1
0
mirror of https://github.com/golang/go synced 2024-09-29 05:24:32 -06:00

[dev.unified] cmd/compile: extract rtype code from walk

This CL removes (almost*) all reflectdata.{TypePtr,ITabAddr} calls
from package walk. This will allow us to next start adding RType/ITab
fields to IR nodes directly, and have the helpers start returning them
when available instead.

The one survining ITabAddr call is due to ODOTTYPE{,2}, but we already
have ODYNAMICDOTTYPE{,2}, which I plan to have Unified IR always
use. (Longer term, once the Go 1.18 frontend is gone, we can get rid
of ODOTTYPE*, and rename ODYNAMICDOTTYPE*.)

Passes toolstash -cmp.

Change-Id: I5e00da06a93d069abf383d7628e692dd7fd2a1c7
Reviewed-on: https://go-review.googlesource.com/c/go/+/413356
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
Reviewed-by: David Chase <drchase@google.com>
TryBot-Result: Gopher Robot <gobot@golang.org>
This commit is contained in:
Matthew Dempsky 2022-06-14 16:07:46 -07:00
parent f70775ff22
commit 93833cd5d8
9 changed files with 225 additions and 40 deletions

View File

@ -0,0 +1,172 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflectdata
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/types"
"cmd/internal/src"
)
// assertOp asserts that n is an op.
func assertOp(n ir.Node, op ir.Op) {
base.AssertfAt(n.Op() == op, n.Pos(), "want %v, have %v", op, n)
}
// assertOp2 asserts that n is an op1 or op2.
func assertOp2(n ir.Node, op1, op2 ir.Op) {
base.AssertfAt(n.Op() == op1 || n.Op() == op2, n.Pos(), "want %v or %v, have %v", op1, op2, n)
}
// kindRType asserts that typ has the given kind, and returns an
// expression that yields the *runtime._type value representing typ.
func kindRType(pos src.XPos, typ *types.Type, k types.Kind) ir.Node {
base.AssertfAt(typ.Kind() == k, pos, "want %v type, have %v", k, typ)
return TypePtrAt(pos, typ)
}
// mapRType asserts that typ is a map type, and returns an expression
// that yields the *runtime._type value representing typ.
func mapRType(pos src.XPos, typ *types.Type) ir.Node {
return kindRType(pos, typ, types.TMAP)
}
// chanRType asserts that typ is a map type, and returns an expression
// that yields the *runtime._type value representing typ.
func chanRType(pos src.XPos, typ *types.Type) ir.Node {
return kindRType(pos, typ, types.TCHAN)
}
// sliceElemRType asserts that typ is a slice type, and returns an
// expression that yields the *runtime._type value representing typ's
// element type.
func sliceElemRType(pos src.XPos, typ *types.Type) ir.Node {
base.AssertfAt(typ.IsSlice(), pos, "want slice type, have %v", typ)
return TypePtrAt(pos, typ.Elem())
}
// concreteRType asserts that typ is not an interface type, and
// returns an expression that yields the *runtime._type value
// representing typ.
func concreteRType(pos src.XPos, typ *types.Type) ir.Node {
base.AssertfAt(!typ.IsInterface(), pos, "want non-interface type, have %v", typ)
return TypePtrAt(pos, typ)
}
// AppendElemRType asserts that n is an "append" operation, and
// returns an expression that yields the *runtime._type value
// representing the result slice type's element type.
func AppendElemRType(pos src.XPos, n *ir.CallExpr) ir.Node {
assertOp(n, ir.OAPPEND)
return sliceElemRType(pos, n.Type())
}
// CompareRType asserts that n is a comparison (== or !=) operation
// between expressions of interface and non-interface type, and
// returns an expression that yields the *runtime._type value
// representing the non-interface type.
func CompareRType(pos src.XPos, n *ir.BinaryExpr) ir.Node {
assertOp2(n, ir.OEQ, ir.ONE)
base.AssertfAt(n.X.Type().IsInterface() != n.Y.Type().IsInterface(), n.Pos(), "expect mixed interface and non-interface, have %L and %L", n.X, n.Y)
