1
0
mirror of https://github.com/golang/go synced 2024-11-12 07:30:25 -07:00

crypto/tls: add initial client implementation.

R=rsc, agl
CC=golang-dev
https://golang.org/cl/157076
This commit is contained in:
Adam Langley 2009-11-21 15:53:03 -08:00
parent ff6a8fd779
commit 6e0842db8b
9 changed files with 439 additions and 7 deletions

View File

@ -8,12 +8,14 @@ TARG=crypto/tls
GOFILES=\
alert.go\
common.go\
handshake_client.go\
handshake_messages.go\
handshake_server.go\
prf.go\
record_process.go\
record_read.go\
record_write.go\
ca_set.go\
tls.go\
include $(GOROOT)/src/Make.pkg

View File

@ -0,0 +1,75 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
import (
"crypto/x509";
"encoding/pem";
)
// A CASet is a set of certificates.
type CASet struct {
bySubjectKeyId map[string]*x509.Certificate;
byName map[string]*x509.Certificate;
}
func NewCASet() *CASet {
return &CASet{
make(map[string]*x509.Certificate),
make(map[string]*x509.Certificate),
}
}
func nameToKey(name *x509.Name) string {
return name.Country + "/" + name.OrganizationalUnit + "/" + name.OrganizationalUnit + "/" + name.CommonName
}
// FindParent attempts to find the certificate in s which signs the given
// certificate. If no such certificate can be found, it returns nil.
func (s *CASet) FindParent(cert *x509.Certificate) (parent *x509.Certificate) {
var ok bool;
if len(cert.AuthorityKeyId) > 0 {
parent, ok = s.bySubjectKeyId[string(cert.AuthorityKeyId)]
} else {
parent, ok = s.byName[nameToKey(&cert.Issuer)]
}
if !ok {
return nil
}
return parent;
}
// SetFromPEM attempts to parse a series of PEM encoded root certificates. It
// appends any certificates found to s and returns true if any certificates
// were successfully parsed. On many Linux systems, /etc/ssl/cert.pem will
// contains the system wide set of root CAs in a format suitable for this
// function.
func (s *CASet) SetFromPEM(pemCerts []byte) (ok bool) {
for len(pemCerts) > 0 {
var block *pem.Block;
block, pemCerts = pem.Decode(pemCerts);
if block == nil {
break
}
if block.Type != "CERTIFICATE" || len(block.Headers) != 0 {
continue
}
cert, err := x509.ParseCertificate(block.Bytes);
if err != nil {
continue
}
if len(cert.SubjectKeyId) > 0 {
s.bySubjectKeyId[string(cert.SubjectKeyId)] = cert
}
s.byName[nameToKey(&cert.Subject)] = cert;
ok = true;
}
return;
}

View File

@ -17,6 +17,9 @@ const (
maxTLSCiphertext = 16384 + 2048;
// maxHandshakeMsg is the largest single handshake message that we'll buffer.
maxHandshakeMsg = 65536;
// defaultMajor and defaultMinor are the maximum TLS version that we support.
defaultMajor = 3;
defaultMinor = 2;
)
@ -64,6 +67,7 @@ type Config struct {
// Time returns the current time as the number of seconds since the epoch.
Time func() int64;
Certificates []Certificate;
RootCAs *CASet;
}
type Certificate struct {

