1
0
mirror of https://github.com/golang/go synced 2024-11-21 22:54:40 -07:00

math: Improved accuracy for Sin and Cos.

Fixes #1564.

R=rsc, dchest
CC=golang-dev
https://golang.org/cl/5320056
This commit is contained in:
Charles L. Dorian 2011-10-31 14:26:05 -04:00 committed by Russ Cox
parent 48c75c5f9c
commit 739c442e42
2 changed files with 206 additions and 48 deletions

View File

@ -1709,7 +1709,7 @@ func TestCopysign(t *testing.T) {
func TestCos(t *testing.T) {
for i := 0; i < len(vf); i++ {
if f := Cos(vf[i]); !close(cos[i], f) {
if f := Cos(vf[i]); !veryclose(cos[i], f) {
t.Errorf("Cos(%g) = %g, want %g", vf[i], f, cos[i])
}
}
@ -2192,7 +2192,7 @@ func TestSignbit(t *testing.T) {
}
func TestSin(t *testing.T) {
for i := 0; i < len(vf); i++ {
if f := Sin(vf[i]); !close(sin[i], f) {
if f := Sin(vf[i]); !veryclose(sin[i], f) {
t.Errorf("Sin(%g) = %g, want %g", vf[i], f, sin[i])
}
}
@ -2205,7 +2205,7 @@ func TestSin(t *testing.T) {
func TestSincos(t *testing.T) {
for i := 0; i < len(vf); i++ {
if s, c := Sincos(vf[i]); !close(sin[i], s) || !close(cos[i], c) {
if s, c := Sincos(vf[i]); !veryclose(sin[i], s) || !veryclose(cos[i], c) {
t.Errorf("Sincos(%g) = %g, %g want %g, %g", vf[i], s, c, sin[i], cos[i])
}
}

