1
0
mirror of https://github.com/golang/go synced 2024-11-24 11:30:13 -07:00

go/types: implement singleType and structure (type)

This is a clean port of CL 359015 to go/types.

Change-Id: Iea4e3bfe0a4ae0e5a9052cb6e66c01405bd57c3d
Reviewed-on: https://go-review.googlesource.com/c/go/+/360756
Trust: Robert Findley <rfindley@google.com>
Run-TryBot: Robert Findley <rfindley@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
This commit is contained in:
Robert Findley 2021-11-02 11:34:11 -04:00
parent 60fd3ed2b1
commit 80065cf2f6
11 changed files with 59 additions and 31 deletions

View File

@ -83,7 +83,7 @@ func (check *Checker) builtin(x *operand, call *ast.CallExpr, id builtinId) (_ b
// of S and the respective parameter passing rules apply." // of S and the respective parameter passing rules apply."
S := x.typ S := x.typ
var T Type var T Type
if s, _ := singleUnder(S).(*Slice); s != nil { if s, _ := structure(S).(*Slice); s != nil {
T = s.elem T = s.elem
} else { } else {
check.invalidArg(x, _InvalidAppend, "%s is not a slice", x) check.invalidArg(x, _InvalidAppend, "%s is not a slice", x)
@ -332,14 +332,14 @@ func (check *Checker) builtin(x *operand, call *ast.CallExpr, id builtinId) (_ b
case _Copy: case _Copy:
// copy(x, y []T) int // copy(x, y []T) int
dst, _ := singleUnder(x.typ).(*Slice) dst, _ := structure(x.typ).(*Slice)
var y operand var y operand
arg(&y, 1) arg(&y, 1)
if y.mode == invalid { if y.mode == invalid {
return return
} }
src, _ := singleUnderString(y.typ).(*Slice) src, _ := structureString(y.typ).(*Slice)
if dst == nil || src == nil { if dst == nil || src == nil {
check.invalidArg(x, _InvalidCopy, "copy expects slice arguments; found %s and %s", x, &y) check.invalidArg(x, _InvalidCopy, "copy expects slice arguments; found %s and %s", x, &y)
@ -473,7 +473,7 @@ func (check *Checker) builtin(x *operand, call *ast.CallExpr, id builtinId) (_ b
} }
var min int // minimum number of arguments var min int // minimum number of arguments
switch singleUnder(T).(type) { switch structure(T).(type) {
case *Slice: case *Slice:
min = 2 min = 2
case *Map, *Chan: case *Map, *Chan:
@ -776,11 +776,11 @@ func (check *Checker) builtin(x *operand, call *ast.CallExpr, id builtinId) (_ b
return true return true
} }
// If typ is a type parameter, single under returns the single underlying // If typ is a type parameter, structure returns the single underlying
// type of all types in the corresponding type constraint if it exists, or // type of all types in the corresponding type constraint if it exists,
// nil if it doesn't exist. If typ is not a type parameter, singleUnder // or nil otherwise. If typ is not a type parameter, structure returns
// just returns the underlying type. // the underlying type.
func singleUnder(typ Type) Type { func structure(typ Type) Type {
var su Type var su Type
if underIs(typ, func(u Type) bool { if underIs(typ, func(u Type) bool {
if su != nil && !Identical(su, u) { if su != nil && !Identical(su, u) {
@ -795,10 +795,10 @@ func singleUnder(typ Type) Type {
return nil return nil
} }
// singleUnderString is like singleUnder but also considers []byte and // structureString is like structure but also considers []byte and
// string as "identical". In this case, if successful, the result is always // string as "identical". In this case, if successful, the result
// []byte. // is always []byte.
func singleUnderString(typ Type) Type { func structureString(typ Type) Type {
var su Type var su Type
if underIs(typ, func(u Type) bool { if underIs(typ, func(u Type) bool {
if isString(u) { if isString(u) {