View File

@ -0,0 +1,225 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
import (
"crypto/hmac";
"crypto/rc4";
"crypto/rsa";
"crypto/sha1";
"crypto/subtle";
"crypto/x509";
"io";
)
// A serverHandshake performs the server side of the TLS 1.1 handshake protocol.
type clientHandshake struct {
writeChan chan<- interface{};
controlChan chan<- interface{};
msgChan <-chan interface{};
config *Config;
}
func (h *clientHandshake) loop(writeChan chan<- interface{}, controlChan chan<- interface{}, msgChan <-chan interface{}, config *Config) {
h.writeChan = writeChan;
h.controlChan = controlChan;
h.msgChan = msgChan;
h.config = config;
defer close(writeChan);
defer close(controlChan);
finishedHash := newFinishedHash();
hello := &clientHelloMsg{
major: defaultMajor,
minor: defaultMinor,
cipherSuites: []uint16{TLS_RSA_WITH_RC4_128_SHA},
compressionMethods: []uint8{compressionNone},
random: make([]byte, 32),
};
currentTime := uint32(config.Time());
hello.random[0] = byte(currentTime >> 24);
hello.random[1] = byte(currentTime >> 16);
hello.random[2] = byte(currentTime >> 8);
hello.random[3] = byte(currentTime);
_, err := io.ReadFull(config.Rand, hello.random[4:len(hello.random)]);
if err != nil {
h.error(alertInternalError);
return;
}
finishedHash.Write(hello.marshal());
writeChan <- writerSetVersion{defaultMajor, defaultMinor};
writeChan <- hello;
serverHello, ok := h.readHandshakeMsg().(*serverHelloMsg);
if !ok {
h.error(alertUnexpectedMessage);
return;
}
finishedHash.Write(serverHello.marshal());
major, minor, ok := mutualVersion(serverHello.major, serverHello.minor);
if !ok {
h.error(alertProtocolVersion);
return;
}
writeChan <- writerSetVersion{major, minor};
if serverHello.cipherSuite != TLS_RSA_WITH_RC4_128_SHA ||
serverHello.compressionMethod != compressionNone {
h.error(alertUnexpectedMessage);
return;
}
certMsg, ok := h.readHandshakeMsg().(*certificateMsg);
if !ok || len(certMsg.certificates) == 0 {
h.error(alertUnexpectedMessage);
return;
}
finishedHash.Write(certMsg.marshal());
certs := make([]*x509.Certificate, len(certMsg.certificates));
for i, asn1Data := range certMsg.certificates {
cert, err := x509.ParseCertificate(asn1Data);
if err != nil {
h.error(alertBadCertificate);
return;
}
certs[i] = cert;
}
// TODO(agl): do better validation of certs: max path length, name restrictions etc.
for i := 1; i < len(certs); i++ {
if certs[i-1].CheckSignatureFrom(certs[i]) != nil {
h.error(alertBadCertificate);
return;
}
}
if config.RootCAs != nil {
root := config.RootCAs.FindParent(certs[len(certs)-1]);
if root == nil {
h.error(alertBadCertificate);
return;
}
if certs[len(certs)-1].CheckSignatureFrom(root) != nil {
h.error(alertBadCertificate);
return;
}
}
pub, ok := certs[0].PublicKey.(*rsa.PublicKey);
if !ok {
h.error(alertUnsupportedCertificate);
return;
}
shd, ok := h.readHandshakeMsg().(*serverHelloDoneMsg);
if !ok {
h.error(alertUnexpectedMessage);
return;
}
finishedHash.Write(shd.marshal());
ckx := new(clientKeyExchangeMsg);
preMasterSecret := make([]byte, 48);
// Note that the version number in the preMasterSecret must be the
// version offered in the ClientHello.
preMasterSecret[0] = defaultMajor;
preMasterSecret[1] = defaultMinor;
_, err = io.ReadFull(config.Rand, preMasterSecret[2:len(preMasterSecret)]);
if err != nil {
h.error(alertInternalError);
return;
}
ckx.ciphertext, err = rsa.EncryptPKCS1v15(config.Rand, pub, preMasterSecret);
if err != nil {
h.error(alertInternalError);
return;
}
finishedHash.Write(ckx.marshal());
writeChan <- ckx;
suite := cipherSuites[0];
masterSecret, clientMAC, serverMAC, clientKey, serverKey :=
keysFromPreMasterSecret11(preMasterSecret, hello.random, serverHello.random, suite.hashLength, suite.cipherKeyLength);
cipher, _ := rc4.NewCipher(clientKey);
writeChan <- writerChangeCipherSpec{cipher, hmac.New(sha1.New(), clientMAC)};
finished := new(finishedMsg);
finished.verifyData = finishedHash.clientSum(masterSecret);
finishedHash.Write(finished.marshal());
writeChan <- finished;
// TODO(agl): this is cut-through mode which should probably be an option.
writeChan <- writerEnableApplicationData{};
_, ok = h.readHandshakeMsg().(changeCipherSpec);
if !ok {
h.error(alertUnexpectedMessage);
return;
}
cipher2, _ := rc4.NewCipher(serverKey);
controlChan <- &newCipherSpec{cipher2, hmac.New(sha1.New(), serverMAC)};
serverFinished, ok := h.readHandshakeMsg().(*finishedMsg);
if !ok {
h.error(alertUnexpectedMessage);
return;
}
verify := finishedHash.serverSum(masterSecret);
if len(verify) != len(serverFinished.verifyData) ||
subtle.ConstantTimeCompare(verify, serverFinished.verifyData) != 1 {
h.error(alertHandshakeFailure);
return;
}
controlChan <- ConnectionState{true, "TLS_RSA_WITH_RC4_128_SHA", 0};
// This should just block forever.
_ = h.readHandshakeMsg();
h.error(alertUnexpectedMessage);
return;
}
func (h *clientHandshake) readHandshakeMsg() interface{} {
v := <-h.msgChan;
if closed(h.msgChan) {
// If the channel closed then the processor received an error
// from the peer and we don't want to echo it back to them.
h.msgChan = nil;
return 0;
}
if _, ok := v.(alert); ok {
// We got an alert from the processor. We forward to the writer
// and shutdown.
h.writeChan <- v;
h.msgChan = nil;
return 0;
}
return v;
}
func (h *clientHandshake) error(e alertType) {
if h.msgChan != nil {
// If we didn't get an error from the processor, then we need
// to tell it about the error.
go func() {
for _ = range h.msgChan {
}
}();
h.controlChan <- ConnectionState{false, "", e};
close(h.controlChan);
h.writeChan <- alert{alertLevelError, e};
}
}

