1
0
mirror of https://github.com/golang/go synced 2024-11-18 10:04:43 -07:00

cmd/heapview: add an internal core package for reading cores

This is based on github.com/tombergan/goheapdump/heapdump.

This CL mostly just copies over the 'raw' data structures based
on the profiler records' data structures. Many of them may need
to be changed, but I think it will be good to have these definitions
here to provide a base.

Change-Id: I609202b6b87d980b0835c8087b3d78e11bd6dfe3
Reviewed-on: https://go-review.googlesource.com/25584
Reviewed-by: Hyang-Ah Hana Kim <hyangah@gmail.com>
This commit is contained in:
Michael Matloob 2016-08-08 14:19:54 -04:00
parent 29462195f2
commit 855bbc50ad
2 changed files with 451 additions and 0 deletions

View File

@ -0,0 +1,143 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package core
import (
"errors"
"fmt"
"io"
"os"
"syscall"
)
var errMmapClosed = errors.New("mmap: closed")
// mmapFile wraps a memory-mapped file.
type mmapFile struct {
data []byte
pos uint64
writable bool
}
// mmapOpen opens the named file for reading.
// If writable is true, the file is also open for writing.
func mmapOpen(filename string, writable bool) (*mmapFile, error) {
f, err := os.Open(filename)
if err != nil {
return nil, err
}
defer f.Close()
st, err := f.Stat()
if err != nil {
return nil, err
}
size := st.Size()
if size == 0 {
return &mmapFile{data: []byte{}}, nil
}
if size < 0 {
return nil, fmt.Errorf("mmap: file %q has negative size: %d", filename, size)
}
if size != int64(int(size)) {
return nil, fmt.Errorf("mmap: file %q is too large", filename)
}
prot := syscall.PROT_READ
if writable {
prot |= syscall.PROT_WRITE
}
data, err := syscall.Mmap(int(f.Fd()), 0, int(size), prot, syscall.MAP_SHARED)
if err != nil {
return nil, err
}
return &mmapFile{data: data, writable: writable}, nil
}
// Size returns the size of the mapped file.
func (f *mmapFile) Size() uint64 {
return uint64(len(f.data))
}
// Pos returns the current file pointer.
func (f *mmapFile) Pos() uint64 {
return f.pos
}
// SeekTo sets the current file pointer relative to the start of the file.
func (f *mmapFile) SeekTo(offset uint64) {
f.pos = offset
}
// Read implements io.Reader.
func (f *mmapFile) Read(p []byte) (int, error) {
if f.data == nil {
return 0, errMmapClosed
}
if f.pos >= f.Size() {
return 0, io.EOF
}
n := copy(p, f.data[f.pos:])
f.pos += uint64(n)
if n < len(p) {
return n, io.EOF
}
return n, nil
}
// ReadByte implements io.ByteReader.
func (f *mmapFile) ReadByte() (byte, error) {
if f.data == nil {
return 0, errMmapClosed
}
if f.pos >= f.Size() {
return 0, io.EOF
}
b := f.data[f.pos]
f.pos++
return b, nil
}
// ReadSlice returns a slice of size n that points directly at the
// underlying mapped file. There is no copying. Fails if it cannot
// read at least n bytes.
func (f *mmapFile) ReadSlice(n uint64) ([]byte, error) {
if f.data == nil {
return nil, errMmapClosed
}
if f.pos+n >= f.Size() {
return nil, io.EOF
}
first := f.pos
f.pos += n
return f.data[first:f.pos:f.pos], nil
}
// ReadSliceAt is like ReadSlice, but reads from a specific offset.
// The file pointer is not used or advanced.
func (f *mmapFile) ReadSliceAt(offset, n uint64) ([]byte, error) {
if f.data == nil {
return nil, errMmapClosed
}
if f.Size() < offset {
return nil, fmt.Errorf("mmap: out-of-bounds ReadSliceAt offset %d, size is %d", offset, f.Size())
}
if offset+n >= f.Size() {
return nil, io.EOF
}
end := offset + n
return f.data[offset:end:end], nil
}
// Close closes the file.
func (f *mmapFile) Close() error {
if f.data == nil {
return nil
}
err := syscall.Munmap(f.data)
f.data = nil
f.pos = 0
return err
}