typ := n.X.Type()
if typ.IsInterface() {
typ = n.Y.Type()
}
return concreteRType(pos, typ)
}
// ConvIfaceTypeWord asserts that n is conversion to interface type,
// and returns an expression that yields the *runtime._type or
// *runtime.itab value necessary for implementing the conversion.
//
// - *runtime._type for the destination type, for I2I conversions
// - *runtime.itab, for T2I conversions
// - *runtime._type for the source type, for T2E conversions
func ConvIfaceTypeWord(pos src.XPos, n *ir.ConvExpr) ir.Node {
assertOp(n, ir.OCONVIFACE)
src, dst := n.X.Type(), n.Type()
base.AssertfAt(dst.IsInterface(), n.Pos(), "want interface type, have %L", n)
if dst.IsEmptyInterface() {
return concreteRType(pos, src) // direct eface construction
}
if !src.IsInterface() {
return ITabAddr(src, dst) // direct iface construction
}
return TypePtrAt(pos, dst) // convI2I
}
// ConvIfaceDataWordRType asserts that n is a conversion from
// non-interface type to interface type (or OCONVIDATA operation), and
// returns an expression that yields the *runtime._type for copying
// the convertee value to the heap.
func ConvIfaceDataWordRType(pos src.XPos, n *ir.ConvExpr) ir.Node {
assertOp2(n, ir.OCONVIFACE, ir.OCONVIDATA)
return concreteRType(pos, n.X.Type())
}
// CopyElemRType asserts that n is a "copy" operation, and returns an
// expression that yields the *runtime._type value representing the
// destination slice type's element type.
func CopyElemRType(pos src.XPos, n *ir.BinaryExpr) ir.Node {
assertOp(n, ir.OCOPY)
return sliceElemRType(pos, n.X.Type())
}
// DeleteMapRType asserts that n is a "delete" operation, and returns
// an expression that yields the *runtime._type value representing the
// map type.
func DeleteMapRType(pos src.XPos, n *ir.CallExpr) ir.Node {
assertOp(n, ir.ODELETE)
return mapRType(pos, n.Args[0].Type())
}
// IndexMapRType asserts that n is a map index operation, and returns
// an expression that yields the *runtime._type value representing the
// map type.
func IndexMapRType(pos src.XPos, n *ir.IndexExpr) ir.Node {
assertOp(n, ir.OINDEXMAP)
return mapRType(pos, n.X.Type())
}
// MakeChanRType asserts that n is a "make" operation for a channel
// type, and returns an expression that yields the *runtime._type
// value representing that channel type.
func MakeChanRType(pos src.XPos, n *ir.MakeExpr) ir.Node {
assertOp(n, ir.OMAKECHAN)
return chanRType(pos, n.Type())
}
// MakeMapRType asserts that n is a "make" operation for a map type,
// and returns an expression that yields the *runtime._type value
// representing that map type.
func MakeMapRType(pos src.XPos, n *ir.MakeExpr) ir.Node {
assertOp(n, ir.OMAKEMAP)
return mapRType(pos, n.Type())
}
// MakeSliceElemRType asserts that n is a "make" operation for a slice
// type, and returns an expression that yields the *runtime._type
// value representing that slice type's element type.
func MakeSliceElemRType(pos src.XPos, n *ir.MakeExpr) ir.Node {
assertOp2(n, ir.OMAKESLICE, ir.OMAKESLICECOPY)
return sliceElemRType(pos, n.Type())
}
// RangeMapRType asserts that n is a "range" loop over a map value,
// and returns an expression that yields the *runtime._type value
// representing that map type.
func RangeMapRType(pos src.XPos, n *ir.RangeStmt) ir.Node {
assertOp(n, ir.ORANGE)
return mapRType(pos, n.X.Type())
}
// UnsafeSliceElemRType asserts that n is an "unsafe.Slice" operation,
// and returns an expression that yields the *runtime._type value
// representing the result slice type's element type.
func UnsafeSliceElemRType(pos src.XPos, n *ir.BinaryExpr) ir.Node {
assertOp(n, ir.OUNSAFESLICE)
return sliceElemRType(pos, n.Type())
}

