1
0
mirror of https://github.com/golang/go synced 2024-11-22 15:54:52 -07:00

[dev.typeparams] cmd/compile/internal/types2: move instantiation code to instantiate.go (cleanup)

No code changes besides moving the two functions and updating a
couple of file comments.

Change-Id: I13a6a78b6e8c132c20c7f81a329f31d5edab0453
Reviewed-on: https://go-review.googlesource.com/c/go/+/333589
Trust: Robert Griesemer <gri@golang.org>
Reviewed-by: Robert Findley <rfindley@google.com>
This commit is contained in:
Robert Griesemer 2021-07-09 13:15:46 -07:00
parent 22e9265467
commit 70f1246a9f
2 changed files with 184 additions and 183 deletions

View File

@ -2,6 +2,9 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements instantiation of generic types
// through substitution of type parameters by type arguments.
package types2
import (
@ -9,6 +12,105 @@ import (
"fmt"
)
// Instantiate instantiates the type typ with the given type arguments
// targs. To check type constraint satisfaction, verify must be set.
// pos and posList correspond to the instantiation and type argument
// positions respectively; posList may be nil or shorter than the number
// of type arguments provided.
// typ must be a *Named or a *Signature type, and its number of type
// parameters must match the number of provided type arguments.
// The receiver (check) may be nil if and only if verify is not set.
// The result is a new, instantiated (not generic) type of the same kind
// (either a *Named or a *Signature).
// Any methods attached to a *Named are simply copied; they are not
// instantiated.
func (check *Checker) Instantiate(pos syntax.Pos, typ Type, targs []Type, posList []syntax.Pos, verify bool) (res Type) {
if verify && check == nil {
panic("cannot have nil receiver if verify is set")
}
if check != nil && check.conf.Trace {
check.trace(pos, "-- instantiating %s with %s", typ, typeListString(targs))
check.indent++
defer func() {
check.indent--
var under Type
if res != nil {
// Calling under() here may lead to endless instantiations.
// Test case: type T[P any] T[P]
// TODO(gri) investigate if that's a bug or to be expected.
under = res.Underlying()
}
check.trace(pos, "=> %s (under = %s)", res, under)
}()
}
assert(len(posList) <= len(targs))
// TODO(gri) What is better here: work with TypeParams, or work with TypeNames?
var tparams []*TypeName
switch t := typ.(type) {
case *Named:
tparams = t.TParams()
case *Signature:
tparams = t.tparams
defer func() {
// If we had an unexpected failure somewhere don't panic below when
// asserting res.(*Signature). Check for *Signature in case Typ[Invalid]
// is returned.
if _, ok := res.(*Signature); !ok {
return
}
// If the signature doesn't use its type parameters, subst
// will not make a copy. In that case, make a copy now (so
// we can set tparams to nil w/o causing side-effects).
if t == res {
copy := *t
res = &copy
}
// After instantiating a generic signature, it is not generic
// anymore; we need to set tparams to nil.
res.(*Signature).tparams = nil
}()
default:
// only types and functions can be generic
panic(fmt.Sprintf("%v: cannot instantiate %v", pos, typ))
}
// the number of supplied types must match the number of type parameters
if len(targs) != len(tparams) {
// TODO(gri) provide better error message
if check != nil {
check.errorf(pos, "got %d arguments but %d type parameters", len(targs), len(tparams))
return Typ[Invalid]
}
panic(fmt.Sprintf("%v: got %d arguments but %d type parameters", pos, len(targs), len(tparams)))
}
if len(tparams) == 0 {
return typ // nothing to do (minor optimization)
}
smap := makeSubstMap(tparams, targs)
// check bounds
if verify {
for i, tname := range tparams {
// best position for error reporting
pos := pos
if i < len(posList) {
