1
0
mirror of https://github.com/golang/go synced 2024-11-22 00:44:39 -07:00

crypto/elliptic: explicitly handle P+P, ∞+P and P+∞

These aren't needed for scalar multiplication, but since we export a
generic Add function we should handle it.

This change also corrects two bugs in p224Contract that it turned up.

R=golang-dev, rsc
CC=golang-dev
https://golang.org/cl/6458076
This commit is contained in:
Adam Langley 2012-08-03 15:42:14 -04:00
parent 3f34248a77
commit 728f191319
4 changed files with 160 additions and 65 deletions

View File

@ -140,14 +140,16 @@ func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
w := new(big.Int).ModInverse(s, N)
u1 := e.Mul(e, w)
u1.Mod(u1, N)
u2 := w.Mul(r, w)
u2.Mod(u2, N)
x1, y1 := c.ScalarBaseMult(u1.Bytes())
x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
if x1.Cmp(x2) == 0 {
x, y := c.Add(x1, y1, x2, y2)
if x.Sign() == 0 && y.Sign() == 0 {
return false
}
x, _ := c.Add(x1, y1, x2, y2)
x.Mod(x, N)
return x.Cmp(r) == 0
}

View File

@ -31,10 +31,10 @@ type Curve interface {
// Double returns 2*(x,y)
Double(x1, y1 *big.Int) (x, y *big.Int)
// ScalarMult returns k*(Bx,By) where k is a number in big-endian form.
ScalarMult(x1, y1 *big.Int, scalar []byte) (x, y *big.Int)
// ScalarBaseMult returns k*G, where G is the base point of the group and k
// is an integer in big-endian form.
ScalarBaseMult(scalar []byte) (x, y *big.Int)
ScalarMult(x1, y1 *big.Int, k []byte) (x, y *big.Int)
// ScalarBaseMult returns k*G, where G is the base point of the group
// and k is an integer in big-endian form.
ScalarBaseMult(k []byte) (x, y *big.Int)
}
// CurveParams contains the parameters of an elliptic curve and also provides
@ -69,9 +69,24 @@ func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
return x3.Cmp(y2) == 0
}
// zForAffine returns a Jacobian Z value for the affine point (x, y). If x and
// y are zero, it assumes that they represent the point at infinity because (0,
// 0) is not on the any of the curves handled here.
func zForAffine(x, y *big.Int) *big.Int {
z := new(big.Int)
if x.Sign() != 0 || y.Sign() != 0 {
z.SetInt64(1)
}
return z
}
// affineFromJacobian reverses the Jacobian transform. See the comment at the
// top of the file.
// top of the file. If the point is ∞ it returns 0, 0.
func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
if z.Sign() == 0 {
return new(big.Int), new(big.Int)
}
zinv := new(big.Int).ModInverse(z, curve.P)
zinvsq := new(big.Int).Mul(zinv, zinv)
@ -84,14 +99,29 @@ func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.
}
func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
z := new(big.Int).SetInt64(1)
return curve.affineFromJacobian(curve.addJacobian(x1, y1, z, x2, y2, z))
z1 := zForAffine(x1, y1)
z2 := zForAffine(x2, y2)
return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2))
}
// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
// (x2, y2, z2) and returns their sum, also in Jacobian form.
func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int)
if z1.Sign() == 0 {
x3.Set(x2)
y3.Set(y2)
z3.Set(z2)
return x3, y3, z3
}
if z2.Sign() == 0 {
x3.Set(x1)
y3.Set(y1)
z3.Set(z1)
return x3, y3, z3
}
z1z1 := new(big.Int).Mul(z1, z1)
z1z1.Mod(z1z1, curve.P)
z2z2 := new(big.Int).Mul(z2, z2)
@ -102,6 +132,7 @@ func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int
u2 := new(big.Int).Mul(x2, z1z1)
u2.Mod(u2, curve.P)
h := new(big.Int).Sub(u2, u1)
xEqual := h.Sign() == 0
if h.Sign() == -1 {
h.Add(h, curve.P)
}
@ -119,17 +150,21 @@ func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int
if r.Sign() == -1 {
r.Add(r, curve.P)
}
yEqual := r.Sign() == 0
if xEqual && yEqual {
return curve.doubleJacobian(x1, y1, z1)
}
r.Lsh(r, 1)
v := new(big.Int).Mul(u1, i)
x3 := new(big.Int).Set(r)
x3.Set(r)
x3.Mul(x3, x3)
x3.Sub(x3, j)
x3.Sub(x3, v)
x3.Sub(x3, v)
x3.Mod(x3, curve.P)
y3 := new(big.Int).Set(r)
y3.Set(r)
v.Sub(v, x3)
y3.Mul(y3, v)
s1.Mul(s1, j)
@ -137,16 +172,10 @@ func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int
y3.Sub(y3, s1)
y3.Mod(y3, curve.P)
z3 := new(big.Int).Add(z1, z2)
z3.Add(z1, z2)
z3.Mul(z3, z3)
z3.Sub(z3, z1z1)
if z3.Sign() == -1 {
z3.Add(z3, curve.P)
}
z3.Sub(z3, z2z2)
if z3.Sign() == -1 {
z3.Add(z3, curve.P)
}
z3.Mul(z3, h)
z3.Mod(z3, curve.P)
@ -154,7 +183,7 @@ func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int
}
func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
z1 := new(big.Int).SetInt64(1)
z1 := zForAffine(x1, y1)
return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1))
}
@ -219,40 +248,19 @@ func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int,
}
func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
// We have a slight problem in that the identity of the group (the
// point at infinity) cannot be represented in (x, y) form on a finite
// machine. Thus the standard add/double algorithm has to be tweaked
// slightly: our initial state is not the identity, but x, and we
// ignore the first true bit in |k|. If we don't find any true bits in
// |k|, then we return nil, nil, because we cannot return the identity
// element.
Bz := new(big.Int).SetInt64(1)
x := Bx
y := By
z := Bz
x, y, z := new(big.Int), new(big.Int), new(big.Int)
seenFirstTrue := false
for _, byte := range k {
for bitNum := 0; bitNum < 8; bitNum++ {
if seenFirstTrue {
x, y, z = curve.doubleJacobian(x, y, z)
}
x, y, z = curve.doubleJacobian(x, y, z)
if byte&0x80 == 0x80 {
if !seenFirstTrue {
seenFirstTrue = true
} else {
x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z)
}
x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z)
}
byte <<= 1
}
}
if !seenFirstTrue {
return nil, nil
}
return curve.affineFromJacobian(x, y, z)
}

