1
0
mirror of https://github.com/golang/go synced 2024-11-20 04:04:41 -07:00

Added XTEA block cipher package to src/pkg/crypto

This is an adaption of the code from http://en.wikipedia.org/wiki/XTEA. The package also implements the block.Cipher
interface so that it can be used with the various block modes.

R=rsc
https://golang.org/cl/157152
This commit is contained in:
Adrian O'Grady 2009-12-09 00:06:20 -08:00 committed by Russ Cox
parent 0400a7f8b1
commit 6ebfd1eff2
5 changed files with 417 additions and 0 deletions

View File

@ -36,6 +36,7 @@ DIRS=\
crypto/subtle\
crypto/tls\
crypto/x509\
crypto/xtea\
debug/dwarf\
debug/macho\
debug/elf\

View File

@ -0,0 +1,12 @@
# Copyright 2009 The Go Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
include ../../../Make.$(GOARCH)
TARG=crypto/xtea
GOFILES=\
cipher.go\
block.go\
include ../../../Make.pkg

View File

@ -0,0 +1,66 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Implementation adapted from Needham and Wheeler's paper:
http://www.cix.co.uk/~klockstone/xtea.pdf
A precalculated look up table is used during encryption/decryption for values that are based purely on the key.
*/
package xtea
// XTEA is based on 64 rounds.
const numRounds = 64
// blockToUint32 reads an 8 byte slice into two uint32s.
// The block is treated as big endian.
func blockToUint32(src []byte) (uint32, uint32) {
r0 := uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3]);
r1 := uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7]);
return r0, r1;
}
// uint32ToBlock writes two unint32s into an 8 byte data block.
// Values are written as big endian.
func uint32ToBlock(v0, v1 uint32, dst []byte) {
dst[0] = byte(v0 >> 24);
dst[1] = byte(v0 >> 16);
dst[2] = byte(v0 >> 8);
dst[3] = byte(v0);
dst[4] = byte(v1 >> 24);
dst[5] = byte(v1 >> 16);
dst[6] = byte(v1 >> 8);
dst[7] = byte(v1 >> 0);
}
// encryptBlock encrypts a single 8 byte block using XTEA.
func encryptBlock(c *Cipher, src, dst []byte) {
v0, v1 := blockToUint32(src);
// Two rounds of XTEA applied per loop
for i := 0; i < numRounds; {
v0 += ((v1<<4 ^ v1>>5) + v1) ^ c.table[i];
i++;
v1 += ((v0<<4 ^ v0>>5) + v0) ^ c.table[i];
i++;
}
uint32ToBlock(v0, v1, dst);
}
// decryptBlock decrypt a single 8 byte block using XTEA.
func decryptBlock(c *Cipher, src, dst []byte) {
v0, v1 := blockToUint32(src);
// Two rounds of XTEA applied per loop
for i := numRounds; i > 0; {
i--;
v1 -= ((v0<<4 ^ v0>>5) + v0) ^ c.table[i];
i--;
v0 -= ((v1<<4 ^ v1>>5) + v1) ^ c.table[i];
}
uint32ToBlock(v0, v1, dst);
}

View File

@ -0,0 +1,92 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This package implements XTEA encryption, as defined in Needham and
// Wheeler's 1997 technical report, "Tea extensions."
package xtea
// For details, see http://www.cix.co.uk/~klockstone/xtea.pdf
import (
"os";
"strconv";
)
// The XTEA block size in bytes.
const BlockSize = 8
// A Cipher is an instance of an XTEA cipher using a particular key.
// table contains a series of precalculated values that are used each round.
type Cipher struct {
table [64]uint32;
}
type KeySizeError int
func (k KeySizeError) String() string {
return "crypto/xtea: invalid key size " + strconv.Itoa(int(k))
}
// NewCipher creates and returns a new Cipher.
// The key argument should be the XTEA key.
// XTEA only supports 128 bit (16 byte) keys.
func NewCipher(key []byte) (*Cipher, os.Error) {
k := len(key);
switch k {
default:
return nil, KeySizeError(k)
case 16:
break
}
c := new(Cipher);
initCipher(c, key);
return c, nil;
}
// BlockSize returns the XTEA block size, 8 bytes.
// It is necessary to satisfy the Key interface in the
// package "crypto/modes".
func (c *Cipher) BlockSize() int { return BlockSize }
// Encrypt encrypts the 8 byte buffer src using the key and stores the result in dst.
// Note that for amounts of data larger than a block,
// it is not safe to just call Encrypt on successive blocks;
// instead, use an encryption mode like XTEACBC (see modes.go).
func (c *Cipher) Encrypt(src, dst []byte) { encryptBlock(c, src, dst) }
// Decrypt decrypts the 8 byte buffer src using the key k and stores the result in dst.
func (c *Cipher) Decrypt(src, dst []byte) { decryptBlock(c, src, dst) }
// Reset zeros the table, so that it will no longer appear in the process's memory.
func (c *Cipher) Reset() {
for i := 0; i < len(c.table); i++ {
c.table[i] = 0
}
}
// initCipher initializes the cipher context by creating a look up table
// of precalculated values that are based on the key.
func initCipher(c *Cipher, key []byte) {
// Load the key into four uint32s
var k [4]uint32;
for i := 0; i < len(k); i++ {
j := i << 2; // Multiply by 4
k[i] = uint32(key[j+0])<<24 | uint32(key[j+1])<<16 | uint32(key[j+2])<<8 | uint32(key[j+3]);
}
// Precalculate the table
const delta = 0x9E3779B9;
var sum uint32 = 0;
// Two rounds of XTEA applied per loop
for i := 0; i < numRounds; {
c.table[i] = sum + k[sum&3];
i++;
sum += delta;
c.table[i] = sum + k[(sum>>11)&3];
i++;
}
}