pos = posList[i]
}
// stop checking bounds after the first failure
if !check.satisfies(pos, targs[i], tname.typ.(*TypeParam), smap) {
break
}
}
}
return check.subst(pos, typ, smap)
}
// InstantiateLazy is like Instantiate, but avoids actually
// instantiating the type until needed.
func (check *Checker) InstantiateLazy(pos syntax.Pos, typ Type, targs []Type, verify bool) (res Type) {
@ -25,3 +127,84 @@ func (check *Checker) InstantiateLazy(pos syntax.Pos, typ Type, targs []Type, ve
verify: verify,
}
}
// satisfies reports whether the type argument targ satisfies the constraint of type parameter
// parameter tpar (after any of its type parameters have been substituted through smap).
// A suitable error is reported if the result is false.
// TODO(gri) This should be a method of interfaces or type sets.
func (check *Checker) satisfies(pos syntax.Pos, targ Type, tpar *TypeParam, smap *substMap) bool {
iface := tpar.Bound()
if iface.Empty() {
return true // no type bound
}
// The type parameter bound is parameterized with the same type parameters
// as the instantiated type; before we can use it for bounds checking we
// need to instantiate it with the type arguments with which we instantiate
// the parameterized type.
iface = check.subst(pos, iface, smap).(*Interface)
// targ must implement iface (methods)
// - check only if we have methods
if iface.NumMethods() > 0 {
// If the type argument is a pointer to a type parameter, the type argument's
// method set is empty.
// TODO(gri) is this what we want? (spec question)
if base, isPtr := deref(targ); isPtr && asTypeParam(base) != nil {
check.errorf(pos, "%s has no methods", targ)
return false
}
if m, wrong := check.missingMethod(targ, iface, true); m != nil {
// TODO(gri) needs to print updated name to avoid major confusion in error message!
// (print warning for now)
// Old warning:
// check.softErrorf(pos, "%s does not satisfy %s (warning: name not updated) = %s (missing method %s)", targ, tpar.bound, iface, m)
if m.name == "==" {
// We don't want to report "missing method ==".
check.softErrorf(pos, "%s does not satisfy comparable", targ)
} else if wrong != nil {
// TODO(gri) This can still report uninstantiated types which makes the error message
// more difficult to read then necessary.
check.softErrorf(pos,
"%s does not satisfy %s: wrong method signature\n\tgot %s\n\twant %s",
targ, tpar.bound, wrong, m,
)
} else {
check.softErrorf(pos, "%s does not satisfy %s (missing method %s)", targ, tpar.bound, m.name)
}
return false
}
}
// targ's underlying type must also be one of the interface types listed, if any
if iface.typeSet().types == nil {
return true // nothing to do
}
// If targ is itself a type parameter, each of its possible types, but at least one, must be in the
// list of iface types (i.e., the targ type list must be a non-empty subset of the iface types).
if targ := asTypeParam(targ); targ != nil {
targBound := targ.Bound()
if targBound.typeSet().types == nil {
check.softErrorf(pos, "%s does not satisfy %s (%s has no type constraints)", targ, tpar.bound, targ)
return false
}
return iface.is(func(typ Type, tilde bool) bool {
// TODO(gri) incorporate tilde information!
if !iface.isSatisfiedBy(typ) {
// TODO(gri) match this error message with the one below (or vice versa)
check.softErrorf(pos, "%s does not satisfy %s (%s type constraint %s not found in %s)", targ, tpar.bound, targ, typ, iface.typeSet().types)
return false
}
return true
})
}
// Otherwise, targ's type or underlying type must also be one of the interface types listed, if any.
if !iface.isSatisfiedBy(targ) {
check.softErrorf(pos, "%s does not satisfy %s (%s not found in %s)", targ, tpar.bound, targ, iface.typeSet().types)
return false
}
return true
}