View File

@ -45,7 +45,7 @@ func (m *clientHelloMsg) marshal() []byte {
}
func (m *clientHelloMsg) unmarshal(data []byte) bool {
if len(data) < 39 {
if len(data) < 43 {
return false
}
m.raw = data;
@ -120,6 +120,30 @@ func (m *serverHelloMsg) marshal() []byte {
return x;
}
func (m *serverHelloMsg) unmarshal(data []byte) bool {
if len(data) < 42 {
return false
}
m.raw = data;
m.major = data[4];
m.minor = data[5];
m.random = data[6:38];
sessionIdLen := int(data[38]);
if sessionIdLen > 32 || len(data) < 39+sessionIdLen {
return false
}
m.sessionId = data[39 : 39+sessionIdLen];
data = data[39+sessionIdLen : len(data)];
if len(data) < 3 {
return false
}
m.cipherSuite = uint16(data[0])<<8 | uint16(data[1]);
m.compressionMethod = data[2];
// Trailing data is allowed because extensions may be present.
return true;
}
type certificateMsg struct {
raw []byte;
certificates [][]byte;
@ -160,6 +184,43 @@ func (m *certificateMsg) marshal() (x []byte) {
return;
}
func (m *certificateMsg) unmarshal(data []byte) bool {
if len(data) < 7 {
return false
}
m.raw = data;
certsLen := uint32(data[4])<<16 | uint32(data[5])<<8 | uint32(data[6]);
if uint32(len(data)) != certsLen+7 {
return false
}
numCerts := 0;
d := data[7:len(data)];
for certsLen > 0 {
if len(d) < 4 {
return false
}
certLen := uint32(d[0])<<24 | uint32(d[1])<<8 | uint32(d[2]);
if uint32(len(d)) < 3+certLen {
return false
}
d = d[3+certLen : len(d)];
certsLen -= 3 + certLen;
numCerts++;
}
m.certificates = make([][]byte, numCerts);
d = data[7:len(data)];
for i := 0; i < numCerts; i++ {
certLen := uint32(d[0])<<24 | uint32(d[1])<<8 | uint32(d[2]);
m.certificates[i] = d[3 : 3+certLen];
d = d[3+certLen : len(d)];
}
return true;
}
type serverHelloDoneMsg struct{}
func (m *serverHelloDoneMsg) marshal() []byte {
@ -168,6 +229,10 @@ func (m *serverHelloDoneMsg) marshal() []byte {
return x;
}
func (m *serverHelloDoneMsg) unmarshal(data []byte) bool {
return len(data) == 4
}
type clientKeyExchangeMsg struct {
raw []byte;
ciphertext []byte;

