1
0
mirror of https://github.com/golang/go synced 2024-11-18 08:54:45 -07:00

internal/lsp: add implementation of completion to LSP

Add an autocompletion implementation to the LSP. Also, add a function
that type-checks a package at a certain position, returning an *ast.File
and token.Pos for querying completion.

Change-Id: I288d4e6ed168e6014e79a4436f31f5b4a99b7139
Reviewed-on: https://go-review.googlesource.com/c/147657
Run-TryBot: Rebecca Stambler <rstambler@golang.org>
Reviewed-by: Ian Cottrell <iancottrell@google.com>
This commit is contained in:
Rebecca Stambler 2018-11-05 21:23:02 -05:00
parent 78dc5bac0c
commit 6f4a86804e
4 changed files with 884 additions and 8 deletions

713
internal/lsp/completion.go Normal file
View File

@ -0,0 +1,713 @@
package lsp
import (
"bytes"
"fmt"
"go/ast"
"go/format"
"go/token"
"go/types"
"strings"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/internal/lsp/protocol"
"golang.org/x/tools/internal/lsp/source"
)
func completion(v *source.View, uri protocol.DocumentURI, pos protocol.Position) (items []protocol.CompletionItem, err error) {
pkg, qfile, qpos, err := v.TypeCheckAtPosition(uri, pos)
if err != nil {
return nil, err
}
items, _, err = completions(pkg.Fset, qfile, qpos, pkg.Types, pkg.TypesInfo)
if err != nil {
return nil, err
}
return items, nil
}
// Completions returns the map of possible candidates for completion,
// given a position, a file AST, and type information. The prefix is
// computed based on the preceding identifier and can be used by the
// client to score the quality of the completion. For instance, some
// clients may tolerate imperfect matches as valid completion results,
// since users may make typos.
func completions(fset *token.FileSet, file *ast.File, pos token.Pos, pkg *types.Package, info *types.Info) (completions []protocol.CompletionItem, prefix string, err error) {
path, _ := astutil.PathEnclosingInterval(file, pos, pos)
if path == nil {
return nil, "", fmt.Errorf("cannot find node enclosing position")
}
// If the position is not an identifier but immediately follows
// an identifier or selector period (as is common when
// requesting a completion), use the path to the preceding node.
if _, ok := path[0].(*ast.Ident); !ok {
if p, _ := astutil.PathEnclosingInterval(file, pos-1, pos-1); p != nil {
switch p[0].(type) {
case *ast.Ident, *ast.SelectorExpr:
path = p // use preceding ident/selector
}
}
}
expectedTyp := expectedType(path, pos, info)
enclosing := enclosingFunc(path, pos, info)
pkgStringer := qualifier(file, pkg, info)
seen := make(map[types.Object]bool)
const stdWeight = 1 // default rank for a completion result
// found adds a candidate completion.
// Only the first candidate of a given name is considered.
found := func(obj types.Object, weight float32) {
if obj.Pkg() != nil && obj.Pkg() != pkg && !obj.Exported() {
return // inaccessible
}
if !seen[obj] {
seen[obj] = true
if expectedTyp != nil && matchingTypes(expectedTyp, obj.Type()) {
weight *= 10
}
item := formatCompletion(obj, pkgStringer, weight, func(v *types.Var) bool {
return isParam(enclosing, v)
})
completions = append(completions, item)
}
}
// selector finds completions for
// the specified selector expression.
// TODO(rstambler): Set the prefix filter correctly for selectors.
selector := func(sel *ast.SelectorExpr) error {
// Is sel a qualified identifier?
if id, ok := sel.X.(*ast.Ident); ok {
if pkgname, ok := info.Uses[id].(*types.PkgName); ok {
// Enumerate package members.
