.Siz)
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_390_GOTENT):
addgotsym(target, syms, targ)
r.Type = objabi.R_PCREL
r.Variant = sym.RV_390_DBL
r.Sym = syms.GOT
r.Add += int64(targ.Got())
r.Add += int64(r.Siz)
return true
}
// Handle references to ELF symbols from our own object files.
if targ.Type != sym.SDYNIMPORT {
return true
}
return false
}
func addpltsym(target *ld.Target, syms *ld.ArchSyms, s *sym.Symbol) {
if s.Plt() >= 0 {
return
}
ld.Adddynsym(target, syms, s)
if target.IsElf() {
plt := syms.PLT
got := syms.GOT
rela := syms.RelaPLT
if plt.Size == 0 {
panic("plt is not set up")
}
// larl %r1,_GLOBAL_OFFSET_TABLE_+index
plt.AddUint8(0xc0)
plt.AddUint8(0x10)
plt.AddPCRelPlus(target.Arch, got, got.Size+6) // need variant?
// add to got: pointer to current pos in plt
got.AddAddrPlus(target.Arch, plt, plt.Size+8) // weird but correct
// lg %r1,0(%r1)
plt.AddUint8(0xe3)
plt.AddUint8(0x10)
plt.AddUint8(0x10)
plt.AddUint8(0x00)
plt.AddUint8(0x00)
plt.AddUint8(0x04)
// br %r1
plt.AddUint8(0x07)
plt.AddUint8(0xf1)
// basr %r1,%r0
plt.AddUint8(0x0d)
plt.AddUint8(0x10)
// lgf %r1,12(%r1)
plt.AddUint8(0xe3)
plt.AddUint8(0x10)
plt.AddUint8(0x10)
plt.AddUint8(0x0c)
plt.AddUint8(0x00)
plt.AddUint8(0x14)
// jg .plt
plt.AddUint8(0xc0)
plt.AddUint8(0xf4)
plt.AddUint32(target.Arch, uint32(-((plt.Size - 2) >> 1))) // roll-your-own relocation
//.plt index
plt.AddUint32(target.Arch, uint32(rela.Size)) // rela size before current entry
// rela
rela.AddAddrPlus(target.Arch, got, got.Size-8)
rela.AddUint64(target.Arch, ld.ELF64_R_INFO(uint32(s.Dynid), uint32(elf.R_390_JMP_SLOT)))
rela.AddUint64(target.Arch, 0)
s.SetPlt(int32(plt.Size - 32))
} else {
ld.Errorf(s, "addpltsym: unsupported binary format")
}
}
func addgotsym(target *ld.Target, syms *ld.ArchSyms, s *sym.Symbol) {
if s.Got() >= 0 {
return
}
ld.Adddynsym(target, syms, s)
got := syms.GOT
s.SetGot(int32(got.Size))
got.AddUint64(target.Arch, 0)
if target.IsElf() {
rela := syms.Rela
rela.AddAddrPlus(target.Arch, got, int64(s.Got()))
rela.AddUint64(target.Arch, ld.ELF64_R_INFO(uint32(s.Dynid), uint32(elf.R_390_GLOB_DAT)))
rela.AddUint64(target.Arch, 0)
} else {
ld.Errorf(s, "addgotsym: unsupported binary format")
}
}

View File

@ -46,7 +46,6 @@ func Init() (*sys.Arch, ld.Arch) {
Dwarfregsp: dwarfRegSP,
Dwarfreglr: dwarfRegLR,
Adddynrel: adddynrel,
Adddynrel2: adddynrel2,
Archinit: archinit,
Archreloc: archreloc,