View File

@ -13,6 +13,8 @@ import (
var tests = []interface{}{
&clientHelloMsg{},
&serverHelloMsg{},
&certificateMsg{},
&clientKeyExchangeMsg{},
&finishedMsg{},
}
@ -59,6 +61,20 @@ func TestMarshalUnmarshal(t *testing.T) {
}
}
func TestFuzz(t *testing.T) {
rand := rand.New(rand.NewSource(0));
for _, iface := range tests {
m := iface.(testMessage);
for j := 0; j < 1000; j++ {
len := rand.Intn(100);
bytes := randomBytes(len, rand);
// This just looks for crashes due to bounds errors etc.
m.unmarshal(bytes);
}
}
}
func randomBytes(n int, rand *rand.Rand) []byte {
r := make([]byte, n);
for i := 0; i < n; i++ {
@ -82,9 +98,30 @@ func (*clientHelloMsg) Generate(rand *rand.Rand, size int) reflect.Value {
return reflect.NewValue(m);
}
func (*serverHelloMsg) Generate(rand *rand.Rand, size int) reflect.Value {
m := &serverHelloMsg{};
m.major = uint8(rand.Intn(256));
m.minor = uint8(rand.Intn(256));
m.random = randomBytes(32, rand);
m.sessionId = randomBytes(rand.Intn(32), rand);
m.cipherSuite = uint16(rand.Int31());
m.compressionMethod = uint8(rand.Intn(256));
return reflect.NewValue(m);
}
func (*certificateMsg) Generate(rand *rand.Rand, size int) reflect.Value {
m := &certificateMsg{};
numCerts := rand.Intn(20);
m.certificates = make([][]byte, numCerts);
for i := 0; i < numCerts; i++ {
m.certificates[i] = randomBytes(rand.Intn(10)+1, rand)
}
return reflect.NewValue(m);
}
func (*clientKeyExchangeMsg) Generate(rand *rand.Rand, size int) reflect.Value {
m := &clientKeyExchangeMsg{};
m.ciphertext = randomBytes(rand.Intn(1000), rand);
m.ciphertext = randomBytes(rand.Intn(1000)+1, rand);
return reflect.NewValue(m);
}

View File

@ -224,12 +224,12 @@ func (h *serverHandshake) error(e alertType) {
if h.msgChan != nil {
// If we didn't get an error from the processor, then we need
// to tell it about the error.
h.controlChan <- ConnectionState{false, "", e};
close(h.controlChan);
go func() {
for _ = range h.msgChan {
}
}();
h.controlChan <- ConnectionState{false, "", e};
close(h.controlChan);
h.writeChan <- alert{alertLevelError, e};
}
}

View File

@ -210,7 +210,7 @@ func (p *recordProcessor) processRecord(r *record) {
return;
}
p.recordRead = nil;
p.appData = r.payload;
p.appData = r.payload[0 : len(r.payload)-p.mac.Size()];
p.appDataSend = p.appDataChan;
default:
p.error(alertUnexpectedMessage);
@ -283,6 +283,12 @@ func parseHandshakeMsg(data []byte) (interface{}, bool) {
switch data[0] {
case typeClientHello:
m = new(clientHelloMsg)
case typeServerHello:
m = new(serverHelloMsg)
case typeCertificate:
m = new(certificateMsg)
case typeServerHelloDone:
m = new(serverHelloDoneMsg)
case typeClientKeyExchange:
m = new(clientKeyExchangeMsg)
default:

View File

@ -112,9 +112,19 @@ func (tls *Conn) GetConnectionState() ConnectionState {
return <-replyChan;
}
func (tls *Conn) WaitConnectionState() ConnectionState {
replyChan := make(chan ConnectionState);
tls.requestChan <- waitConnectionState{replyChan};
return <-replyChan;
}
type handshaker interface {
loop(writeChan chan<- interface{}, controlChan chan<- interface{}, msgChan <-chan interface{}, config *Config);
}
// Server establishes a secure connection over the given connection and acts
// as a TLS server.
func Server(conn net.Conn, config *Config) *Conn {
func startTLSGoroutines(conn net.Conn, h handshaker, config *Config) *Conn {
tls := new(Conn);
tls.Conn = conn;
@ -134,11 +144,19 @@ func Server(conn net.Conn, config *Config) *Conn {
go new(recordWriter).loop(conn, writeChan, handshakeWriterChan);
go recordReader(readerProcessorChan, conn);
go new(recordProcessor).loop(readChan, requestChan, handshakeProcessorChan, readerProcessorChan, processorHandshakeChan);
go new(serverHandshake).loop(handshakeWriterChan, handshakeProcessorChan, processorHandshakeChan, config);
go h.loop(handshakeWriterChan, handshakeProcessorChan, processorHandshakeChan, config);
return tls;
}
func Server(conn net.Conn, config *Config) *Conn {
return startTLSGoroutines(conn, new(serverHandshake), config)
}
func Client(conn net.Conn, config *Config) *Conn {
return startTLSGoroutines(conn, new(clientHandshake), config)
}
type Listener struct {
listener net.Listener;
config *Config;