View File

@ -0,0 +1,246 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package xtea
import (
"testing";
)
// A sample test key for when we just want to initialise a cipher
var testKey = []byte{0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF}
// Test that the block size for XTEA is correct
func TestBlocksize(t *testing.T) {
if BlockSize != 8 {
t.Errorf("BlockSize constant - expected 8, got %d", BlockSize);
return;
}
c, err := NewCipher(testKey);
if err != nil {
t.Errorf("NewCipher(%d bytes) = %s", len(testKey), err);
return;
}
result := c.BlockSize();
if result != 8 {
t.Errorf("BlockSize function - expected 8, gotr %d", result);
return;
}
}
// A series of test values to confirm that the Cipher.table array was initialised correctly
var testTable = []uint32{
0x00112233, 0x6B1568B8, 0xE28CE030, 0xC5089E2D, 0xC5089E2D, 0x1EFBD3A2, 0xA7845C2A, 0x78EF0917,
0x78EF0917, 0x172682D0, 0x5B6AC714, 0x822AC955, 0x3DE68511, 0xDC1DFECA, 0x2062430E, 0x3611343F,
0xF1CCEFFB, 0x900469B4, 0xD448ADF8, 0x2E3BE36D, 0xB6C46BF5, 0x994029F2, 0x994029F2, 0xF3335F67,
0x6AAAD6DF, 0x4D2694DC, 0x4D2694DC, 0xEB5E0E95, 0x2FA252D9, 0x4551440A, 0x121E10D6, 0xB0558A8F,
0xE388BDC3, 0x0A48C004, 0xC6047BC0, 0x643BF579, 0xA88039BD, 0x02736F32, 0x8AFBF7BA, 0x5C66A4A7,
0x5C66A4A7, 0xC76AEB2C, 0x3EE262A4, 0x215E20A1, 0x215E20A1, 0x7B515616, 0x03D9DE9E, 0x1988CFCF,
0xD5448B8B, 0x737C0544, 0xB7C04988, 0xDE804BC9, 0x9A3C0785, 0x3873813E, 0x7CB7C582, 0xD6AAFAF7,
0x4E22726F, 0x309E306C, 0x309E306C, 0x8A9165E1, 0x1319EE69, 0xF595AC66, 0xF595AC66, 0x4F88E1DB,
}
// Test that the cipher context is initialised correctly
func TestCipherInit(t *testing.T) {
c, err := NewCipher(testKey);
if err != nil {
t.Errorf("NewCipher(%d bytes) = %s", len(testKey), err);
return;
}
for i := 0; i < len(c.table); i++ {
if c.table[i] != testTable[i] {
t.Errorf("NewCipher() failed to initialise Cipher.table[%d] correctly. Expected %08X, got %08X", i, testTable[i], c.table[i]);
break;
}
}
}
// Test that invalid key sizes return an error
func TestInvalidKeySize(t *testing.T) {
// Test a long key
key := []byte{
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF,
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF,
};
_, err := NewCipher(key);
if err == nil {
t.Errorf("Invalid key size %d didn't result in an error.", len(key))
}
// Test a short key
key = []byte{0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77};
_, err = NewCipher(key);
if err == nil {
t.Errorf("Invalid key size %d didn't result in an error.", len(key))
}
}
// Test that we can correctly decode some bytes we have encoded
func TestEncodeDecode(t *testing.T) {
original := []byte{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF};
input := original;
output := make([]byte, BlockSize);
c, err := NewCipher(testKey);
if err != nil {
t.Errorf("NewCipher(%d bytes) = %s", len(testKey), err);
return;
}
// Encrypt the input block
c.Encrypt(input, output);
// Check that the output does not match the input
differs := false;
for i := 0; i < len(input); i++ {
if output[i] != input[i] {
differs = true;
break;
}
}
if differs == false {
t.Error("Cipher.Encrypt: Failed to encrypt the input block.");
return;
}
// Decrypt the block we just encrypted
input = output;
output = make([]byte, BlockSize);
c.Decrypt(input, output);
// Check that the output from decrypt matches our initial input
for i := 0; i < len(input); i++ {
if output[i] != original[i] {
t.Errorf("Decrypted byte %d differed. Expected %02X, got %02X\n", i, original[i], output[i]);
return;
}
}
}
// Test Vectors