View File

@ -1,283 +0,0 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x86
import (
"cmd/internal/objabi"
"cmd/link/internal/ld"
"cmd/link/internal/loader"
"cmd/link/internal/sym"
"debug/elf"
)
// Temporary dumping around for sym.Symbol version of helper
// functions in asm.go, still being used for some oses.
// FIXME: get rid of this file when dodata() is completely
// converted.
func adddynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s *sym.Symbol, r *sym.Reloc) bool {
targ := r.Sym
switch r.Type {
default:
if r.Type >= objabi.ElfRelocOffset {
ld.Errorf(s, "unexpected relocation type %d (%s)", r.Type, sym.RelocName(target.Arch, r.Type))
return false
}
// Handle relocations found in ELF object files.
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_386_PC32):
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected R_386_PC32 relocation for dynamic symbol %s", targ.Name)
}
// TODO(mwhudson): the test of VisibilityHidden here probably doesn't make
// sense and should be removed when someone has thought about it properly.
if (targ.Type == 0 || targ.Type == sym.SXREF) && !targ.Attr.VisibilityHidden() {
ld.Errorf(s, "unknown symbol %s in pcrel", targ.Name)
}
r.Type = objabi.R_PCREL
r.Add += 4
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_386_PLT32):
r.Type = objabi.R_PCREL
r.Add += 4
if targ.Type == sym.SDYNIMPORT {
addpltsym(target, syms, targ)
r.Sym = syms.PLT
r.Add += int64(targ.Plt())
}
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_386_GOT32),
objabi.ElfRelocOffset + objabi.RelocType(elf.R_386_GOT32X):
if targ.Type != sym.SDYNIMPORT {
// have symbol
if r.Off >= 2 && s.P[r.Off-2] == 0x8b {
// turn MOVL of GOT entry into LEAL of symbol address, relative to GOT.
s.P[r.Off-2] = 0x8d
r.Type = objabi.R_GOTOFF
return true
}
if r.Off >= 2 && s.P[r.Off-2] == 0xff && s.P[r.Off-1] == 0xb3 {
// turn PUSHL of GOT entry into PUSHL of symbol itself.
// use unnecessary SS prefix to keep instruction same length.
s.P[r.Off-2] = 0x36
s.P[r.Off-1] = 0x68
r.Type = objabi.R_ADDR
return true
}
ld.Errorf(s, "unexpected GOT reloc for non-dynamic symbol %s", targ.Name)
return false
}
addgotsym(target, syms, targ)
r.Type = objabi.R_CONST // write r->add during relocsym
r.Sym = nil
r.Add += int64(targ.Got())
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_386_GOTOFF):
r.Type = objabi.R_GOTOFF
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_386_GOTPC):
r.Type = objabi.R_PCREL
r.Sym = syms.GOT
r.Add += 4
return true
case objabi.ElfRelocOffset + objabi.RelocType(elf.R_386_32):
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected R_386_32 relocation for dynamic symbol %s", targ.Name)
}
r.Type = objabi.R_ADDR
return true
case objabi.MachoRelocOffset + ld.MACHO_GENERIC_RELOC_VANILLA*2 + 0:
r.Type = objabi.R_ADDR
if targ.Type == sym.SDYNIMPORT {
ld.Errorf(s, "unexpected reloc for dynamic symbol %s", targ.Name)
}
return true
case objabi.MachoRelocOffset + ld.MACHO_GENERIC_RELOC_VANILLA*2 + 1:
if targ.Type == sym.SDYNIMPORT {
addpltsym(target, syms, targ)
r.Sym = syms.PLT
r.Add = int64(targ.Plt())
r.Type = objabi.R_PCREL
return true
}
r.Type = objabi.R_PCREL
return true
case objabi.MachoRelocOffset + ld.MACHO_FAKE_GOTPCREL:
if targ.Type != sym.SDYNIMPORT {
// have symbol
// turn MOVL of GOT entry into LEAL of symbol itself
if r.Off < 2 || s.P[r.Off-2] != 0x8b {
ld.Errorf(s, "unexpected GOT reloc for non-dynamic symbol %s", targ.Name)
return false
}
s.P[r.Off-2] = 0x8d
r.Type = objabi.R_PCREL
return true
}
addgotsym(target, syms, targ)