View File

@ -99,10 +99,11 @@ func walkAssign(init *ir.Nodes, n ir.Node) ir.Node {
}
as.Y = r
if r.Op() == ir.OAPPEND {
r := r.(*ir.CallExpr)
// Left in place for back end.
// Do not add a new write barrier.
// Set up address of type for back end.
r.(*ir.CallExpr).X = reflectdata.TypePtr(r.Type().Elem())
r.X = reflectdata.AppendElemRType(base.Pos, r)
return as
}
// Otherwise, lowered for race detector.
@ -169,11 +170,11 @@ func walkAssignMapRead(init *ir.Nodes, n *ir.AssignListStmt) ir.Node {
var call *ir.CallExpr
if w := t.Elem().Size(); w <= zeroValSize {
fn := mapfn(mapaccess2[fast], t, false)
call = mkcall1(fn, fn.Type().Results(), init, reflectdata.TypePtr(t), r.X, key)
call = mkcall1(fn, fn.Type().Results(), init, reflectdata.IndexMapRType(base.Pos, r), r.X, key)
} else {
fn := mapfn("mapaccess2_fat", t, true)
z := reflectdata.ZeroAddr(w)
call = mkcall1(fn, fn.Type().Results(), init, reflectdata.TypePtr(t), r.X, key, z)
call = mkcall1(fn, fn.Type().Results(), init, reflectdata.IndexMapRType(base.Pos, r), r.X, key, z)
}
// mapaccess2* returns a typed bool, but due to spec changes,
@ -502,7 +503,7 @@ func appendSlice(n *ir.CallExpr, init *ir.Nodes) ir.Node {
fn = typecheck.SubstArgTypes(fn, elemtype, elemtype)
// s = growslice(T, s, n)
nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, s, mkcall1(fn, s.Type(), nif.PtrInit(), reflectdata.TypePtr(elemtype), s, nn))}
nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, s, mkcall1(fn, s.Type(), nif.PtrInit(), reflectdata.AppendElemRType(base.Pos, n), s, nn))}
nodes.Append(nif)
// s = s[:n]
@ -523,7 +524,7 @@ func appendSlice(n *ir.CallExpr, init *ir.Nodes) ir.Node {
fn = typecheck.SubstArgTypes(fn, l1.Type().Elem(), l2.Type().Elem())
ptr1, len1 := backingArrayPtrLen(cheapExpr(slice, &nodes))
ptr2, len2 := backingArrayPtrLen(l2)
ncopy = mkcall1(fn, types.Types[types.TINT], &nodes, reflectdata.TypePtr(elemtype), ptr1, len1, ptr2, len2)
ncopy = mkcall1(fn, types.Types[types.TINT], &nodes, reflectdata.AppendElemRType(base.Pos, n), ptr1, len1, ptr2, len2)
} else if base.Flag.Cfg.Instrumenting && !base.Flag.CompilingRuntime {
// rely on runtime to instrument:
// copy(s[len(l1):], l2)
@ -670,7 +671,7 @@ func extendSlice(n *ir.CallExpr, init *ir.Nodes) ir.Node {
fn = typecheck.SubstArgTypes(fn, elemtype, elemtype)
// s = growslice(T, s, n)
nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, s, mkcall1(fn, s.Type(), nif.PtrInit(), reflectdata.TypePtr(elemtype), s, nn))}
nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, s, mkcall1(fn, s.Type(), nif.PtrInit(), reflectdata.AppendElemRType(base.Pos, n), s, nn))}
nodes = append(nodes, nif)
// s = s[:n]