// TODO(adonovan): can Imported() be nil?
scope := pkgname.Imported().Scope()
// TODO testcase: bad import
for _, name := range scope.Names() {
found(scope.Lookup(name), stdWeight)
}
return nil
}
}
// Inv: sel is a true selector.
tv, ok := info.Types[sel.X]
if !ok {
var buf bytes.Buffer
format.Node(&buf, fset, sel.X) // TODO check for error
return fmt.Errorf("cannot resolve %s", &buf)
}
// methods of T
mset := types.NewMethodSet(tv.Type)
for i := 0; i < mset.Len(); i++ {
found(mset.At(i).Obj(), stdWeight)
}
// methods of *T
if tv.Addressable() && !types.IsInterface(tv.Type) && !isPointer(tv.Type) {
mset := types.NewMethodSet(types.NewPointer(tv.Type))
for i := 0; i < mset.Len(); i++ {
found(mset.At(i).Obj(), stdWeight)
}
}
// fields of T
for _, f := range fieldSelections(tv.Type) {
found(f, stdWeight)
}
return nil
}
// lexical finds completions in the lexical environment.
lexical := func(path []ast.Node) {
var scopes []*types.Scope // scopes[i], where i<len(path), is the possibly nil Scope of path[i].
for _, n := range path {
switch node := n.(type) {
case *ast.FuncDecl:
n = node.Type
case *ast.FuncLit:
n = node.Type
}
scopes = append(scopes, info.Scopes[n])
}
scopes = append(scopes, pkg.Scope(), types.Universe)
// Process scopes innermost first.
for i, scope := range scopes {
if scope == nil {
continue
}
for _, name := range scope.Names() {
declScope, obj := scope.LookupParent(name, pos)
if declScope != scope {
continue // Name was declared in some enclosing scope, or not at all.
}
// If obj's type is invalid, find the AST node that defines the lexical block
// containing the declaration of obj. Don't resolve types for packages.
if _, ok := obj.(*types.PkgName); !ok && obj.Type() == types.Typ[types.Invalid] {
// Match the scope to its ast.Node. If the scope is the package scope,
// use the *ast.File as the starting node.
var node ast.Node
if i < len(path) {
node = path[i]
} else if i == len(path) { // use the *ast.File for package scope
node = path[i-1]
}
if node != nil {
if resolved := resolveInvalid(obj, node, info); resolved != nil {
obj = resolved
}
}
}
score := float32(stdWeight)
// Rank builtins significantly lower than other results.
if scope == types.Universe {
score *= 0.1
}
found(obj, score)
}
}
}
// complit finds completions for field names inside a composite literal.
// It reports whether the node was handled as part of a composite literal.
complit := func(node ast.Node) bool {
var lit *ast.CompositeLit
switch n := node.(type) {
case *ast.CompositeLit:
// The enclosing node will be a composite literal if the user has just
// opened the curly brace (e.g. &x{<>) or the completion request is triggered
// from an already completed composite literal expression (e.g. &x{foo: 1, <>})
//
// If the cursor position is within a key-value expression inside the composite
// literal, we try to determine if it is before or after the colon. If it is before
// the colon, we return field completions. If the cursor does not belong to any
// expression within the composite literal, we show composite literal completions.
var expr ast.Expr
for _, e := range n.Elts {
if e.Pos() <= pos && pos < e.End() {
expr = e
break
}
}
lit = n
// If the position belongs to a key-value expression and is after the colon,
// don't show composite literal completions.
if kv, ok := expr.(*ast.KeyValueExpr); ok && pos > kv.Colon {
lit = nil
}
case *ast.KeyValueExpr:
// If the enclosing node is a key-value expression (e.g. &x{foo: <>}),
// we show composite literal completions if the cursor position is before the colon.
if len(path) > 1 && pos < n.Colon {
if l, ok := path[1].(*ast.CompositeLit); ok {
lit = l
}
}
case *ast.Ident:
// If the enclosing node is an identifier, it can either be an identifier that is
// part of a composite literal (e.g. &x{fo<>}), or it can be an identifier that is
// part of a key-value expression, which is part of a composite literal (e.g. &x{foo: ba<>).