View File

@ -2,9 +2,7 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements instantiation of generic types
// through substitution of type parameters by actual
// types.
// This file implements type parameter substitution.
package types2
@ -53,186 +51,6 @@ func (m *substMap) lookup(tpar *TypeParam) Type {
return tpar
}
// Instantiate instantiates the type typ with the given type arguments
// targs. To check type constraint satisfaction, verify must be set.
// pos and posList correspond to the instantiation and type argument
// positions respectively; posList may be nil or shorter than the number
// of type arguments provided.
// typ must be a *Named or a *Signature type, and its number of type
// parameters must match the number of provided type arguments.
// The receiver (check) may be nil if and only if verify is not set.
// The result is a new, instantiated (not generic) type of the same kind
// (either a *Named or a *Signature).
// Any methods attached to a *Named are simply copied; they are not
// instantiated.
func (check *Checker) Instantiate(pos syntax.Pos, typ Type, targs []Type, posList []syntax.Pos, verify bool) (res Type) {
if verify && check == nil {
panic("cannot have nil receiver if verify is set")
}
if check != nil && check.conf.Trace {
check.trace(pos, "-- instantiating %s with %s", typ, typeListString(targs))
check.indent++
defer func() {
check.indent--
var under Type
if res != nil {
// Calling under() here may lead to endless instantiations.
// Test case: type T[P any] T[P]
// TODO(gri) investigate if that's a bug or to be expected.
under = res.Underlying()
}
check.trace(pos, "=> %s (under = %s)", res, under)
}()
}
assert(len(posList) <= len(targs))
// TODO(gri) What is better here: work with TypeParams, or work with TypeNames?
var tparams []*TypeName
switch t := typ.(type) {
case *Named:
tparams = t.TParams()
case *Signature:
tparams = t.tparams
defer func() {
// If we had an unexpected failure somewhere don't panic below when
// asserting res.(*Signature). Check for *Signature in case Typ[Invalid]
// is returned.
if _, ok := res.(*Signature); !ok {
return
}
// If the signature doesn't use its type parameters, subst
// will not make a copy. In that case, make a copy now (so
// we can set tparams to nil w/o causing side-effects).
if t == res {
copy := *t
res = &copy
}
// After instantiating a generic signature, it is not generic
// anymore; we need to set tparams to nil.
res.(*Signature).tparams = nil
}()
default:
// only types and functions can be generic
panic(fmt.Sprintf("%v: cannot instantiate %v", pos, typ))
}
// the number of supplied types must match the number of type parameters
if len(targs) != len(tparams) {
// TODO(gri) provide better error message
if check != nil {
check.errorf(pos, "got %d arguments but %d type parameters", len(targs), len(tparams))
return Typ[Invalid]
}
panic(fmt.Sprintf("%v: got %d arguments but %d type parameters", pos, len(targs), len(tparams)))
}
if len(tparams) == 0 {
return typ // nothing to do (minor optimization)
}
smap := makeSubstMap(tparams, targs)
// check bounds
if verify {
for i, tname := range tparams {
// best position for error reporting
pos := pos
if i < len(posList) {
pos = posList[i]
}
// stop checking bounds after the first failure
if !check.satisfies(pos, targs[i], tname.typ.(*TypeParam), smap) {
break
}
}
}
return check.subst(pos, typ, smap)
}
// satisfies reports whether the type argument targ satisfies the constraint of type parameter
// parameter tpar (after any of its type parameters have been substituted through smap).
// A suitable error is reported if the result is false.
// TODO(gri) This should be a method of interfaces or type sets.
func (check *Checker) satisfies(pos syntax.Pos, targ Type, tpar *TypeParam, smap *substMap) bool {
iface := tpar.Bound()
if iface.Empty() {
return true // no type bound
}
// The type parameter bound is parameterized with the same type parameters
// as the instantiated type; before we can use it for bounds checking we
// need to instantiate it with the type arguments with which we instantiate
// the parameterized type.
iface = check.subst(pos, iface, smap).(*Interface)
// targ must implement iface (methods)
// - check only if we have methods
if iface.NumMethods() > 0 {
// If the type argument is a pointer to a type parameter, the type argument's
// method set is empty.
// TODO(gri) is this what we want? (spec question)
if base, isPtr := deref(targ); isPtr && asTypeParam(base) != nil {
check.errorf(pos, "%s has no methods", targ)
return false
}
if m, wrong := check.missingMethod(targ, iface, true); m != nil {
// TODO(gri) needs to print updated name to avoid major confusion in error message!
// (print warning for now)
// Old warning:
// check.softErrorf(pos, "%s does not satisfy %s (warning: name not updated) = %s (missing method %s)", targ, tpar.bound, iface, m)
if m.name == "==" {
// We don't want to report "missing method ==".
check.softErrorf(pos, "%s does not satisfy comparable", targ)
} else if wrong != nil {
// TODO(gri) This can still report uninstantiated types which makes the error message
// more difficult to read then necessary.
check.softErrorf(pos,
"%s does not satisfy %s: wrong method signature\n\tgot %s\n\twant %s",
targ, tpar.bound, wrong, m,
)
} else {
check.softErrorf(pos, "%s does not satisfy %s (missing method %s)", targ, tpar.bound, m.name)
}
return false
}
}
// targ's underlying type must also be one of the interface types listed, if any
if iface.typeSet().types == nil {
return true // nothing to do
}
// If targ is itself a type parameter, each of its possible types, but at least one, must be in the
// list of iface types (i.e., the targ type list must be a non-empty subset of the iface types).
if targ := asTypeParam(targ); targ != nil {
targBound := targ.Bound()
if targBound.typeSet().types == nil {
check.softErrorf(pos, "%s does not satisfy %s (%s has no type constraints)", targ, tpar.bound, targ)
return false
}
return iface.is(func(typ Type, tilde bool) bool {
// TODO(gri) incorporate tilde information!
if !iface.isSatisfiedBy(typ) {
// TODO(gri) match this error message with the one below (or vice versa)
check.softErrorf(pos, "%s does not satisfy %s (%s type constraint %s not found in %s)", targ, tpar.bound, targ, typ, iface.typeSet().types)
return false
}
return true
})
}
// Otherwise, targ's type or underlying type must also be one of the interface types listed, if any.
if !iface.isSatisfiedBy(targ) {
check.softErrorf(pos, "%s does not satisfy %s (%s not found in %s)", targ, tpar.bound, targ, iface.typeSet().types)
return false
}
return true
}
// subst returns the type typ with its type parameters tpars replaced by
// the corresponding type arguments targs, recursively.
// subst is functional in the sense that it doesn't modify the incoming