View File

@ -322,6 +322,44 @@ func TestGenericBaseMult(t *testing.T) {
}
}
func TestInfinity(t *testing.T) {
tests := []struct {
name string
curve Curve
}{
{"p224", P224()},
{"p256", P256()},
}
for _, test := range tests {
curve := test.curve
x, y := curve.ScalarBaseMult(nil)
if x.Sign() != 0 || y.Sign() != 0 {
t.Errorf("%s: x^0 != ∞", test.name)
}
x.SetInt64(0)
y.SetInt64(0)
x2, y2 := curve.Double(x, y)
if x2.Sign() != 0 || y2.Sign() != 0 {
t.Errorf("%s: 2∞ != ∞", test.name)
}
baseX := curve.Params().Gx
baseY := curve.Params().Gy
x3, y3 := curve.Add(baseX, baseY, x, y)
if x3.Cmp(baseX) != 0 || y3.Cmp(baseY) != 0 {
t.Errorf("%s: x+∞ != x", test.name)
}
x4, y4 := curve.Add(x, y, baseX, baseY)
if x4.Cmp(baseX) != 0 || y4.Cmp(baseY) != 0 {
t.Errorf("%s: ∞+x != x", test.name)
}
}
}
func BenchmarkBaseMult(b *testing.B) {
b.ResetTimer()
p224 := P224()