type CryptTest struct {
key []byte;
plainText []byte;
cipherText []byte;
}
var CryptTests = []CryptTest{
// These were sourced from http://www.freemedialibrary.com/index.php/XTEA_test_vectors
CryptTest{
[]byte{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},
[]byte{0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48},
[]byte{0x49, 0x7d, 0xf3, 0xd0, 0x72, 0x61, 0x2c, 0xb5},
},
CryptTest{
[]byte{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},
[]byte{0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41},
[]byte{0xe7, 0x8f, 0x2d, 0x13, 0x74, 0x43, 0x41, 0xd8},
},
CryptTest{
[]byte{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},
[]byte{0x5a, 0x5b, 0x6e, 0x27, 0x89, 0x48, 0xd7, 0x7f},
[]byte{0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41},
},
CryptTest{
[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
[]byte{0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48},
[]byte{0xa0, 0x39, 0x05, 0x89, 0xf8, 0xb8, 0xef, 0xa5},
},
CryptTest{
[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
[]byte{0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41},
[]byte{0xed, 0x23, 0x37, 0x5a, 0x82, 0x1a, 0x8c, 0x2d},
},
CryptTest{
[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
[]byte{0x70, 0xe1, 0x22, 0x5d, 0x6e, 0x4e, 0x76, 0x55},
[]byte{0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41},
},
// These vectors are from http://wiki.secondlife.com/wiki/XTEA_Strong_Encryption_Implementation#Bouncy_Castle_C.23_API
CryptTest{
[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
[]byte{0xDE, 0xE9, 0xD4, 0xD8, 0xF7, 0x13, 0x1E, 0xD9},
},
CryptTest{
[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
[]byte{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},
[]byte{0x06, 0x5C, 0x1B, 0x89, 0x75, 0xC6, 0xA8, 0x16},
},
CryptTest{
[]byte{0x01, 0x23, 0x45, 0x67, 0x12, 0x34, 0x56, 0x78, 0x23, 0x45, 0x67, 0x89, 0x34, 0x56, 0x78, 0x9A},
[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
[]byte{0x1F, 0xF9, 0xA0, 0x26, 0x1A, 0xC6, 0x42, 0x64},
},
CryptTest{
[]byte{0x01, 0x23, 0x45, 0x67, 0x12, 0x34, 0x56, 0x78, 0x23, 0x45, 0x67, 0x89, 0x34, 0x56, 0x78, 0x9A},
[]byte{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08},
[]byte{0x8C, 0x67, 0x15, 0x5B, 0x2E, 0xF9, 0x1E, 0xAD},
},
}
// Test encryption
func TestCipherEncrypt(t *testing.T) {
for i, tt := range CryptTests {
c, err := NewCipher(tt.key);
if err != nil {
t.Errorf("NewCipher(%d bytes), vector %d = %s", len(tt.key), i, err);
continue;
}
out := make([]byte, len(tt.plainText));
c.Encrypt(tt.plainText, out);
for j := 0; j < len(out); j++ {
if out[j] != tt.cipherText[j] {
t.Errorf("Cipher.Encrypt %d: out[%d] = %02X, expected %02X", i, j, out[j], tt.cipherText[j]);
break;
}
}
}
}
// Test decryption
func TestCipherDecrypt(t *testing.T) {
for i, tt := range CryptTests {
c, err := NewCipher(tt.key);
if err != nil {
t.Errorf("NewCipher(%d bytes), vector %d = %s", len(tt.key), i, err);
continue;
}
out := make([]byte, len(tt.cipherText));
c.Decrypt(tt.cipherText, out);
for j := 0; j < len(out); j++ {
if out[j] != tt.plainText[j] {
t.Errorf("Cipher.Decrypt %d: out[%d] = %02X, expected %02X", i, j, out[j], tt.plainText[j]);
break;
}
}
}
}
// Test resetting the cipher context
func TestReset(t *testing.T) {
c, err := NewCipher(testKey);
if err != nil {
t.Errorf("NewCipher(%d bytes) = %s", len(testKey), err);
return;
}
c.Reset();
for i := 0; i < len(c.table); i++ {
if c.table[i] != 0 {
t.Errorf("Cipher.Reset: Failed to clear Cipher.table[%d]. expected 0, got %08X", i, c.table[i]);
return;
}
}
}