1
0
mirror of https://github.com/golang/go synced 2024-11-12 07:30:25 -07:00

utf8: Add new type String to automate string indexing by code point.

R=rsc, rog
CC=golang-dev
https://golang.org/cl/2275041
This commit is contained in:
Rob Pike 2010-09-25 06:58:34 +10:00
parent d47266558d
commit 6f32c82953
4 changed files with 264 additions and 11 deletions

View File

@ -6,6 +6,7 @@ include ../../Make.inc
TARG=utf8 TARG=utf8
GOFILES=\ GOFILES=\
string.go\
utf8.go\ utf8.go\
include ../../Make.pkg include ../../Make.pkg

166
src/pkg/utf8/string.go Normal file
View File

@ -0,0 +1,166 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package utf8
// String wraps a regular string with a small structure that provides more
// efficient indexing by code point index, as opposed to byte index.
// Scanning incrementally forwards or backwards is O(1) per index operation
// (although not as fast a range clause going forwards). Random access is
// O(N) in the length of the string, but the overhead is less than always
// scanning from the beginning.
// If the string is ASCII, random access is O(1).
type String struct {
str string
numRunes int
// If width > 0, the rune at runePos starts at bytePos and has the specified width.
width int
bytePos int
runePos int
nonASCII int // byte index of the first non-ASCII rune.
}
// NewString returns a new UTF-8 string with the provided contents.
func NewString(contents string) *String {
for i := 0; i < len(contents); i++ {
if contents[i] >= RuneSelf {
// Not ASCII.
_, wid := DecodeRuneInString(contents)
return &String{
str: contents,
numRunes: RuneCountInString(contents),
width: wid,
nonASCII: i,
}
}
}
// ASCII is simple. Also, the empty string is ASCII.
return &String{str: contents, numRunes: len(contents), nonASCII: len(contents)}
}
// String returns the contents of the String. This method also means the
// String is directly printable by fmt.Print.
func (s *String) String() string {
return s.str
}
// RuneCount returns the number of runes (Unicode code points) in the String.
func (s *String) RuneCount() int {
return s.numRunes
}
// IsASCII returns a boolean indicating whether the String contains only ASCII bytes.
func (s *String) IsASCII() bool {
return s.width == 0
}
// At returns the rune with index i in the String. The sequence of runes is the same
// as iterating over the contents with a "for range" clause.
func (s *String) At(i int) int {
// ASCII is easy. Let the compiler catch the indexing error if there is one.
if i < s.nonASCII {
return int(s.str[i])
}
// Now we do need to know the index is valid.
if i < 0 || i >= s.numRunes {
panic(outOfRange)
}
var rune int
// Five easy common cases: within 1 spot of bytePos/runePos, or the beginning, or the end.
// With these cases, all scans from beginning or end work in O(1) time per rune.
switch {
case i == s.runePos-1: // backing up one rune
rune, s.width = DecodeLastRuneInString(s.str[0:s.bytePos])
s.runePos = i
s.bytePos -= s.width
return rune
case i == s.runePos+1: // moving ahead one rune
s.runePos = i
s.bytePos += s.width
fallthrough
case i == s.runePos:
rune, s.width = DecodeRuneInString(s.str[s.bytePos:])
return rune
case i == 0: // start of string
rune, s.width = DecodeRuneInString(s.str)
s.runePos = 0
s.bytePos = 0
return rune
case i == s.numRunes-1: // last rune in string
rune, s.width = DecodeLastRuneInString(s.str)
s.runePos = i
s.bytePos = len(s.str) - s.width
return rune
}
// We need to do a linear scan. There are three places to start from:
// 1) The beginning
// 2) bytePos/runePos.
// 3) The end
// Choose the closest in rune count, scanning backwards if necessary.
forward := true
if i < s.runePos {
// Between beginning and pos. Which is closer?
// Since both i and runePos are guaranteed >= nonASCII, that's the
// lowest location we need to start from.
if i < (s.runePos-s.nonASCII)/2 {
// Scan forward from beginning
s.bytePos, s.runePos = s.nonASCII, s.nonASCII
} else {
// Scan backwards from where we are
forward = false
}
} else {
// Between pos and end. Which is closer?
if i-s.runePos < (s.numRunes-s.runePos)/2 {
// Scan forward from pos
} else {
// Scan backwards from end
s.bytePos, s.runePos = len(s.str), s.numRunes
forward = false
}
}
if forward {
// TODO: Is it much faster to use a range loop for this scan?
for {
rune, s.width = DecodeRuneInString(s.str[s.bytePos:])
if s.runePos == i {
break
}
s.runePos++
s.bytePos += s.width
}
} else {
for {
rune, s.width = DecodeLastRuneInString(s.str[0:s.bytePos])
s.runePos--
s.bytePos -= s.width
if s.runePos == i {
break
}
}
}
return rune
}
// We want the panic in At(i) to satisfy os.Error, because that's what
// runtime panics satisfy, but we can't import os. This is our solution.
// error is the type of the error returned if a user calls String.At(i) with i out of range.
// It satisfies os.Error and runtime.Error.
type error string
func (err error) String() string {
return string(err)
}
func (err error) RunTimeError() {
}
var outOfRange = error("utf8.String: index out of Range")