View File

@ -0,0 +1,308 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package core provides functions for reading core dumps
// and examining their contained heaps.
package core
import (
"bytes"
"encoding/binary"
"fmt"
"runtime"
"sort"
)
// RawDump provides raw access to the heap records in a core file.
// The raw records in this file are described by other structs named Raw{*}.
// All []byte slices are direct references to the underlying mmap'd file.
// These references will become invalid as soon as the RawDump is closed.
type RawDump struct {
Params *RawParams
MemStats *runtime.MemStats
HeapObjects []RawSegment // heap objects sorted by Addr, low-to-high
GlobalSegments []RawSegment // data, bss, and noptrbss segments
OSThreads []*RawOSThread
Goroutines []*RawGoroutine
StackFrames []*RawStackFrame
OtherRoots []*RawOtherRoot
Finalizers []*RawFinalizer
Defers []*RawDefer
Panics []*RawPanic
TypeFromItab map[uint64]uint64 // map from itab address to the type address that itab represents
TypeFromAddr map[uint64]*RawType // map from RawType.Addr to RawType
MemProfMap map[uint64]*RawMemProfEntry
AllocSamples []*RawAllocSample
fmap *mmapFile
}
// RawParams holds metadata about the program that generated the dump.
type RawParams struct {
// Info about the memory space
ByteOrder binary.ByteOrder // byte order of all memory in this dump
PtrSize uint64 // in bytes
HeapStart uint64 // heap start address
HeapEnd uint64 // heap end address (this is the last byte in the heap + 1)
// Info about the program that generated this heapdump
GoArch string // GOARCH of the runtime library that generated this dump
GoExperiment string // GOEXPERIMENT of the toolchain that build the runtime library
NCPU uint64 // number of physical cpus available to the program
}
// RawSegment represents a segment of memory.
type RawSegment struct {
Addr uint64 // base address of the segment
Data []byte // data for this segment
PtrFields RawPtrFields // offsets of ptr fields within this segment
}
// RawPtrFields represents a pointer field.
type RawPtrFields struct {
encoded []byte // list of uvarint-encoded offsets, or nil if none
startOff, endOff uint64 // decoded offsets are translated and clipped to [startOff,endOff)
}
// RawOSThread represents an OS thread.
type RawOSThread struct {
MAddr uint64 // address of the OS thread descriptor (M)
GoID uint64 // go's internal ID for the thread
ProcID uint64 // kernel's ID for the thread
}
// RawGoroutine represents a goroutine structure.
type RawGoroutine struct {
GAddr uint64 // address of the goroutine descriptor
SP uint64 // current stack pointer (lowest address in the currently running frame)
GoID uint64 // goroutine ID
GoPC uint64 // PC of the go statement that created this goroutine
Status uint64
IsSystem bool // true if started by the system
IsBackground bool // always false in go1.7
WaitSince uint64 // time the goroutine started waiting, in nanoseconds since the Unix epoch
WaitReason string
CtxtAddr uint64 // address of the scheduling ctxt
MAddr uint64 // address of the OS thread descriptor (M)
TopDeferAddr uint64 // address of the top defer record
TopPanicAddr uint64 // address of the top panic record
}
// RawStackFrame represents a stack frame.
type RawStackFrame struct {
Name string
Depth uint64 // 0 = bottom of stack (currently running frame)
CalleeSP uint64 // stack pointer of the child frame (or 0 for the bottom-most frame)
EntryPC uint64 // entry PC for the function
PC uint64 // current PC being executed
NextPC uint64 // for callers, where the function resumes (if anywhere) after the callee is done
Segment RawSegment // local vars (Segment.Addr is the stack pointer, i.e., lowest address in the frame)
}
// RawOtherRoot represents the other roots not in RawDump's other fields.
type RawOtherRoot struct {
Description string
Addr uint64 // address pointed to by this root
}
// RawFinalizer represents a finalizer.
type RawFinalizer struct {
IsQueued bool // if true, the object is unreachable and the finalizer is ready to run
ObjAddr uint64 // address of the object to finalize
ObjTypeAddr uint64 // address of the descriptor for typeof(obj)
FnAddr uint64 // function to be run (a FuncVal*)
FnArgTypeAddr uint64 // address of the descriptor for the type of the function argument
FnPC uint64 // PC of finalizer entry point
}
// RawDefer represents a defer.
type RawDefer struct {
Addr uint64 // address of the defer record
GAddr uint64 // address of the containing goroutine's descriptor
ArgP uint64 // stack pointer giving the args for defer (TODO: is this right?)
PC uint64 // PC of the defer instruction
FnAddr uint64 // function to be run (a FuncVal*)
FnPC uint64 // PC of the defered function's entry point
LinkAddr uint64 // address of the next defer record in this chain