View File

@ -1,4 +1,4 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
@ -6,60 +6,218 @@ package math
/*
Floating-point sine and cosine.
Coefficients are #5077 from Hart & Cheney. (18.80D)
*/
func sinus(x float64, quad int) float64 {
const (
P0 = .1357884097877375669092680e8
P1 = -.4942908100902844161158627e7
P2 = .4401030535375266501944918e6
P3 = -.1384727249982452873054457e5
P4 = .1459688406665768722226959e3
Q0 = .8644558652922534429915149e7
Q1 = .4081792252343299749395779e6
Q2 = .9463096101538208180571257e4
Q3 = .1326534908786136358911494e3
)
if x < 0 {
x = -x
quad = quad + 2
}
x = x * (2 / Pi) /* underflow? */
var y float64
if x > 32764 {
var e float64
e, y = Modf(x)
e = e + float64(quad)
f, _ := Modf(0.25 * e)
quad = int(e - 4*f)
} else {
k := int32(x)
y = x - float64(k)
quad = (quad + int(k)) & 3
}
// The original C code, the long comment, and the constants
// below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
// available from http://www.netlib.org/cephes/cmath.tgz.
// The go code is a simplified version of the original C.
//
// sin.c
//
// Circular sine
//
// SYNOPSIS:
//
// double x, y, sin();
// y = sin( x );
//
// DESCRIPTION:
//
// Range reduction is into intervals of pi/4. The reduction error is nearly
// eliminated by contriving an extended precision modular arithmetic.
//
// Two polynomial approximating functions are employed.
// Between 0 and pi/4 the sine is approximated by
// x + x**3 P(x**2).
// Between pi/4 and pi/2 the cosine is represented as
// 1 - x**2 Q(x**2).
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// DEC 0, 10 150000 3.0e-17 7.8e-18
// IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
//
// Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss
// is not gradual, but jumps suddenly to about 1 part in 10e7. Results may
// be meaningless for x > 2**49 = 5.6e14.
//
// cos.c
//
// Circular cosine
//
// SYNOPSIS:
//
// double x, y, cos();
// y = cos( x );
//
// DESCRIPTION:
//
// Range reduction is into intervals of pi/4. The reduction error is nearly
// eliminated by contriving an extended precision modular arithmetic.
//
// Two polynomial approximating functions are employed.
// Between 0 and pi/4 the cosine is approximated by
// 1 - x**2 Q(x**2).
// Between pi/4 and pi/2 the sine is represented as
// x + x**3 P(x**2).
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
// DEC 0,+1.07e9 17000 3.0e-17 7.2e-18
//
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
// Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
// The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
// Stephen L. Moshier
// moshier@na-net.ornl.gov
if quad&1 != 0 {
y = 1 - y
}
if quad > 1 {
y = -y
}
yy := y * y
temp1 := ((((P4*yy+P3)*yy+P2)*yy+P1)*yy + P0) * y
temp2 := ((((yy+Q3)*yy+Q2)*yy+Q1)*yy + Q0)
return temp1 / temp2
// sin coefficients
var _sin = [...]float64{
1.58962301576546568060E-10, // 0x3de5d8fd1fd19ccd
-2.50507477628578072866E-8, // 0xbe5ae5e5a9291f5d
2.75573136213857245213E-6, // 0x3ec71de3567d48a1
-1.98412698295895385996E-4, // 0xbf2a01a019bfdf03
8.33333333332211858878E-3, // 0x3f8111111110f7d0
-1.66666666666666307295E-1, // 0xbfc5555555555548
}
// cos coefficients
var _cos = [...]float64{
-1.13585365213876817300E-11, // 0xbda8fa49a0861a9b
2.08757008419747316778E-9, // 0x3e21ee9d7b4e3f05
-2.75573141792967388112E-7, // 0xbe927e4f7eac4bc6
2.48015872888517045348E-5, // 0x3efa01a019c844f5
-1.38888888888730564116E-3, // 0xbf56c16c16c14f91
4.16666666666665929218E-2, // 0x3fa555555555554b
}
// Cos returns the cosine of x.
//
// Special conditions are:
// Cos(±Inf) = NaN
// Cos(NaN) = NaN
func Cos(x float64) float64 {
const (
PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts
PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000,
PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170,
M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
)
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
// special cases
switch {
case x != x || x < -MaxFloat64 || x > MaxFloat64: // IsNaN(x) || IsInf(x, 0):
return NaN()
}
// make argument positive
sign := false
if x < 0 {
x = -x
}
return sinus(x, 1)
j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
y := float64(j) // integer part of x/(Pi/4), as float
// map zeros to origin
if j&1 == 1 {
j += 1
y += 1
}
j &= 7 // octant modulo 2Pi radians (360 degrees)
if j > 3 {
j -= 4
sign = !sign
}
if j > 1 {
sign = !sign
}
z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
zz := z * z
if j == 1 || j == 2 {
y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
} else {
y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
}
if sign {
y = -y
}
return y
}
// Sin returns the sine of x.
func Sin(x float64) float64 { return sinus(x, 0) }
//
// Special conditions are:
// Sin(±0) = ±0
// Sin(±Inf) = NaN
// Sin(NaN) = NaN
func Sin(x float64) float64 {
const (
PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts
PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000,
PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170,
M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
)
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
// special cases
switch {
case x == 0 || x != x: // x == 0 || IsNaN():
return x // return ±0 || NaN()
case x < -MaxFloat64 || x > MaxFloat64: // IsInf(x, 0):
return NaN()
}
// make argument positive but save the sign
sign := false
if x < 0 {
x = -x
sign = true
}
j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
y := float64(j) // integer part of x/(Pi/4), as float
// map zeros to origin
if j&1 == 1 {
j += 1
y += 1
}
j &= 7 // octant modulo 2Pi radians (360 degrees)
// reflect in x axis
if j > 3 {
sign = !sign
j -= 4
}
z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
zz := z * z
if j == 1 || j == 2 {
y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
} else {
y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
}
if sign {
y = -y
}
return y
}