1
0
mirror of https://github.com/golang/go synced 2024-11-23 11:30:06 -07:00

io: reimplement Pipe

No known bugs in the current pipe,
but this one is simpler and easier to
understand.

R=iant
CC=golang-dev
https://golang.org/cl/4252057
This commit is contained in:
Russ Cox 2011-03-07 10:37:28 -05:00
parent c7ef0fd26b
commit 6d6f3381ff

View File

@ -9,7 +9,6 @@ package io
import (
"os"
"runtime"
"sync"
)
@ -18,208 +17,114 @@ type pipeResult struct {
err os.Error
}
// Shared pipe structure.
// A pipe is the shared pipe structure underlying PipeReader and PipeWriter.
type pipe struct {
// Reader sends on cr1, receives on cr2.
// Writer does the same on cw1, cw2.
r1, w1 chan []byte
r2, w2 chan pipeResult
rclose chan os.Error // read close; error to return to writers
wclose chan os.Error // write close; error to return to readers
done chan int // read or write half is done
rl sync.Mutex // gates readers one at a time
wl sync.Mutex // gates writers one at a time
l sync.Mutex // protects remaining fields
data []byte // data remaining in pending write
rwait sync.Cond // waiting reader
wwait sync.Cond // waiting writer
rerr os.Error // if reader closed, error to give writes
werr os.Error // if writer closed, error to give reads
}
func (p *pipe) run() {
var (
rb []byte // pending Read
wb []byte // pending Write
wn int // amount written so far from wb
rerr os.Error // if read end is closed, error to send to writers
werr os.Error // if write end is closed, error to send to readers
r1 chan []byte // p.cr1 or nil depending on whether Read is ok
w1 chan []byte // p.cw1 or nil depending on whether Write is ok
ndone int
)
// Read and Write are enabled at the start.
r1 = p.r1
w1 = p.w1
func (p *pipe) read(b []byte) (n int, err os.Error) {
// One reader at a time.
p.rl.Lock()
defer p.rl.Unlock()
p.l.Lock()
defer p.l.Unlock()
for {
select {
case <-p.done:
if ndone++; ndone == 2 {
// both reader and writer are gone
// close out any existing i/o
if r1 == nil {
p.r2 <- pipeResult{0, os.EINVAL}
}
if w1 == nil {
p.w2 <- pipeResult{0, os.EINVAL}
}
return
}
continue
case rerr = <-p.rclose:
if w1 == nil {
// finish pending Write
p.w2 <- pipeResult{wn, rerr}
wn = 0
w1 = p.w1 // allow another Write
}
if r1 == nil {
// Close of read side during Read.
// finish pending Read with os.EINVAL.
p.r2 <- pipeResult{0, os.EINVAL}
r1 = p.r1 // allow another Read
}
continue
case werr = <-p.wclose:
if r1 == nil {
// finish pending Read
p.r2 <- pipeResult{0, werr}
r1 = p.r1 // allow another Read
}
if w1 == nil {
// Close of write side during Write.
// finish pending Write with os.EINVAL.
p.w2 <- pipeResult{wn, os.EINVAL}
wn = 0
w1 = p.w1 // allow another Write
}
continue
case rb = <-r1:
if werr != nil {
// write end is closed
p.r2 <- pipeResult{0, werr}
continue
}
if rerr != nil {
// read end is closed
p.r2 <- pipeResult{0, os.EINVAL}
continue
}
r1 = nil // disable Read until this one is done
case wb = <-w1:
if rerr != nil {
// read end is closed
p.w2 <- pipeResult{0, rerr}
continue
}
if werr != nil {
// write end is closed
p.w2 <- pipeResult{0, os.EINVAL}
continue
}
w1 = nil // disable Write until this one is done
if p.rerr != nil {
return 0, os.EINVAL
}
if r1 == nil && w1 == nil {
// Have rb and wb. Execute.
n := copy(rb, wb)
wn += n
wb = wb[n:]
// Finish Read.
p.r2 <- pipeResult{n, nil}
r1 = p.r1 // allow another Read
// Maybe finish Write.
if len(wb) == 0 {
p.w2 <- pipeResult{wn, nil}
wn = 0
w1 = p.w1 // allow another Write
}
if p.data != nil {
break
}
if p.werr != nil {
return 0, p.werr
}
p.rwait.Wait()
}
}
// Read/write halves of the pipe.
// They are separate structures for two reasons:
// 1. If one end becomes garbage without being Closed,
// its finalizer can Close so that the other end
// does not hang indefinitely.
// 2. Clients cannot use interface conversions on the
// read end to find the Write method, and vice versa.
type pipeHalf struct {
c1 chan []byte
c2 chan pipeResult
cclose chan os.Error
done chan int
lock sync.Mutex
closed bool
io sync.Mutex
ioclosed bool
}
func (p *pipeHalf) rw(data []byte) (n int, err os.Error) {
// Run i/o operation.
// Check ioclosed flag under lock to make sure we're still allowed to do i/o.
p.io.Lock()
if p.ioclosed {
p.io.Unlock()
return 0, os.EINVAL
n = copy(b, p.data)
p.data = p.data[n:]