View File

@ -87,7 +87,7 @@ func walkAppend(n *ir.CallExpr, init *ir.Nodes, dst ir.Node) ir.Node {
fn := typecheck.LookupRuntime("growslice") // growslice(<type>, old []T, mincap int) (ret []T)
fn = typecheck.SubstArgTypes(fn, ns.Type().Elem(), ns.Type().Elem())
nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, ns, mkcall1(fn, ns.Type(), nif.PtrInit(), reflectdata.TypePtr(ns.Type().Elem()), ns,
nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, ns, mkcall1(fn, ns.Type(), nif.PtrInit(), reflectdata.AppendElemRType(base.Pos, n), ns,
ir.NewBinaryExpr(base.Pos, ir.OADD, ir.NewUnaryExpr(base.Pos, ir.OLEN, ns), na)))}
l = append(l, nif)
@ -141,7 +141,7 @@ func walkCopy(n *ir.BinaryExpr, init *ir.Nodes, runtimecall bool) ir.Node {
ptrL, lenL := backingArrayPtrLen(n.X)
n.Y = cheapExpr(n.Y, init)
ptrR, lenR := backingArrayPtrLen(n.Y)
return mkcall1(fn, n.Type(), init, reflectdata.TypePtr(n.X.Type().Elem()), ptrL, lenL, ptrR, lenR)
return mkcall1(fn, n.Type(), init, reflectdata.CopyElemRType(base.Pos, n), ptrL, lenL, ptrR, lenR)
}
if runtimecall {
@ -214,7 +214,7 @@ func walkDelete(init *ir.Nodes, n *ir.CallExpr) ir.Node {
t := map_.Type()
fast := mapfast(t)
key = mapKeyArg(fast, n, key, false)
return mkcall1(mapfndel(mapdelete[fast], t), nil, init, reflectdata.TypePtr(t), map_, key)
return mkcall1(mapfndel(mapdelete[fast], t), nil, init, reflectdata.DeleteMapRType(base.Pos, n), map_, key)
}
// walkLenCap walks an OLEN or OCAP node.
@ -258,7 +258,7 @@ func walkMakeChan(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
argtype = types.Types[types.TINT]
}
return mkcall1(chanfn(fnname, 1, n.Type()), n.Type(), init, reflectdata.TypePtr(n.Type()), typecheck.Conv(size, argtype))
return mkcall1(chanfn(fnname, 1, n.Type()), n.Type(), init, reflectdata.MakeChanRType(base.Pos, n), typecheck.Conv(size, argtype))
}
// walkMakeMap walks an OMAKEMAP node.
@ -356,7 +356,7 @@ func walkMakeMap(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
fn := typecheck.LookupRuntime(fnname)
fn = typecheck.SubstArgTypes(fn, hmapType, t.Key(), t.Elem())
return mkcall1(fn, n.Type(), init, reflectdata.TypePtr(n.Type()), typecheck.Conv(hint, argtype), h)
return mkcall1(fn, n.Type(), init, reflectdata.MakeMapRType(base.Pos, n), typecheck.Conv(hint, argtype), h)
}
// walkMakeSlice walks an OMAKESLICE node.
@ -421,7 +421,7 @@ func walkMakeSlice(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
argtype = types.Types[types.TINT]
}
fn := typecheck.LookupRuntime(fnname)
ptr := mkcall1(fn, types.Types[types.TUNSAFEPTR], init, reflectdata.TypePtr(t.Elem()), typecheck.Conv(len, argtype), typecheck.Conv(cap, argtype))
ptr := mkcall1(fn, types.Types[types.TUNSAFEPTR], init, reflectdata.MakeSliceElemRType(base.Pos, n), typecheck.Conv(len, argtype), typecheck.Conv(cap, argtype))
ptr.MarkNonNil()
len = typecheck.Conv(len, types.Types[types.TINT])
cap = typecheck.Conv(cap, types.Types[types.TINT])
@ -475,7 +475,7 @@ func walkMakeSliceCopy(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
// Replace make+copy with runtime.makeslicecopy.
// instantiate makeslicecopy(typ *byte, tolen int, fromlen int, from unsafe.Pointer) unsafe.Pointer
fn := typecheck.LookupRuntime("makeslicecopy")
ptr := mkcall1(fn, types.Types[types.TUNSAFEPTR], init, reflectdata.TypePtr(t.Elem()), length, copylen, typecheck.Conv(copyptr, types.Types[types.TUNSAFEPTR]))
ptr := mkcall1(fn, types.Types[types.TUNSAFEPTR], init, reflectdata.MakeSliceElemRType(base.Pos, n), length, copylen, typecheck.Conv(copyptr, types.Types[types.TUNSAFEPTR]))
ptr.MarkNonNil()
sh := ir.NewSliceHeaderExpr(base.Pos, t, ptr, length, length)
return walkExpr(typecheck.Expr(sh), init)
@ -658,7 +658,7 @@ func walkUnsafeSlice(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
if ir.ShouldCheckPtr(ir.CurFunc, 1) {
fnname := "unsafeslicecheckptr"
fn := typecheck.LookupRuntime(fnname)
init.Append(mkcall1(fn, nil, init, reflectdata.TypePtr(sliceType.Elem()), unsafePtr, typecheck.Conv(len, lenType)))
init.Append(mkcall1(fn, nil, init, reflectdata.UnsafeSliceElemRType(base.Pos, n), unsafePtr, typecheck.Conv(len, lenType)))
} else {
// Otherwise, open code unsafe.Slice to prevent runtime call overhead.
// Keep this code in sync with runtime.unsafeslice{,64}