View File

@ -175,7 +175,7 @@ func (check *Checker) callExpr(x *operand, call *ast.CallExpr) exprKind {
cgocall := x.mode == cgofunc cgocall := x.mode == cgofunc
// a type parameter may be "called" if all types have the same signature // a type parameter may be "called" if all types have the same signature
sig, _ := singleUnder(x.typ).(*Signature) sig, _ := structure(x.typ).(*Signature)
if sig == nil { if sig == nil {
check.invalidOp(x, _InvalidCall, "cannot call non-function %s", x) check.invalidOp(x, _InvalidCall, "cannot call non-function %s", x)
x.mode = invalid x.mode = invalid

View File

@ -1227,7 +1227,7 @@ func (check *Checker) exprInternal(x *operand, e ast.Expr, hint Type) exprKind {
goto Error goto Error
} }
switch utyp := singleUnder(base).(type) { switch utyp := structure(base).(type) {
case *Struct: case *Struct:
if len(e.Elts) == 0 { if len(e.Elts) == 0 {
break break

View File

@ -207,7 +207,7 @@ func (check *Checker) sliceExpr(x *operand, e *ast.SliceExpr) {
valid := false valid := false
length := int64(-1) // valid if >= 0 length := int64(-1) // valid if >= 0
switch u := singleUnder(x.typ).(type) { switch u := structure(x.typ).(type) {
case nil: case nil:
check.errorf(x, _NonSliceableOperand, "cannot slice %s: type set has no single underlying type", x) check.errorf(x, _NonSliceableOperand, "cannot slice %s: type set has no single underlying type", x)
x.mode = invalid x.mode = invalid

View File

@ -358,7 +358,7 @@ func (w *tpWalker) isParameterizedTypeList(list []Type) bool {
func (check *Checker) inferB(tparams []*TypeParam, targs []Type) (types []Type, index int) { func (check *Checker) inferB(tparams []*TypeParam, targs []Type) (types []Type, index int) {
assert(len(tparams) >= len(targs) && len(targs) > 0) assert(len(tparams) >= len(targs) && len(targs) > 0)
// Setup bidirectional unification between those structural bounds // Setup bidirectional unification between constraints
// and the corresponding type arguments (which may be nil!). // and the corresponding type arguments (which may be nil!).
u := newUnifier(false) u := newUnifier(false)
u.x.init(tparams) u.x.init(tparams)
@ -371,11 +371,16 @@ func (check *Checker) inferB(tparams []*TypeParam, targs []Type) (types []Type,
} }
} }
// Unify type parameters with their structural constraints, if any. // If a constraint has a structural type, unify the corresponding type parameter with it.
for _, tpar := range tparams { for _, tpar := range tparams {
typ := tpar typ := tpar
sbound := typ.structuralType() sbound := structure(tpar)
if sbound != nil { if sbound != nil {
// If the structural type is the underlying type of a single
// defined type in the constraint, use that defined type instead.
if named, _ := tpar.singleType().(*Named); named != nil {
sbound = named
}
if !u.unify(typ, sbound) { if !u.unify(typ, sbound) {
check.errorf(tpar.obj, _Todo, "%s does not match %s", tpar.obj, sbound) check.errorf(tpar.obj, _Todo, "%s does not match %s", tpar.obj, sbound)
return nil, 0 return nil, 0
@ -384,7 +389,7 @@ func (check *Checker) inferB(tparams []*TypeParam, targs []Type) (types []Type,
} }
// u.x.types() now contains the incoming type arguments plus any additional type // u.x.types() now contains the incoming type arguments plus any additional type
// arguments for which there were structural constraints. The newly inferred non- // arguments which were inferred from structural types. The newly inferred non-
// nil entries may still contain references to other type parameters. // nil entries may still contain references to other type parameters.
// For instance, for [A any, B interface{ []C }, C interface{ *A }], if A == int // For instance, for [A any, B interface{ []C }, C interface{ *A }], if A == int
// was given, unification produced the type list [int, []C, *A]. We eliminate the // was given, unification produced the type list [int, []C, *A]. We eliminate the

View File

@ -834,7 +834,7 @@ func (check *Checker) stmt(ctxt stmtContext, s ast.Stmt) {
if x.mode != invalid { if x.mode != invalid {
// Ranging over a type parameter is permitted if it has a single underlying type. // Ranging over a type parameter is permitted if it has a single underlying type.
var cause string var cause string
u := singleUnder(x.typ) u := structure(x.typ)
switch t := u.(type) { switch t := u.(type) {
case nil: case nil:
cause = "type set has no single underlying type" cause = "type set has no single underlying type"