// We handle both of these cases, showing composite literal completions only if
// the cursor position for the key-value expression is before the colon.
if len(path) > 1 {
if l, ok := path[1].(*ast.CompositeLit); ok {
lit = l
} else if len(path) > 2 {
if l, ok := path[2].(*ast.CompositeLit); ok {
// Confirm that cursor position is inside curly braces.
if l.Lbrace <= pos && pos <= l.Rbrace {
lit = l
if kv, ok := path[1].(*ast.KeyValueExpr); ok {
if pos > kv.Colon {
lit = nil
}
}
}
}
}
}
}
if lit == nil {
return false
}
// Mark fields that have already been set, apart from the current field.
hasKeys := false // true if the composite literal already has key-value pairs
addedFields := make(map[*types.Var]bool)
for _, el := range lit.Elts {
if kv, ok := el.(*ast.KeyValueExpr); ok {
hasKeys = true
if kv.Pos() <= pos && pos <= kv.End() {
continue
}
if key, ok := kv.Key.(*ast.Ident); ok {
if used, ok := info.Uses[key]; ok {
if usedVar, ok := used.(*types.Var); ok {
addedFields[usedVar] = true
}
}
}
}
}
// If the underlying type of the composite literal is a struct,
// we show completions for the fields of this struct.
if tv, ok := info.Types[lit]; ok {
var structPkg *types.Package // package containing the struct type declaration
if s, ok := tv.Type.Underlying().(*types.Struct); ok {
for i := 0; i < s.NumFields(); i++ {
field := s.Field(i)
if i == 0 {
structPkg = field.Pkg()
}
if !addedFields[field] {
found(field, stdWeight*10)
}
}
// Add lexical completions if the user hasn't typed a key value expression
// and if the struct fields are defined in the same package as the user is in.
if !hasKeys && structPkg == pkg {
lexical(path)
}
return true
}
}
return false
}
if complit(path[0]) {
return completions, prefix, nil
}
switch n := path[0].(type) {
case *ast.Ident:
// Set the filter prefix.
prefix = n.Name[:pos-n.Pos()]
// Is this the Sel part of a selector?
if sel, ok := path[1].(*ast.SelectorExpr); ok && sel.Sel == n {
if err := selector(sel); err != nil {
return nil, prefix, err
}
} else {
// reject defining identifiers
if obj, ok := info.Defs[n]; ok {
if v, ok := obj.(*types.Var); ok && v.IsField() {
// An anonymous field is also a reference to a type.
} else {
of := ""
if obj != nil {
qual := types.RelativeTo(pkg)
of += ", of " + types.ObjectString(obj, qual)
}
return nil, "", fmt.Errorf("this is a definition%s", of)
}
}
lexical(path)
}
// Support completions when no letters of the function name have been
// typed yet, but the parens are there:
// recv.‸(arg)
case *ast.TypeAssertExpr:
// Create a fake selector expression.
if err := selector(&ast.SelectorExpr{X: n.X}); err != nil {
return nil, prefix, err
}
case *ast.SelectorExpr:
if err := selector(n); err != nil {
return nil, prefix, err
}
default:
// TODO(adonovan): a lexical query may not be what the
// user expects when completing after the period of a
// type assertion.
lexical(path)
}
return completions, prefix, nil
}
// qualifier returns a function that appropriately formats a types.PkgName appearing in q.file.
func qualifier(f *ast.File, pkg *types.Package, info *types.Info) types.Qualifier {
// Construct mapping of import paths to their defined or implicit names.
imports := make(map[*types.Package]string)
for _, imp := range f.Imports {
var obj types.Object
if imp.Name != nil {
obj = info.Defs[imp.Name]
} else {
obj = info.Implicits[imp]
}
if pkgname, ok := obj.(*types.PkgName); ok {
imports[pkgname.Imported()] = pkgname.Name()
}
}
// Define qualifier to replace full package paths with names of the imports.
return func(pkg *types.Package) string {
if pkg == pkg {
return ""
}
if name, ok := imports[pkg]; ok {
return name
}
return pkg.Name()
}
}
// enclosingFunc returns the signature of the function enclosing the position.
func enclosingFunc(path []ast.Node, pos token.Pos, info *types.Info) *types.Signature {
for _, node := range path {
switch t := node.(type) {
case *ast.FuncDecl:
if obj, ok := info.Defs[t.Name]; ok {
return obj.Type().(*types.Signature)
}
case *ast.FuncLit:
if typ, ok := info.Types[t]; ok {
return typ.Type.(*types.Signature)
}
}
}
return nil
}
// formatCompletion returns the label, details, and kind for a types.Object,
// fitting the format of a LSP completion item.