View File

@ -54,6 +54,10 @@ func walkCompare(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
// Given mixed interface/concrete comparison,
// rewrite into types-equal && data-equal.
// This is efficient, avoids allocations, and avoids runtime calls.
//
// TODO(mdempsky): It would be more general and probably overall
// simpler to just extend walkCompareInterface to optimize when one
// operand is an OCONVIFACE.
if n.X.Type().IsInterface() != n.Y.Type().IsInterface() {
// Preserve side-effects in case of short-circuiting; see #32187.
l := cheapExpr(n.X, init)
@ -74,9 +78,12 @@ func walkCompare(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
// l.tab == type(r)
// For non-empty interface, this is:
// l.tab != nil && l.tab._type == type(r)
//
// TODO(mdempsky): For non-empty interface comparisons, just
// compare against the itab address directly?
var eqtype ir.Node
tab := ir.NewUnaryExpr(base.Pos, ir.OITAB, l)
rtyp := reflectdata.TypePtr(r.Type())
rtyp := reflectdata.CompareRType(base.Pos, n)
if l.Type().IsEmptyInterface() {
tab.SetType(types.NewPtr(types.Types[types.TUINT8]))
tab.SetTypecheck(1)

View File

@ -467,14 +467,17 @@ func maplit(n *ir.CompLitExpr, m ir.Node, init *ir.Nodes) {
kidx := ir.NewIndexExpr(base.Pos, vstatk, i)
kidx.SetBounded(true)
lhs := ir.NewIndexExpr(base.Pos, m, kidx)
// typechecker rewrites OINDEX to OINDEXMAP
lhs := typecheck.AssignExpr(ir.NewIndexExpr(base.Pos, m, kidx)).(*ir.IndexExpr)
base.AssertfAt(lhs.Op() == ir.OINDEXMAP, lhs.Pos(), "want OINDEXMAP, have %+v", lhs)
zero := ir.NewAssignStmt(base.Pos, i, ir.NewInt(0))
cond := ir.NewBinaryExpr(base.Pos, ir.OLT, i, ir.NewInt(tk.NumElem()))
incr := ir.NewAssignStmt(base.Pos, i, ir.NewBinaryExpr(base.Pos, ir.OADD, i, ir.NewInt(1)))
var body ir.Node = ir.NewAssignStmt(base.Pos, lhs, rhs)
body = typecheck.Stmt(body) // typechecker rewrites OINDEX to OINDEXMAP
body = typecheck.Stmt(body)
body = orderStmtInPlace(body, map[string][]*ir.Name{})
loop := ir.NewForStmt(base.Pos, nil, cond, incr, nil)
@ -503,8 +506,13 @@ func maplit(n *ir.CompLitExpr, m ir.Node, init *ir.Nodes) {
appendWalkStmt(init, ir.NewAssignStmt(base.Pos, tmpelem, elem))
ir.SetPos(tmpelem)
var a ir.Node = ir.NewAssignStmt(base.Pos, ir.NewIndexExpr(base.Pos, m, tmpkey), tmpelem)
a = typecheck.Stmt(a) // typechecker rewrites OINDEX to OINDEXMAP
// typechecker rewrites OINDEX to OINDEXMAP
lhs := typecheck.AssignExpr(ir.NewIndexExpr(base.Pos, m, tmpkey)).(*ir.IndexExpr)
base.AssertfAt(lhs.Op() == ir.OINDEXMAP, lhs.Pos(), "want OINDEXMAP, have %+v", lhs)
var a ir.Node = ir.NewAssignStmt(base.Pos, lhs, tmpelem)
a = typecheck.Stmt(a)
a = orderStmtInPlace(a, map[string][]*ir.Name{})
appendWalkStmt(init, a)
}

View File

@ -14,7 +14,6 @@ import (
"cmd/compile/internal/ssagen"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
"cmd/internal/sys"
)