if len(p.data) == 0 {
p.data = nil
p.wwait.Signal()
}
p.io.Unlock()
p.c1 <- data
res := <-p.c2
return res.n, res.err
return
}
func (p *pipeHalf) close(err os.Error) os.Error {
// Close pipe half.
// Only first call to close does anything.
p.lock.Lock()
if p.closed {
p.lock.Unlock()
return os.EINVAL
var zero [0]byte
func (p *pipe) write(b []byte) (n int, err os.Error) {
// pipe uses nil to mean not available
if b == nil {
b = zero[:]
}
p.closed = true
p.lock.Unlock()
// First, send the close notification.
p.cclose <- err
// One writer at a time.
p.wl.Lock()
defer p.wl.Unlock()
// Runner is now responding to rw operations
// with os.EINVAL. Cut off future rw operations
// by setting ioclosed flag.
p.io.Lock()
p.ioclosed = true
p.io.Unlock()
// With ioclosed set, there will be no more rw operations
// working on the channels.
// Tell the runner we won't be bothering it anymore.
p.done <- 1
// Successfully torn down; can disable finalizer.
runtime.SetFinalizer(p, nil)
return nil
p.l.Lock()
defer p.l.Unlock()
p.data = b
p.rwait.Signal()
for {
if p.data == nil {
break
}
if p.rerr != nil {
err = p.rerr
break
}
if p.werr != nil {
err = os.EINVAL
}
p.wwait.Wait()
}
n = len(b) - len(p.data)
p.data = nil // in case of rerr or werr
return
}
func (p *pipeHalf) finalizer() {
p.close(os.EINVAL)
func (p *pipe) rclose(err os.Error) {
if err == nil {
err = os.EPIPE
}
p.l.Lock()
defer p.l.Unlock()
p.rerr = err
p.rwait.Signal()
p.wwait.Signal()
}
func (p *pipe) wclose(err os.Error) {
if err == nil {
err = os.EOF
}
p.l.Lock()
defer p.l.Unlock()
p.werr = err
p.rwait.Signal()
p.wwait.Signal()
}
// A PipeReader is the read half of a pipe.
type PipeReader struct {
pipeHalf
p *pipe
}
// Read implements the standard Read interface:
// it reads data from the pipe, blocking until a writer
// arrives or the write end is closed.
// If the write end is closed with an error, that error is
// returned as err; otherwise err is nil.
// returned as err; otherwise err is os.EOF.
func (r *PipeReader) Read(data []byte) (n int, err os.Error) {
return r.rw(data)
return r.p.read(data)
}
// Close closes the reader; subsequent writes to the
@ -231,15 +136,13 @@ func (r *PipeReader) Close() os.Error {
// CloseWithError closes the reader; subsequent writes
// to the write half of the pipe will return the error err.
func (r *PipeReader) CloseWithError(err os.Error) os.Error {
if err == nil {
err = os.EPIPE
}
return r.close(err)
r.p.rclose(err)
return nil
}
// A PipeWriter is the write half of a pipe.
type PipeWriter struct {
pipeHalf
p *pipe
}
// Write implements the standard Write interface:
@ -248,7 +151,7 @@ type PipeWriter struct {
// If the read end is closed with an error, that err is
// returned as err; otherwise err is os.EPIPE.
func (w *PipeWriter) Write(data []byte) (n int, err os.Error) {
return w.rw(data)
return w.p.write(data)
}
// Close closes the writer; subsequent reads from the
@ -260,10 +163,8 @@ func (w *PipeWriter) Close() os.Error {
// CloseWithError closes the writer; subsequent reads from the
// read half of the pipe will return no bytes and the error err.
func (w *PipeWriter) CloseWithError(err os.Error) os.Error {
if err == nil {
err = os.EOF
}
return w.close(err)
w.p.wclose(err)
return nil
}
// Pipe creates a synchronous in-memory pipe.
@ -272,34 +173,10 @@ func (w *PipeWriter) CloseWithError(err os.Error) os.Error {
// Reads on one end are matched with writes on the other,
// copying data directly between the two; there is no internal buffering.
func Pipe() (*PipeReader, *PipeWriter) {
p := &pipe{
r1: make(chan []byte),
r2: make(chan pipeResult),
w1: make(chan []byte),
w2: make(chan pipeResult),
rclose: make(chan os.Error),
wclose: make(chan os.Error),
done: make(chan int),
}
go p.run()
// NOTE: Cannot use composite literal here:
// pipeHalf{c1: p.cr1, c2: p.cr2, cclose: p.crclose, cdone: p.cdone}
// because this implicitly copies the pipeHalf, which copies the inner mutex.
r := new(PipeReader)
r.c1 = p.r1
r.c2 = p.r2
r.cclose = p.rclose
r.done = p.done
runtime.SetFinalizer(r, (*PipeReader).finalizer)
w := new(PipeWriter)
w.c1 = p.w1
w.c2 = p.w2
w.cclose = p.wclose
w.done = p.done
runtime.SetFinalizer(w, (*PipeWriter).finalizer)
p := new(pipe)
p.rwait.L = &p.l
p.wwait.L = &p.l
r := &PipeReader{p}
w := &PipeWriter{p}
return r, w
}