1
0
mirror of https://github.com/golang/go synced 2024-11-18 02:14:45 -07:00

os/signal: avoid race between Stop and receiving on channel

When Stop is called on a channel, wait until all signals have been
delivered to the channel before returning.

Use atomic operations in sigqueue to communicate more reliably between
the os/signal goroutine and the signal handler.

Fixes #14571

Change-Id: I6c5a9eea1cff85e37a34dffe96f4bb2699e12c6e
Reviewed-on: https://go-review.googlesource.com/46003
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
This commit is contained in:
Ian Lance Taylor 2017-06-16 09:29:44 -07:00
parent 3785457c76
commit 8ec7a39fec
4 changed files with 221 additions and 9 deletions

View File

@ -11,8 +11,21 @@ import (
var handlers struct {
sync.Mutex
m map[chan<- os.Signal]*handler
// Map a channel to the signals that should be sent to it.
m map[chan<- os.Signal]*handler
// Map a signal to the number of channels receiving it.
ref [numSig]int64
// Map channels to signals while the channel is being stopped.
// Not a map because entries live here only very briefly.
// We need a separate container because we need m to correspond to ref
// at all times, and we also need to keep track of the *handler
// value for a channel being stopped. See the Stop function.
stopping []stopping
}
type stopping struct {
c chan<- os.Signal
h *handler
}
type handler struct {
@ -142,10 +155,10 @@ func Reset(sig ...os.Signal) {
// When Stop returns, it is guaranteed that c will receive no more signals.
func Stop(c chan<- os.Signal) {
handlers.Lock()
defer handlers.Unlock()
h := handlers.m[c]
if h == nil {
handlers.Unlock()
return
}
delete(handlers.m, c)
@ -158,8 +171,40 @@ func Stop(c chan<- os.Signal) {
}
}
}
// Signals will no longer be delivered to the channel.
// We want to avoid a race for a signal such as SIGINT:
// it should be either delivered to the channel,
// or the program should take the default action (that is, exit).
// To avoid the possibility that the signal is delivered,
// and the signal handler invoked, and then Stop deregisters
// the channel before the process function below has a chance
// to send it on the channel, put the channel on a list of
// channels being stopped and wait for signal delivery to
// quiesce before fully removing it.
handlers.stopping = append(handlers.stopping, stopping{c, h})
handlers.Unlock()
signalWaitUntilIdle()
handlers.Lock()
for i, s := range handlers.stopping {
if s.c == c {
handlers.stopping = append(handlers.stopping[:i], handlers.stopping[i+1:]...)
break
}
}
handlers.Unlock()
}
// Wait until there are no more signals waiting to be delivered.
// Defined by the runtime package.
func signalWaitUntilIdle()
func process(sig os.Signal) {
n := signum(sig)
if n < 0 {
@ -178,4 +223,14 @@ func process(sig os.Signal) {
}
}
}
// Avoid the race mentioned in Stop.
for _, d := range handlers.stopping {
if d.h.want(n) {
select {
case d.c <- sig:
default:
}
}
}
}

View File

@ -7,13 +7,16 @@
package signal_test
import (
"bytes"
"flag"
"fmt"
"io/ioutil"
"os"
"os/exec"
. "os/signal"
"runtime"
"strconv"
"sync"
"syscall"
"testing"
"time"
@ -302,3 +305,88 @@ func TestSIGCONT(t *testing.T) {
syscall.Kill(syscall.Getpid(), syscall.SIGCONT)
waitSig(t, c, syscall.SIGCONT)
}
// Test race between stopping and receiving a signal (issue 14571).
func TestAtomicStop(t *testing.T) {
if os.Getenv("GO_TEST_ATOMIC_STOP") != "" {
atomicStopTestProgram()
t.Fatal("atomicStopTestProgram returned")
}
const execs = 10
for i := 0; i < execs; i++ {
cmd := exec.Command(os.Args[0], "-test.run=TestAtomicStop")
cmd.Env = append(os.Environ(), "GO_TEST_ATOMIC_STOP=1")
out, err := cmd.CombinedOutput()
if err == nil {
t.Logf("iteration %d: output %s", i, out)
} else {
t.Logf("iteration %d: exit status %q: output: %s", i, err, out)
}
lost := bytes.Contains(out, []byte("lost signal"))
if lost {
t.Errorf("iteration %d: lost signal", i)
}
// The program should either die due to SIGINT,
// or exit with success without printing "lost signal".
if err == nil {
if len(out) > 0 && !lost {
t.Errorf("iteration %d: unexpected output", i)
}
} else {
if ee, ok := err.(*exec.ExitError); !ok {
t.Errorf("iteration %d: error (%v) has type %T; expected exec.ExitError", i, err, err)
} else if ws, ok := ee.Sys().(syscall.WaitStatus); !ok {
t.Errorf("iteration %d: error.Sys (%v) has type %T; expected syscall.WaitStatus", i, ee.Sys(), ee.Sys())
} else if !ws.Signaled() || ws.Signal() != syscall.SIGINT {
t.Errorf("iteration %d: got exit status %v; expected SIGINT", i, ee)
}
}
}
}
// atomicStopTestProgram is run in a subprocess by TestAtomicStop.
// It tries to trigger a signal delivery race. This function should
// either catch a signal or die from it.
func atomicStopTestProgram() {
const tries = 10
pid := syscall.Getpid()
printed := false
for i := 0; i < tries; i++ {
cs := make(chan os.Signal, 1)
Notify(cs, syscall.SIGINT)
var wg sync.WaitGroup
wg.Add(1)
go func() {
defer wg.Done()
Stop(cs)
}()
syscall.Kill(pid, syscall.SIGINT)
// At this point we should either die from SIGINT or
// get a notification on cs. If neither happens, we
// dropped the signal. Give it a second to deliver,
// which is far far longer than it should require.
select {
case <-cs:
case <-time.After(1 * time.Second):
if !printed {
fmt.Print("lost signal on iterations:")
printed = true
}
fmt.Printf(" %d", i)
}
wg.Wait()
}
if printed {
fmt.Print("\n")
}
os.Exit(0)
}