@ -50,13 +49,8 @@ func walkConvInterface(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
}
if !fromType.IsInterface() {
var typeWord ir.Node
if toType.IsEmptyInterface() {
typeWord = reflectdata.TypePtr(fromType)
} else {
typeWord = reflectdata.ITabAddr(fromType, toType)
}
l := ir.NewBinaryExpr(base.Pos, ir.OEFACE, typeWord, dataWord(n.Pos(), n.X, init, n.Esc() != ir.EscNone))
typeWord := reflectdata.ConvIfaceTypeWord(base.Pos, n)
l := ir.NewBinaryExpr(base.Pos, ir.OEFACE, typeWord, dataWord(n, init))
l.SetType(toType)
l.SetTypecheck(n.Typecheck())
return l
@ -95,7 +89,7 @@ func walkConvInterface(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
fn := typecheck.LookupRuntime("convI2I")
types.CalcSize(fn.Type())
call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil)
call.Args = []ir.Node{reflectdata.TypePtr(toType), itab}
call.Args = []ir.Node{reflectdata.ConvIfaceTypeWord(base.Pos, n), itab}
typeWord = walkExpr(typecheck.Expr(call), init)
}
@ -107,10 +101,10 @@ func walkConvInterface(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
return e
}
// Returns the data word (the second word) used to represent n in an interface.
// n must not be of interface type.
// esc describes whether the result escapes.
func dataWord(pos src.XPos, n ir.Node, init *ir.Nodes, escapes bool) ir.Node {
// Returns the data word (the second word) used to represent conv.X in
// an interface.
func dataWord(conv *ir.ConvExpr, init *ir.Nodes) ir.Node {
pos, n := conv.Pos(), conv.X
fromType := n.Type()
// If it's a pointer, it is its own representation.
@ -150,7 +144,7 @@ func dataWord(pos src.XPos, n ir.Node, init *ir.Nodes, escapes bool) ir.Node {
case n.Op() == ir.ONAME && n.(*ir.Name).Class == ir.PEXTERN && n.(*ir.Name).Readonly():
// n is a readonly global; use it directly.
value = n
case !escapes && fromType.Size() <= 1024:
case conv.Esc() == ir.EscNone && fromType.Size() <= 1024:
// n does not escape. Use a stack temporary initialized to n.
value = typecheck.Temp(fromType)
init.Append(typecheck.Stmt(ir.NewAssignStmt(base.Pos, value, n)))
@ -176,7 +170,7 @@ func dataWord(pos src.XPos, n ir.Node, init *ir.Nodes, escapes bool) ir.Node {
n = copyExpr(n, fromType, init)
}
fn = typecheck.SubstArgTypes(fn, fromType)
args = []ir.Node{reflectdata.TypePtr(fromType), typecheck.NodAddr(n)}
args = []ir.Node{reflectdata.ConvIfaceDataWordRType(base.Pos, conv), typecheck.NodAddr(n)}
} else {
// Use a specialized conversion routine that takes the type being
// converted by value, not by pointer.
@ -211,7 +205,7 @@ func dataWord(pos src.XPos, n ir.Node, init *ir.Nodes, escapes bool) ir.Node {
// walkConvIData walks an OCONVIDATA node.
func walkConvIData(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
n.X = walkExpr(n.X, init)
return dataWord(n.Pos(), n.X, init, n.Esc() != ir.EscNone)
return dataWord(n, init)
}
// walkBytesRunesToString walks an OBYTES2STR or ORUNES2STR node.