}
// RawPanic represents a panic.
type RawPanic struct {
Addr uint64 // address of the panic record
GAddr uint64 // address of the containing goroutine's descriptor
ArgTypeAddr uint64 // type of the panic arg
ArgAddr uint64 // address of the panic arg
DeferAddr uint64 // address of the defer record that is currently running
LinkAddr uint64 // address of the next panic record in this chain
}
// RawType repesents the Go runtime's representation of a type.
type RawType struct {
Addr uint64 // address of the type descriptor
Size uint64 // in bytes
Name string // not necessarily unique
// If true, this type is equivalent to a single pointer, so ifaces can store
// this type directly in the data field (without indirection).
DirectIFace bool
}
// RawMemProfEntry represents a memory profiler entry.
type RawMemProfEntry struct {
Size uint64 // size of the allocated object
NumAllocs uint64 // number of allocations
NumFrees uint64 // number of frees
Stacks []RawMemProfFrame // call stacks
}
// RawMemProfFrame represents a memory profiler frame.
type RawMemProfFrame struct {
Func []byte // string left as []byte reference to save memory
File []byte // string left as []byte reference to save memory
Line uint64
}
// RawAllocSample represents a memory profiler allocation sample.
type RawAllocSample struct {
Addr uint64 // address of object
Prof *RawMemProfEntry // record of allocation site
}
// Close closes the file.
func (r *RawDump) Close() error {
return r.fmap.Close()
}
// FindSegment returns the segment that contains the given address, or
// nil of no segment contains the address.
func (r *RawDump) FindSegment(addr uint64) *RawSegment {
// Binary search for an upper-bound heap object, then check
// if the previous object contains addr.
k := sort.Search(len(r.HeapObjects), func(k int) bool {
return addr < r.HeapObjects[k].Addr
})
k--
if k >= 0 && r.HeapObjects[k].Contains(addr) {
return &r.HeapObjects[k]
}
// Check all global segments.
for k := range r.GlobalSegments {
if r.GlobalSegments[k].Contains(addr) {
return &r.GlobalSegments[k]
}
}
// NB: Stack-local vars are technically allocated in the heap, since stack frames are
// allocated in the heap space, however, stack frames don't show up in r.HeapObjects.
for _, f := range r.StackFrames {
if f.Segment.Contains(addr) {
return &f.Segment
}
}
return nil
}
// Contains returns true if the segment contains the given address.
func (r RawSegment) Contains(addr uint64) bool {
return r.Addr <= addr && addr < r.Addr+r.Size()
}
// ContainsRange returns true if the segment contains the range [addr, addr+size).
func (r RawSegment) ContainsRange(addr, size uint64) bool {
if !r.Contains(addr) {
return false
}
if size > 0 && !r.Contains(addr+size-1) {
return false
}
return true
}
// Size returns the size of the segment in bytes.
func (r RawSegment) Size() uint64 {
return uint64(len(r.Data))
}
// Slice takes a slice of the given segment. Panics if [offset,offset+size)
// is out-of-bounds. The resulting RawSegment.PtrOffsets will clipped and
// translated into the new segment.
func (r RawSegment) Slice(offset, size uint64) *RawSegment {
if offset+size > uint64(len(r.Data)) {
panic(fmt.Errorf("slice(%d,%d) out-of-bounds of segment @%x sz=%d", offset, size, r.Addr, len(r.Data)))
}
return &RawSegment{
Addr: r.Addr + offset,
Data: r.Data[offset : offset+size : offset+size],
PtrFields: RawPtrFields{
encoded: r.PtrFields.encoded,
startOff: r.PtrFields.startOff + offset,
endOff: r.PtrFields.startOff + offset + size,
},
}
}
// Offsets decodes the list of ptr field offsets.
func (r RawPtrFields) Offsets() []uint64 {
if r.encoded == nil {
return nil
}
// NB: This should never fail since we already decoded the varints once
// when parsing the file originally. Hence we panic on failure.
reader := bytes.NewReader(r.encoded)
readUint64 := func() uint64 {
x, err := binary.ReadUvarint(reader)
if err != nil {
panic(fmt.Errorf("unexpected failure decoding uvarint: %v", err))
}
return x
}
var out []uint64
for {
k := readUint64()
switch k {
case 0: // end
return out
case 1: // ptr
x := readUint64()
if r.startOff <= x && x < r.endOff {
out = append(out, x-r.startOff)
}
default:
panic(fmt.Errorf("unexpected FieldKind %d", k))
}
}
}
// ReadPtr decodes a ptr from the given byte slice.
func (r *RawParams) ReadPtr(b []byte) uint64 {
switch r.PtrSize {
case 4:
return uint64(r.ByteOrder.Uint32(b))
case 8:
return r.ByteOrder.Uint64(b)
default:
panic(fmt.Errorf("unsupported PtrSize=%d", r.PtrSize))
}
}
// WritePtr encodes a ptr into the given byte slice.
func (r *RawParams) WritePtr(b []byte, addr uint64) {
switch r.PtrSize {
case 4:
r.ByteOrder.PutUint32(b, uint32(addr))
case 8:
r.ByteOrder.PutUint64(b, addr)
default:
panic(fmt.Errorf("unsupported PtrSize=%d", r.PtrSize))
}
}