func formatCompletion(obj types.Object, qualifier types.Qualifier, score float32, isParam func(*types.Var) bool) protocol.CompletionItem {
label := obj.Name()
detail := types.TypeString(obj.Type(), qualifier)
var kind protocol.CompletionItemKind
switch o := obj.(type) {
case *types.TypeName:
detail, kind = formatType(o.Type(), qualifier)
if obj.Parent() == types.Universe {
detail = ""
}
case *types.Const:
if obj.Parent() == types.Universe {
detail = ""
} else {
val := o.Val().ExactString()
if !strings.Contains(val, "\\n") { // skip any multiline constants
label += " = " + o.Val().ExactString()
}
}
kind = protocol.ConstantCompletion
case *types.Var:
if _, ok := o.Type().(*types.Struct); ok {
detail = "struct{...}" // for anonymous structs
}
if o.IsField() {
kind = protocol.FieldCompletion
} else if isParam(o) {
kind = protocol.TypeParameterCompletion
} else {
kind = protocol.VariableCompletion
}
case *types.Func:
if sig, ok := o.Type().(*types.Signature); ok {
label += formatParams(sig.Params(), sig.Variadic(), qualifier)
detail = strings.Trim(types.TypeString(sig.Results(), qualifier), "()")
kind = protocol.FunctionCompletion
if sig.Recv() != nil {
kind = protocol.MethodCompletion
}
}
case *types.Builtin:
item, ok := builtinDetails[obj.Name()]
if !ok {
break
}
label, detail = item.label, item.detail
kind = protocol.FunctionCompletion
case *types.PkgName:
kind = protocol.ModuleCompletion // package??
detail = fmt.Sprintf("\"%s\"", o.Imported().Path())
case *types.Nil:
kind = protocol.VariableCompletion
detail = ""
}
detail = strings.TrimPrefix(detail, "untyped ")
return protocol.CompletionItem{
Label: label,
Detail: detail,
Kind: float64(kind),
}
}
// formatType returns the detail and kind for an object of type *types.TypeName.
func formatType(typ types.Type, qualifier types.Qualifier) (detail string, kind protocol.CompletionItemKind) {
if types.IsInterface(typ) {
detail = "interface{...}"
kind = protocol.InterfaceCompletion
} else if _, ok := typ.(*types.Struct); ok {
detail = "struct{...}"
kind = protocol.StructCompletion
} else if typ != typ.Underlying() {
detail, kind = formatType(typ.Underlying(), qualifier)
} else {
detail = types.TypeString(typ, qualifier)
kind = protocol.TypeParameterCompletion // ???
}
return detail, kind
}
func formatParams(t *types.Tuple, variadic bool, qualifier types.Qualifier) string {
var b strings.Builder
b.WriteByte('(')
for i := 0; i < t.Len(); i++ {
if i > 0 {
b.WriteString(", ")
}
el := t.At(i)
typ := types.TypeString(el.Type(), qualifier)
// Handle a variadic parameter (can only be the final parameter).
if variadic && i == t.Len()-1 {
typ = strings.Replace(typ, "[]", "...", 1)
}
fmt.Fprintf(&b, "%v %v", el.Name(), typ)
}
b.WriteByte(')')
return b.String()
}
func isParam(sig *types.Signature, v *types.Var) bool {
if sig == nil {
return false
}
for i := 0; i < sig.Params().Len(); i++ {
if sig.Params().At(i) == v {
return true
}
}
return false
}
// expectedType returns the expected type for an expression at the query position.
func expectedType(path []ast.Node, pos token.Pos, info *types.Info) types.Type {
for i, node := range path {
if i == 2 {
break
}
switch expr := node.(type) {
case *ast.BinaryExpr:
// Determine if query position comes from left or right of op.
e := expr.X
if pos < expr.OpPos {
e = expr.Y
}
if tv, ok := info.Types[e]; ok {
return tv.Type
}
case *ast.AssignStmt:
// Only rank completions if you are on the right side of the token.