r.Sym = syms.GOT
r.Add += int64(targ.Got())
r.Type = objabi.R_PCREL
return true
}
// Handle references to ELF symbols from our own object files.
if targ.Type != sym.SDYNIMPORT {
return true
}
switch r.Type {
case objabi.R_CALL,
objabi.R_PCREL:
if target.IsExternal() {
// External linker will do this relocation.
return true
}
addpltsym(target, syms, targ)
r.Sym = syms.PLT
r.Add = int64(targ.Plt())
return true
case objabi.R_ADDR:
if s.Type != sym.SDATA {
break
}
if target.IsElf() {
ld.Adddynsym(target, syms, targ)
rel := syms.Rel
rel.AddAddrPlus(target.Arch, s, int64(r.Off))
rel.AddUint32(target.Arch, ld.ELF32_R_INFO(uint32(targ.Dynid), uint32(elf.R_386_32)))
r.Type = objabi.R_CONST // write r->add during relocsym
r.Sym = nil
return true
}
if target.IsDarwin() && s.Size == int64(target.Arch.PtrSize) && r.Off == 0 {
// Mach-O relocations are a royal pain to lay out.
// They use a compact stateful bytecode representation
// that is too much bother to deal with.
// Instead, interpret the C declaration
// void *_Cvar_stderr = &stderr;
// as making _Cvar_stderr the name of a GOT entry
// for stderr. This is separate from the usual GOT entry,
// just in case the C code assigns to the variable,
// and of course it only works for single pointers,
// but we only need to support cgo and that's all it needs.
ld.Adddynsym(target, syms, targ)
got := syms.GOT
s.Type = got.Type
s.Attr |= sym.AttrSubSymbol
s.Outer = got
s.Sub = got.Sub
got.Sub = s
s.Value = got.Size
got.AddUint32(target.Arch, 0)
syms.LinkEditGOT.AddUint32(target.Arch, uint32(targ.Dynid))
r.Type = objabi.ElfRelocOffset // ignore during relocsym
return true
}
}
return false
}
func addpltsym(target *ld.Target, syms *ld.ArchSyms, s *sym.Symbol) {
if s.Plt() >= 0 {
return
}
ld.Adddynsym(target, syms, s)
if target.IsElf() {
plt := syms.PLT
got := syms.GOTPLT
rel := syms.RelPLT
if plt.Size == 0 {
panic("plt is not set up")
}
// jmpq *got+size
plt.AddUint8(0xff)
plt.AddUint8(0x25)
plt.AddAddrPlus(target.Arch, got, got.Size)
// add to got: pointer to current pos in plt
got.AddAddrPlus(target.Arch, plt, plt.Size)
// pushl $x
plt.AddUint8(0x68)
plt.AddUint32(target.Arch, uint32(rel.Size))
// jmp .plt
plt.AddUint8(0xe9)
plt.AddUint32(target.Arch, uint32(-(plt.Size + 4)))
// rel
rel.AddAddrPlus(target.Arch, got, got.Size-4)
rel.AddUint32(target.Arch, ld.ELF32_R_INFO(uint32(s.Dynid), uint32(elf.R_386_JMP_SLOT)))
s.SetPlt(int32(plt.Size - 16))
} else if target.IsDarwin() {
// Same laziness as in 6l.
plt := syms.PLT
addgotsym(target, syms, s)
syms.LinkEditPLT.AddUint32(target.Arch, uint32(s.Dynid))
// jmpq *got+size(IP)
s.SetPlt(int32(plt.Size))
plt.AddUint8(0xff)
plt.AddUint8(0x25)
plt.AddAddrPlus(target.Arch, syms.GOT, int64(s.Got()))
} else {
ld.Errorf(s, "addpltsym: unsupported binary format")
}
}
func addgotsym(target *ld.Target, syms *ld.ArchSyms, s *sym.Symbol) {
if s.Got() >= 0 {
return
}
ld.Adddynsym(target, syms, s)
got := syms.GOT
s.SetGot(int32(got.Size))
got.AddUint32(target.Arch, 0)
if target.IsElf() {
rel := syms.Rel
rel.AddAddrPlus(target.Arch, got, int64(s.Got()))
rel.AddUint32(target.Arch, ld.ELF32_R_INFO(uint32(s.Dynid), uint32(elf.R_386_GLOB_DAT)))
} else if target.IsDarwin() {
syms.LinkEditGOT.AddUint32(target.Arch, uint32(s.Dynid))
} else {
ld.Errorf(s, "addgotsym: unsupported binary format")
}
}

View File

@ -46,7 +46,6 @@ func Init() (*sys.Arch, ld.Arch) {
Dwarfregsp: dwarfRegSP,
Dwarfreglr: dwarfRegLR,
Adddynrel: adddynrel,
Adddynrel2: adddynrel2,
Archinit: archinit,
Archreloc: archreloc,