View File

@ -93,8 +93,8 @@ func (xl termlist) norm() termlist {
} }
// If the type set represented by xl is specified by a single (non-𝓤) term, // If the type set represented by xl is specified by a single (non-𝓤) term,
// structuralType returns that type. Otherwise it returns nil. // singleType returns that type. Otherwise it returns nil.
func (xl termlist) structuralType() Type { func (xl termlist) singleType() Type {
if nl := xl.norm(); len(nl) == 1 { if nl := xl.norm(); len(nl) == 1 {
return nl[0].typ // if nl.isAll() then typ is nil, which is ok return nl[0].typ // if nl.isAll() then typ is nil, which is ok
} }

View File

@ -106,7 +106,7 @@ func TestTermlistNorm(t *testing.T) {
} }
} }
func TestTermlistStructuralType(t *testing.T) { func TestTermlistSingleType(t *testing.T) {
// helper to deal with nil types // helper to deal with nil types
tstring := func(typ Type) string { tstring := func(typ Type) string {
if typ == nil { if typ == nil {
@ -128,9 +128,9 @@ func TestTermlistStructuralType(t *testing.T) {
"∅ ~int string": "nil", "∅ ~int string": "nil",
} { } {
xl := maketl(test) xl := maketl(test)
got := tstring(xl.structuralType()) got := tstring(xl.singleType())
if got != want { if got != want {
t.Errorf("(%v).structuralType() == %v; want %v", test, got, want) t.Errorf("(%v).singleType() == %v; want %v", test, got, want)
} }
} }
} }

View File

@ -99,3 +99,26 @@ func _() {
related2(1.0, []int{}) related2(1.0, []int{})
related2 /* ERROR does not satisfy */ (float64(1.0), []int{}) related2 /* ERROR does not satisfy */ (float64(1.0), []int{})
} }
type List[P any] []P
func related3[Elem any, Slice []Elem | List[Elem]]() Slice { return nil }
func _() {
// related3 can be instantiated explicitly
related3[int, []int]()
related3[byte, List[byte]]()
// Alternatively, the 2nd type argument can be inferred
// from the first one through constraint type inference.
related3[int]()
// The inferred type is the structural type of the Slice
// type parameter.
var _ []int = related3[int]()
// It is not the defined parameterized type List.
type anotherList []float32
var _ anotherList = related3[float32]() // valid
var _ anotherList = related3 /* ERROR cannot use .* \(value of type List\[float32\]\) as anotherList */ [float32, List[float32]]()
}

View File

@ -118,9 +118,9 @@ func (t *TypeParam) iface() *Interface {
return ityp return ityp
} }
// structuralType returns the structural type of the type parameter's constraint; or nil. // singleType returns the single type of the type parameter constraint; or nil.
func (t *TypeParam) structuralType() Type { func (t *TypeParam) singleType() Type {
return t.iface().typeSet().structuralType() return t.iface().typeSet().singleType()
} }
// hasTerms reports whether the type parameter constraint has specific type terms. // hasTerms reports whether the type parameter constraint has specific type terms.

View File

@ -102,8 +102,8 @@ func (s *_TypeSet) String() string {
// hasTerms reports whether the type set has specific type terms. // hasTerms reports whether the type set has specific type terms.
func (s *_TypeSet) hasTerms() bool { return !s.terms.isEmpty() && !s.terms.isAll() } func (s *_TypeSet) hasTerms() bool { return !s.terms.isEmpty() && !s.terms.isAll() }
// structuralType returns the single type in s if there is exactly one; otherwise the result is nil. // singleType returns the single type in s if there is exactly one; otherwise the result is nil.
func (s *_TypeSet) structuralType() Type { return s.terms.structuralType() } func (s *_TypeSet) singleType() Type { return s.terms.singleType() }
// includes reports whether t ∈ s. // includes reports whether t ∈ s.
func (s *_TypeSet) includes(t Type) bool { return s.terms.includes(t) } func (s *_TypeSet) includes(t Type) bool { return s.terms.includes(t) }