if pos <= expr.TokPos {
break
}
i := exprAtPos(pos, expr.Rhs)
if i >= len(expr.Lhs) {
i = len(expr.Lhs) - 1
}
if tv, ok := info.Types[expr.Lhs[i]]; ok {
return tv.Type
}
case *ast.CallExpr:
if tv, ok := info.Types[expr.Fun]; ok {
if sig, ok := tv.Type.(*types.Signature); ok {
if sig.Params().Len() == 0 {
return nil
}
i := exprAtPos(pos, expr.Args)
// Make sure not to run past the end of expected parameters.
if i >= sig.Params().Len() {
i = sig.Params().Len() - 1
}
return sig.Params().At(i).Type()
}
}
}
}
return nil
}
// matchingTypes reports whether actual is a good candidate type
// for a completion in a context of the expected type.
func matchingTypes(expected, actual types.Type) bool {
// Use a function's return type as its type.
if sig, ok := actual.(*types.Signature); ok {
if sig.Results().Len() == 1 {
actual = sig.Results().At(0).Type()
}
}
return types.Identical(types.Default(expected), types.Default(actual))
}
// exprAtPos returns the index of the expression containing pos.
func exprAtPos(pos token.Pos, args []ast.Expr) int {
for i, expr := range args {
if expr.Pos() <= pos && pos <= expr.End() {
return i
}
}
return len(args)
}
// fieldSelections returns the set of fields that can
// be selected from a value of type T.
func fieldSelections(T types.Type) (fields []*types.Var) {
// TODO(adonovan): this algorithm doesn't exclude ambiguous
// selections that match more than one field/method.
// types.NewSelectionSet should do that for us.
seen := make(map[types.Type]bool) // for termination on recursive types
var visit func(T types.Type)
visit = func(T types.Type) {
if !seen[T] {
seen[T] = true
if T, ok := deref(T).Underlying().(*types.Struct); ok {
for i := 0; i < T.NumFields(); i++ {
f := T.Field(i)
fields = append(fields, f)
if f.Anonymous() {
visit(f.Type())
}
}
}
}
}
visit(T)
return fields
}
func isPointer(T types.Type) bool {
_, ok := T.(*types.Pointer)
return ok
}
// deref returns a pointer's element type; otherwise it returns typ.
func deref(typ types.Type) types.Type {
if p, ok := typ.Underlying().(*types.Pointer); ok {
return p.Elem()
}
return typ
}
// resolveInvalid traverses the node of the AST that defines the scope
// containing the declaration of obj, and attempts to find a user-friendly
// name for its invalid type. The resulting Object and its Type are fake.
func resolveInvalid(obj types.Object, node ast.Node, info *types.Info) types.Object {
// Construct a fake type for the object and return a fake object with this type.
formatResult := func(expr ast.Expr) types.Object {
var typename string
switch t := expr.(type) {
case *ast.SelectorExpr:
typename = fmt.Sprintf("%s.%s", t.X, t.Sel)
case *ast.Ident:
typename = t.String()
default:
return nil
}
typ := types.NewNamed(types.NewTypeName(token.NoPos, obj.Pkg(), typename, nil), nil, nil)
return types.NewVar(obj.Pos(), obj.Pkg(), obj.Name(), typ)
}
var resultExpr ast.Expr
ast.Inspect(node, func(node ast.Node) bool {
switch n := node.(type) {
case *ast.ValueSpec:
for _, name := range n.Names {
if info.Defs[name] == obj {
resultExpr = n.Type
}
}
return false
case *ast.Field: // This case handles parameters and results of a FuncDecl or FuncLit.
for _, name := range n.Names {
if info.Defs[name] == obj {
resultExpr = n.Type
}
}
return false
// TODO(rstambler): Handle range statements.
