1
0
mirror of https://github.com/golang/go synced 2024-11-17 02:04:48 -07:00

strconv: add eiselLemire32

This does for ParseFloat(etc, 32) what commit a2eb53c571 did for
ParseFloat(etc, 64).

name              old time/op  new time/op  delta
Atof32Decimal-4   48.3ns ± 4%  48.8ns ± 2%     ~     (p=0.548 n=5+5)
Atof32Float-4     56.2ns ± 5%  54.7ns ± 3%     ~     (p=0.246 n=5+5)
Atof32FloatExp-4   104ns ± 0%    76ns ± 2%  -27.19%  (p=0.008 n=5+5)
Atof32Random-4     142ns ± 2%   109ns ± 1%  -23.07%  (p=0.008 n=5+5)

Change-Id: I6ee5a2f2d791d4fe3028f1d40aca96400120fda0
Reviewed-on: https://go-review.googlesource.com/c/go/+/264517
Trust: Nigel Tao <nigeltao@golang.org>
Trust: Robert Griesemer <gri@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
This commit is contained in:
Nigel Tao 2020-10-23 10:41:50 +11:00
parent 8bde9b320e
commit 7e01b3b387
2 changed files with 84 additions and 6 deletions

View File

@ -581,6 +581,8 @@ func atof32(s string) (f float32, n int, err error) {
if !trunc {
if f, ok := atof32exact(mantissa, exp, neg); ok {
return f, n, nil
} else if f, ok = eiselLemire32(mantissa, exp, neg); ok {
return f, n, nil
}
}
// Try another fast path.
@ -629,7 +631,7 @@ func atof64(s string) (f float64, n int, err error) {
if !trunc {
if f, ok := atof64exact(mantissa, exp, neg); ok {
return f, n, nil
} else if f, ok = eiselLemire(mantissa, exp, neg); ok {
} else if f, ok = eiselLemire64(mantissa, exp, neg); ok {
return f, n, nil
}
}

View File

@ -15,14 +15,14 @@ package strconv
// https://github.com/google/wuffs/blob/ba3818cb6b473a2ed0b38ecfc07dbbd3a97e8ae7/internal/cgen/base/floatconv-submodule-code.c#L990
//
// Additional testing (on over several million test strings) is done by
// https://github.com/nigeltao/parse-number-f64-test-data/blob/d085ef805be7f0e8f61066619364b2f529ea75f2/script/test-go-strconv.go
// https://github.com/nigeltao/parse-number-fxx-test-data/blob/5280dcfccf6d0b02a65ae282dad0b6d9de50e039/script/test-go-strconv.go
import (
"math"
"math/bits"
)
func eiselLemire(man uint64, exp10 int, neg bool) (f float64, ok bool) {
func eiselLemire64(man uint64, exp10 int, neg bool) (f float64, ok bool) {
// The terse comments in this function body refer to sections of the
// https://nigeltao.github.io/blog/2020/eisel-lemire.html blog post.
@ -40,7 +40,8 @@ func eiselLemire(man uint64, exp10 int, neg bool) (f float64, ok bool) {
// Normalization.
clz := bits.LeadingZeros64(man)
man <<= clz
retExp2 := uint64(217706*exp10>>16+1087) - uint64(clz)
const float64ExponentBias = 1023
retExp2 := uint64(217706*exp10>>16+64+float64ExponentBias) - uint64(clz)
// Multiplication.
xHi, xLo := bits.Mul64(man, detailedPowersOfTen[exp10-detailedPowersOfTenMinExp10][1])
@ -78,8 +79,8 @@ func eiselLemire(man uint64, exp10 int, neg bool) (f float64, ok bool) {
// retExp2 is a uint64. Zero or underflow means that we're in subnormal
// float64 space. 0x7FF or above means that we're in Inf/NaN float64 space.
//
// The if condition is equivalent to (but has fewer branches than):
// if retExp2 <= 0 || retExp2 >= 0x7FF {
// The if block is equivalent to (but has fewer branches than):
// if retExp2 <= 0 || retExp2 >= 0x7FF { etc }
if retExp2-1 >= 0x7FF-1 {
return 0, false
}
@ -90,6 +91,81 @@ func eiselLemire(man uint64, exp10 int, neg bool) (f float64, ok bool) {
return math.Float64frombits(retBits), true
}
func eiselLemire32(man uint64, exp10 int, neg bool) (f float32, ok bool) {
// The terse comments in this function body refer to sections of the
// https://nigeltao.github.io/blog/2020/eisel-lemire.html blog post.
//
// That blog post discusses the float64 flavor (11 exponent bits with a
// -1023 bias, 52 mantissa bits) of the algorithm, but the same approach
// applies to the float32 flavor (8 exponent bits with a -127 bias, 23
// mantissa bits). The computation here happens with 64-bit values (e.g.
// man, xHi, retMantissa) before finally converting to a 32-bit float.
// Exp10 Range.
if man == 0 {
if neg {
f = math.Float32frombits(0x80000000) // Negative zero.
}
return f, true
}
if exp10 < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < exp10 {
return 0, false
}
// Normalization.
clz := bits.LeadingZeros64(man)
man <<= clz
const float32ExponentBias = 127
retExp2 := uint64(217706*exp10>>16+64+float32ExponentBias) - uint64(clz)
// Multiplication.
xHi, xLo := bits.Mul64(man, detailedPowersOfTen[exp10-detailedPowersOfTenMinExp10][1])
// Wider Approximation.
if xHi&0x3F_FFFFFFFF == 0x3F_FFFFFFFF && xLo+man < man {
yHi, yLo := bits.Mul64(man, detailedPowersOfTen[exp10-detailedPowersOfTenMinExp10][0])
mergedHi, mergedLo := xHi, xLo+yHi
if mergedLo < xLo {
mergedHi++
}
if mergedHi&0x3F_FFFFFFFF == 0x3F_FFFFFFFF && mergedLo+1 == 0 && yLo+man < man {
return 0, false
}
xHi, xLo = mergedHi, mergedLo
}
// Shifting to 54 Bits (and for float32, it's shifting to 25 bits).
msb := xHi >> 63
retMantissa := xHi >> (msb + 38)
retExp2 -= 1 ^ msb
// Half-way Ambiguity.
if xLo == 0 && xHi&0x3F_FFFFFFFF == 0 && retMantissa&3 == 1 {
return 0, false
}
// From 54 to 53 Bits (and for float32, it's from 25 to 24 bits).
retMantissa += retMantissa & 1
retMantissa >>= 1
if retMantissa>>24 > 0 {
retMantissa >>= 1
retExp2 += 1
}
// retExp2 is a uint64. Zero or underflow means that we're in subnormal
// float32 space. 0xFF or above means that we're in Inf/NaN float32 space.
//
// The if block is equivalent to (but has fewer branches than):
// if retExp2 <= 0 || retExp2 >= 0xFF { etc }
if retExp2-1 >= 0xFF-1 {
return 0, false
}
retBits := retExp2<<23 | retMantissa&0x007FFFFF
if neg {
retBits |= 0x80000000
}
return math.Float32frombits(uint32(retBits)), true
}
// detailedPowersOfTen{Min,Max}Exp10 is the power of 10 represented by the
// first and last rows of detailedPowersOfTen. Both bounds are inclusive.
const (