View File

@ -782,7 +782,7 @@ func walkIndexMap(n *ir.IndexExpr, init *ir.Nodes) ir.Node {
t := map_.Type()
fast := mapfast(t)
key := mapKeyArg(fast, n, n.Index, n.Assigned)
args := []ir.Node{reflectdata.TypePtr(t), map_, key}
args := []ir.Node{reflectdata.IndexMapRType(base.Pos, n), map_, key}
var mapFn ir.Node
switch {

View File

@ -1450,8 +1450,11 @@ func (o *orderState) expr1(n, lhs ir.Node) ir.Node {
// Emit eval+insert of dynamic entries, one at a time.
for _, r := range dynamics {
as := ir.NewAssignStmt(base.Pos, ir.NewIndexExpr(base.Pos, m, r.Key), r.Value)
typecheck.Stmt(as) // Note: this converts the OINDEX to an OINDEXMAP
lhs := typecheck.AssignExpr(ir.NewIndexExpr(base.Pos, m, r.Key)).(*ir.IndexExpr)
base.AssertfAt(lhs.Op() == ir.OINDEXMAP, lhs.Pos(), "want OINDEXMAP, have %+v", lhs)
as := ir.NewAssignStmt(base.Pos, lhs, r.Value)
typecheck.Stmt(as)
o.stmt(as)
}

View File

@ -168,7 +168,7 @@ func walkRange(nrange *ir.RangeStmt) ir.Node {
fn := typecheck.LookupRuntime("mapiterinit")
fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem(), th)
init = append(init, mkcallstmt1(fn, reflectdata.TypePtr(t), ha, typecheck.NodAddr(hit)))
init = append(init, mkcallstmt1(fn, reflectdata.RangeMapRType(base.Pos, nrange), ha, typecheck.NodAddr(hit)))
nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym), typecheck.NodNil())
fn = typecheck.LookupRuntime("mapiternext")
@ -366,7 +366,7 @@ func mapClear(nrange *ir.RangeStmt) ir.Node {
// instantiate mapclear(typ *type, hmap map[any]any)
fn := typecheck.LookupRuntime("mapclear")
fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem())
n := mkcallstmt1(fn, reflectdata.TypePtr(t), m)
n := mkcallstmt1(fn, reflectdata.RangeMapRType(base.Pos, nrange), m)
return walkStmt(typecheck.Stmt(n))
}