View File

@ -80,10 +80,14 @@ func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) {
p224FromBig(&x1, bigX1)
p224FromBig(&y1, bigY1)
z1[0] = 1
if bigX1.Sign() != 0 || bigY1.Sign() != 0 {
z1[0] = 1
}
p224FromBig(&x2, bigX2)
p224FromBig(&y2, bigY2)
z2[0] = 1
if bigX2.Sign() != 0 || bigY2.Sign() != 0 {
z2[0] = 1
}
p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2)
return p224ToAffine(&x3, &y3, &z3)
@ -132,6 +136,44 @@ func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
// exactly, making the reflections during a reduce much nicer.
type p224FieldElement [8]uint32
// p224P is the order of the field, represented as a p224FieldElement.
var p224P = [8]uint32{1, 0, 0, 0xffff000, 0xfffffff, 0xfffffff, 0xfffffff, 0xfffffff}
// p224IsZero returns 1 if a == 0 mod p and 0 otherwise.
//
// a[i] < 2**29
func p224IsZero(a *p224FieldElement) uint32 {
// Since a p224FieldElement contains 224 bits there are two possible
// representations of 0: 0 and p.
var minimal p224FieldElement
p224Contract(&minimal, a)
var isZero, isP uint32
for i, v := range minimal {
isZero |= v
isP |= v - p224P[i]
}
// If either isZero or isP is 0, then we should return 1.
isZero |= isZero >> 16
isZero |= isZero >> 8
isZero |= isZero >> 4
isZero |= isZero >> 2
isZero |= isZero >> 1
isP |= isP >> 16
isP |= isP >> 8
isP |= isP >> 4
isP |= isP >> 2
isP |= isP >> 1
// For isZero and isP, the LSB is 0 iff all the bits are zero.
result := isZero & isP
result = (^result) & 1
return result
}
// p224Add computes *out = a+b
//
// a[i] + b[i] < 2**32
@ -406,7 +448,7 @@ func p224Contract(out, in *p224FieldElement) {
// true.
top4AllOnes := uint32(0xffffffff)
for i := 4; i < 8; i++ {
top4AllOnes &= (out[i] & bottom28Bits) - 1
top4AllOnes &= out[i]
}
top4AllOnes |= 0xf0000000
// Now we replicate any zero bits to all the bits in top4AllOnes.
@ -441,7 +483,7 @@ func p224Contract(out, in *p224FieldElement) {
out3Equal = ^uint32(int32(out3Equal<<31) >> 31)
// If out[3] > 0xffff000 then n's MSB will be zero.
out3GT := ^uint32(int32(n<<31) >> 31)
out3GT := ^uint32(int32(n) >> 31)
mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT)
out[0] -= 1 & mask
@ -463,6 +505,9 @@ func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) {
var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement
var c p224LargeFieldElement
z1IsZero := p224IsZero(z1)
z2IsZero := p224IsZero(z2)
// Z1Z1 = Z1²
p224Square(&z1z1, z1, &c)
// Z2Z2 = Z2²
@ -480,6 +525,7 @@ func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) {
// H = U2-U1
p224Sub(&h, &u2, &u1)
p224Reduce(&h)
xEqual := p224IsZero(&h)
// I = (2*H)²
for j := 0; j < 8; j++ {
i[j] = h[j] << 1
@ -491,6 +537,11 @@ func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) {
// r = 2*(S2-S1)
p224Sub(&r, &s2, &s1)
p224Reduce(&r)
yEqual := p224IsZero(&r)
if xEqual == 1 && yEqual == 1 && z1IsZero == 0 && z2IsZero == 0 {
p224DoubleJacobian(x3, y3, z3, x1, y1, z1)
return
}
for i := 0; i < 8; i++ {
r[i] <<= 1
}
@ -524,6 +575,13 @@ func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) {
p224Mul(&z1z1, &z1z1, &r, &c)
p224Sub(y3, &z1z1, &s1)
p224Reduce(y3)
p224CopyConditional(x3, x2, z1IsZero)
p224CopyConditional(x3, x1, z2IsZero)
p224CopyConditional(y3, y2, z1IsZero)
p224CopyConditional(y3, y1, z2IsZero)
p224CopyConditional(z3, z2, z1IsZero)
p224CopyConditional(z3, z1, z2IsZero)
}
// p224DoubleJacobian computes *out = a+a.
@ -593,22 +651,19 @@ func p224CopyConditional(out, in *p224FieldElement, control uint32) {
func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) {
var xx, yy, zz p224FieldElement
for i := 0; i < 8; i++ {
outX[i] = 0
outY[i] = 0
outZ[i] = 0
}
firstBit := uint32(1)
for _, byte := range scalar {
for bitNum := uint(0); bitNum < 8; bitNum++ {
p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ)
bit := uint32((byte >> (7 - bitNum)) & 1)
p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ)
p224CopyConditional(outX, inX, firstBit&bit)
p224CopyConditional(outY, inY, firstBit&bit)
p224CopyConditional(outZ, inZ, firstBit&bit)
p224CopyConditional(outX, &xx, ^firstBit&bit)
p224CopyConditional(outY, &yy, ^firstBit&bit)
p224CopyConditional(outZ, &zz, ^firstBit&bit)
firstBit = firstBit & ^bit
p224CopyConditional(outX, &xx, bit)
p224CopyConditional(outY, &yy, bit)
p224CopyConditional(outZ, &zz, bit)
}
}
}
@ -618,16 +673,8 @@ func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) {
var zinv, zinvsq, outx, outy p224FieldElement
var tmp p224LargeFieldElement
isPointAtInfinity := true
for i := 0; i < 8; i++ {
if z[i] != 0 {
isPointAtInfinity = false
break
}
}
if isPointAtInfinity {
return nil, nil
if isPointAtInfinity := p224IsZero(z); isPointAtInfinity == 1 {
return new(big.Int), new(big.Int)
}
p224Invert(&zinv, z)