View File

@ -33,6 +33,17 @@ import (
_ "unsafe" // for go:linkname
)
// sig handles communication between the signal handler and os/signal.
// Other than the inuse and recv fields, the fields are accessed atomically.
//
// The wanted and ignored fields are only written by one goroutine at
// a time; access is controlled by the handlers Mutex in os/signal.
// The fields are only read by that one goroutine and by the signal handler.
// We access them atomically to minimize the race between setting them
// in the goroutine calling os/signal and the signal handler,
// which may be running in a different thread. That race is unavoidable,
// as there is no connection between handling a signal and receiving one,
// but atomic instructions should minimize it.
var sig struct {
note note
mask [(_NSIG + 31) / 32]uint32
@ -53,7 +64,11 @@ const (
// Reports whether the signal was sent. If not, the caller typically crashes the program.
func sigsend(s uint32) bool {
bit := uint32(1) << uint(s&31)
if !sig.inuse || s >= uint32(32*len(sig.wanted)) || sig.wanted[s/32]&bit == 0 {
if !sig.inuse || s >= uint32(32*len(sig.wanted)) {
return false
}
if w := atomic.Load(&sig.wanted[s/32]); w&bit == 0 {
return false
}
@ -131,6 +146,23 @@ func signal_recv() uint32 {
}
}
// signalWaitUntilIdle waits until the signal delivery mechanism is idle.
// This is used to ensure that we do not drop a signal notification due
// to a race between disabling a signal and receiving a signal.
// This assumes that signal delivery has already been disabled for
// the signal(s) in question, and here we are just waiting to make sure
// that all the signals have been delivered to the user channels
// by the os/signal package.
//go:linkname signalWaitUntilIdle os/signal.signalWaitUntilIdle
func signalWaitUntilIdle() {
// Although WaitUntilIdle seems like the right name for this
// function, the state we are looking for is sigReceiving, not
// sigIdle. The sigIdle state is really more like sigProcessing.
for atomic.Load(&sig.state) != sigReceiving {
Gosched()
}
}
// Must only be called from a single goroutine at a time.
//go:linkname signal_enable os/signal.signal_enable
func signal_enable(s uint32) {
@ -146,8 +178,15 @@ func signal_enable(s uint32) {
if s >= uint32(len(sig.wanted)*32) {
return
}
sig.wanted[s/32] |= 1 << (s & 31)
sig.ignored[s/32] &^= 1 << (s & 31)
w := sig.wanted[s/32]
w |= 1 << (s & 31)
atomic.Store(&sig.wanted[s/32], w)
i := sig.ignored[s/32]
i &^= 1 << (s & 31)
atomic.Store(&sig.ignored[s/32], i)
sigenable(s)
}
@ -157,8 +196,11 @@ func signal_disable(s uint32) {
if s >= uint32(len(sig.wanted)*32) {
return
}
sig.wanted[s/32] &^= 1 << (s & 31)
sigdisable(s)
w := sig.wanted[s/32]
w &^= 1 << (s & 31)
atomic.Store(&sig.wanted[s/32], w)
}
// Must only be called from a single goroutine at a time.
@ -167,12 +209,19 @@ func signal_ignore(s uint32) {
if s >= uint32(len(sig.wanted)*32) {
return
}
sig.wanted[s/32] &^= 1 << (s & 31)
sig.ignored[s/32] |= 1 << (s & 31)
sigignore(s)
w := sig.wanted[s/32]
w &^= 1 << (s & 31)
atomic.Store(&sig.wanted[s/32], w)
i := sig.ignored[s/32]
i |= 1 << (s & 31)
atomic.Store(&sig.ignored[s/32], i)
}
// Checked by signal handlers.
func signal_ignored(s uint32) bool {
return sig.ignored[s/32]&(1<<(s&31)) != 0
i := atomic.Load(&sig.ignored[s/32])
return i&(1<<(s&31)) != 0
}

View File

@ -110,6 +110,26 @@ func signal_recv() string {
}
}
// signalWaitUntilIdle waits until the signal delivery mechanism is idle.
// This is used to ensure that we do not drop a signal notification due
// to a race between disabling a signal and receiving a signal.
// This assumes that signal delivery has already been disabled for
// the signal(s) in question, and here we are just waiting to make sure
// that all the signals have been delivered to the user channels
// by the os/signal package.
//go:linkname signalWaitUntilIdle os/signal.signalWaitUntilIdle
func signalWaitUntilIdle() {
for {
lock(&sig.lock)
sleeping := sig.sleeping
unlock(&sig.lock)
if sleeping {
return
}
Gosched()
}
}
// Must only be called from a single goroutine at a time.
//go:linkname signal_enable os/signal.signal_enable
func signal_enable(s uint32) {