View File

@ -0,0 +1,70 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package utf8_test
import (
"rand"
"testing"
. "utf8"
)
func TestScanForwards(t *testing.T) {
for _, s := range testStrings {
runes := []int(s)
str := NewString(s)
if str.RuneCount() != len(runes) {
t.Error("%s: expected %d runes; got %d", s, len(runes), str.RuneCount())
break
}
for i, expect := range runes {
got := str.At(i)
if got != expect {
t.Errorf("%s[%d]: expected %c (U+%04x); got %c (U+%04x)", s, i, expect, expect, got, got)
}
}
}
}
func TestScanBackwards(t *testing.T) {
for _, s := range testStrings {
runes := []int(s)
str := NewString(s)
if str.RuneCount() != len(runes) {
t.Error("%s: expected %d runes; got %d", s, len(runes), str.RuneCount())
break
}
for i := len(runes) - 1; i >= 0; i-- {
expect := runes[i]
got := str.At(i)
if got != expect {
t.Errorf("%s[%d]: expected %c (U+%04x); got %c (U+%04x)", s, i, expect, expect, got, got)
}
}
}
}
const randCount = 100000
func TestRandomAccess(t *testing.T) {
for _, s := range testStrings {
if len(s) == 0 {
continue
}
runes := []int(s)
str := NewString(s)
if str.RuneCount() != len(runes) {
t.Error("%s: expected %d runes; got %d", s, len(runes), str.RuneCount())
break
}
for j := 0; j < randCount; j++ {
i := rand.Intn(len(runes))
expect := runes[i]
got := str.At(i)
if got != expect {
t.Errorf("%s[%d]: expected %c (U+%04x); got %c (U+%04x)", s, i, expect, expect, got, got)
}
}
}
}

View File

@ -47,20 +47,16 @@ var utf8map = []Utf8Map{
var testStrings = []string{ var testStrings = []string{
"", "",
"abcd", "abcd",
"☺☻☹",
"日a本b語ç日ð本Ê語þ日¥本¼語i日©",
"日a本b語ç日ð本Ê語þ日¥本¼語i日©日a本b語ç日ð本Ê語þ日¥本¼語i日©日a本b語ç日ð本Ê語þ日¥本¼語i日©",
"\x80\x80\x80\x80", "\x80\x80\x80\x80",
} }
// strings.Bytes with one extra byte at end
func makeBytes(s string) []byte {
s += "\x00"
b := []byte(s)
return b[0 : len(s)-1]
}
func TestFullRune(t *testing.T) { func TestFullRune(t *testing.T) {
for i := 0; i < len(utf8map); i++ { for i := 0; i < len(utf8map); i++ {
m := utf8map[i] m := utf8map[i]
b := makeBytes(m.str) b := []byte(m.str)
if !FullRune(b) { if !FullRune(b) {
t.Errorf("FullRune(%q) (rune %04x) = false, want true", b, m.rune) t.Errorf("FullRune(%q) (rune %04x) = false, want true", b, m.rune)
} }
@ -82,7 +78,7 @@ func TestFullRune(t *testing.T) {
func TestEncodeRune(t *testing.T) { func TestEncodeRune(t *testing.T) {
for i := 0; i < len(utf8map); i++ { for i := 0; i < len(utf8map); i++ {
m := utf8map[i] m := utf8map[i]
b := makeBytes(m.str) b := []byte(m.str)
var buf [10]byte var buf [10]byte
n := EncodeRune(m.rune, buf[0:]) n := EncodeRune(m.rune, buf[0:])
b1 := buf[0:n] b1 := buf[0:n]
@ -95,7 +91,7 @@ func TestEncodeRune(t *testing.T) {
func TestDecodeRune(t *testing.T) { func TestDecodeRune(t *testing.T) {
for i := 0; i < len(utf8map); i++ { for i := 0; i < len(utf8map); i++ {
m := utf8map[i] m := utf8map[i]
b := makeBytes(m.str) b := []byte(m.str)
rune, size := DecodeRune(b) rune, size := DecodeRune(b)
if rune != m.rune || size != len(b) { if rune != m.rune || size != len(b) {
t.Errorf("DecodeRune(%q) = %#04x, %d want %#04x, %d", b, rune, size, m.rune, len(b)) t.Errorf("DecodeRune(%q) = %#04x, %d want %#04x, %d", b, rune, size, m.rune, len(b))
@ -163,6 +159,26 @@ func TestSequencing(t *testing.T) {
} }
} }
// Check that a range loop and a []int conversion visit the same runes.
// Not really a test of this package, but the assumption is used here and
// it's good to verify
func TestIntConversion(t *testing.T) {
for _, ts := range testStrings {
runes := []int(ts)
if RuneCountInString(ts) != len(runes) {
t.Error("%q: expected %d runes; got %d", ts, len(runes), RuneCountInString(ts))
break
}
i := 0
for _, r := range ts {
if r != runes[i] {
t.Errorf("%q[%d]: expected %c (U+%04x); got %c (U+%04x)", ts, i, runes[i], runes[i], r, r)
}
i++
}
}
}
func testSequence(t *testing.T, s string) { func testSequence(t *testing.T, s string) {
type info struct { type info struct {
index int index int
@ -252,7 +268,7 @@ func TestRuneCount(t *testing.T) {
if out := RuneCountInString(tt.in); out != tt.out { if out := RuneCountInString(tt.in); out != tt.out {
t.Errorf("RuneCountInString(%q) = %d, want %d", tt.in, out, tt.out) t.Errorf("RuneCountInString(%q) = %d, want %d", tt.in, out, tt.out)
} }
if out := RuneCount(makeBytes(tt.in)); out != tt.out { if out := RuneCount([]byte(tt.in)); out != tt.out {
t.Errorf("RuneCount(%q) = %d, want %d", tt.in, out, tt.out) t.Errorf("RuneCount(%q) = %d, want %d", tt.in, out, tt.out)
} }
} }