default:
return true
}
})
return formatResult(resultExpr)
}
type itemDetails struct {
label, detail string
}
var builtinDetails = map[string]itemDetails{
"append": { // append(slice []T, elems ...T)
label: "append(slice []T, elems ...T)",
detail: "[]T",
},
"cap": { // cap(v []T) int
label: "cap(v []T)",
detail: "int",
},
"close": { // close(c chan<- T)
label: "close(c chan<- T)",
},
"complex": { // complex(r, i float64) complex128
label: "complex(real, imag float64)",
detail: "complex128",
},
"copy": { // copy(dst, src []T) int
label: "copy(dst, src []T)",
detail: "int",
},
"delete": { // delete(m map[T]T1, key T)
label: "delete(m map[K]V, key K)",
},
"imag": { // imag(c complex128) float64
label: "imag(complex128)",
detail: "float64",
},
"len": { // len(v T) int
label: "len(T)",
detail: "int",
},
"make": { // make(t T, size ...int) T
label: "make(t T, size ...int)",
detail: "T",
},
"new": { // new(T) *T
label: "new(T)",
detail: "*T",
},
"panic": { // panic(v interface{})
label: "panic(interface{})",
},
"print": { // print(args ...T)
label: "print(args ...T)",
},
"println": { // println(args ...T)
label: "println(args ...T)",
},
"real": { // real(c complex128) float64
label: "real(complex128)",
detail: "float64",
},
"recover": { // recover() interface{}
label: "recover()",
detail: "interface{}",
},
}

View File

@ -176,7 +176,7 @@ type CompletionItem struct {
* *Note:* The range of the edit must be a single line range and it must contain the position at which completion
* has been requested.
*/
TextEdit TextEdit `json:"textEdit,omitempty"`
TextEdit *TextEdit `json:"textEdit,omitempty"`
/**
* An optional array of additional text edits that are applied when
@ -201,7 +201,7 @@ type CompletionItem struct {
* additional modifications to the current document should be described with the
* additionalTextEdits-property.
*/
Command Command `json:"command,omitempty"`
Command *Command `json:"command,omitempty"`
/**
* An data entry field that is preserved on a completion item between

View File

@ -48,6 +48,9 @@ func (s *server) Initialize(ctx context.Context, params *protocol.InitializePara
},
DocumentFormattingProvider: true,
DocumentRangeFormattingProvider: true,
CompletionProvider: protocol.CompletionOptions{
TriggerCharacters: []string{"."},
},
},
}, nil
}
@ -143,8 +146,15 @@ func (s *server) DidClose(ctx context.Context, params *protocol.DidCloseTextDocu
return nil
}
func (s *server) Completion(context.Context, *protocol.CompletionParams) (*protocol.CompletionList, error) {
return nil, notImplemented("Completion")
func (s *server) Completion(ctx context.Context, params *protocol.CompletionParams) (*protocol.CompletionList, error) {
items, err := completion(s.view, params.TextDocument.URI, params.Position)
if err != nil {
return nil, err
}
return &protocol.CompletionList{
IsIncomplete: false,
Items: items,
}, nil
}
func (s *server) CompletionResolve(context.Context, *protocol.CompletionItem) (*protocol.CompletionItem, error) {

View File

@ -5,8 +5,13 @@
package source
import (
"bytes"
"fmt"
"go/ast"
"go/parser"
"go/token"
"os"
"path/filepath"
"sync"
"golang.org/x/tools/go/packages"
@ -24,9 +29,10 @@ type View struct {
func NewView() *View {
return &View{
Config: &packages.Config{
Mode: packages.LoadSyntax,
Fset: token.NewFileSet(),
Tests: true,
Mode: packages.LoadSyntax,
Fset: token.NewFileSet(),
Tests: true,
Overlay: make(map[string][]byte),
},
files: make(map[protocol.DocumentURI]*File),
}
@ -38,7 +44,10 @@ func (v *View) GetFile(uri protocol.DocumentURI) *File {
v.mu.Lock()
f, found := v.files[uri]
if !found {
f := &File{URI: uri}
f = &File{
URI: uri,
view: v,
}
v.files[f.URI] = f
}
v.mu.Unlock()
@ -55,8 +64,152 @@ func (v *View) TypeCheck(uri protocol.DocumentURI) (*packages.Package, error) {
}
pkgs, err := packages.Load(v.Config, fmt.Sprintf("file=%s", path))
if len(pkgs) == 0 {
if err == nil {
err = fmt.Errorf("no packages found for %s", path)
}
return nil, err
}
pkg := pkgs[0]
return pkg, nil
}
func (v *View) TypeCheckAtPosition(uri protocol.DocumentURI, position protocol.Position) (*packages.Package, *ast.File, token.Pos, error) {
v.mu.Lock()
defer v.mu.Unlock()
filename, err := FromURI(uri)
if err != nil {
return nil, nil, token.NoPos, err
}
var mu sync.Mutex
var qfileContent []byte
cfg := &packages.Config{
Mode: v.Config.Mode,
Dir: v.Config.Dir,
Env: v.Config.Env,
BuildFlags: v.Config.BuildFlags,
Fset: v.Config.Fset,
Tests: v.Config.Tests,
Overlay: v.Config.Overlay,
ParseFile: func(fset *token.FileSet, current string, data []byte) (*ast.File, error) {
// Save the file contents for use later in determining the query position.
if sameFile(current, filename) {
mu.Lock()
qfileContent = data
mu.Unlock()
}
return parser.ParseFile(fset, current, data, parser.AllErrors)
},
}
pkgs, err := packages.Load(cfg, fmt.Sprintf("file=%s", filename))
if len(pkgs) == 0 {
if err == nil {
err = fmt.Errorf("no package found for %s", filename)
}
return nil, nil, token.NoPos, err
}
pkg := pkgs[0]
var qpos token.Pos
var qfile *ast.File
for _, file := range pkg.Syntax {
tokfile := pkg.Fset.File(file.Pos())
if tokfile == nil || tokfile.Name() != filename {
continue
}
pos := positionToPos(tokfile, qfileContent, int(position.Line), int(position.Character))
if !pos.IsValid() {
return nil, nil, token.NoPos, fmt.Errorf("invalid position for %s", filename)
}
qfile = file
qpos = pos
break
}
if qfile == nil || qpos == token.NoPos {
return nil, nil, token.NoPos, fmt.Errorf("unable to find position %s:%v:%v", filename, position.Line, position.Character)
}
return pkg, qfile, qpos, nil
}
// trimAST clears any part of the AST not relevant to type checking
// expressions at pos.
func trimAST(file *ast.File, pos token.Pos) {
ast.Inspect(file, func(n ast.Node) bool {
if n == nil {
return false
}
if pos < n.Pos() || pos >= n.End() {
switch n := n.(type) {
case *ast.FuncDecl:
n.Body = nil
case *ast.BlockStmt:
n.List = nil
case *ast.CaseClause:
n.Body = nil
case *ast.CommClause:
n.Body = nil
case *ast.CompositeLit:
// Leave elts in place for [...]T
// array literals, because they can
// affect the expression's type.
if !isEllipsisArray(n.Type) {
n.Elts = nil
}
}
}
return true
})
}
func isEllipsisArray(n ast.Expr) bool {
at, ok := n.(*ast.ArrayType)
if !ok {
return false
}
_, ok = at.Len.(*ast.Ellipsis)
return ok
}
func sameFile(filename1, filename2 string) bool {
if filepath.Base(filename1) != filepath.Base(filename2) {
return false
}
finfo1, err := os.Stat(filename1)
if err != nil {
return false
}
finfo2, err := os.Stat(filename2)
if err != nil {
return false
}
return os.SameFile(finfo1, finfo2)
}
// positionToPos converts a 0-based line and column number in a file
// to a token.Pos. It returns NoPos if the file did not contain the position.
func positionToPos(file *token.File, content []byte, line, col int) token.Pos {
if file.Size() != len(content) {
return token.NoPos
}
if file.LineCount() < int(line) { // these can be equal if the last line is empty
return token.NoPos
}
start := 0
for i := 0; i < int(line); i++ {
if start >= len(content) {
return token.NoPos
}
index := bytes.IndexByte(content[start:], '\n')
if index == -1 {
return token.NoPos
}
start += (index + 1)
}
offset := start + int(col)
if offset > file.Size() {
return token.NoPos
}
return file.Pos(offset)
}