1
0
mirror of https://github.com/golang/go synced 2024-11-21 13:24:40 -07:00

crypto/openpgp: add package

R=bradfitzgo
CC=golang-dev
https://golang.org/cl/3989052
This commit is contained in:
Adam Langley 2011-02-24 20:19:53 -05:00
parent 27ccb41c4a
commit 6ca009f58d
11 changed files with 1187 additions and 3 deletions

View File

@ -42,6 +42,11 @@ DIRS=\
crypto/md4\
crypto/md5\
crypto/ocsp\
crypto/openpgp\
crypto/openpgp/armor\
crypto/openpgp/error\
crypto/openpgp/packet\
crypto/openpgp/s2k\
crypto/rand\
crypto/rc4\
crypto/ripemd160\
@ -158,6 +163,7 @@ endif
NOTEST=\
crypto\
crypto/openpgp/error\
debug/proc\
exp/draw/x11\
go/ast\

View File

@ -0,0 +1,14 @@
# Copyright 2011 The Go Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
include ../../../Make.inc
TARG=crypto/openpgp
GOFILES=\
canonical_text.go\
keys.go\
read.go\
write.go\
include ../../../Make.pkg

View File

@ -0,0 +1,58 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import (
"hash"
"os"
)
// NewCanonicalTextHash reformats text written to it into the canonical
// form and then applies the hash h. See RFC 4880, section 5.2.1.
func NewCanonicalTextHash(h hash.Hash) hash.Hash {
return &canonicalTextHash{h, 0}
}
type canonicalTextHash struct {
h hash.Hash
s int
}
var newline = []byte{'\r', '\n'}
func (cth *canonicalTextHash) Write(buf []byte) (int, os.Error) {
start := 0
for i, c := range buf {
switch cth.s {
case 0:
if c == '\r' {
cth.s = 1
} else if c == '\n' {
cth.h.Write(buf[start:i])
cth.h.Write(newline)
start = i + 1
}
case 1:
cth.s = 0
}
}
cth.h.Write(buf[start:])
return len(buf), nil
}
func (cth *canonicalTextHash) Sum() []byte {
return cth.h.Sum()
}
func (cth *canonicalTextHash) Reset() {
cth.h.Reset()
cth.s = 0
}
func (cth *canonicalTextHash) Size() int {
return cth.h.Size()
}

View File

@ -0,0 +1,50 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import (
"bytes"
"os"
"testing"
)
type recordingHash struct {
buf *bytes.Buffer
}
func (r recordingHash) Write(b []byte) (n int, err os.Error) {
return r.buf.Write(b)
}
func (r recordingHash) Sum() []byte {
return r.buf.Bytes()
}
func (r recordingHash) Reset() {
panic("shouldn't be called")
}
func (r recordingHash) Size() int {
panic("shouldn't be called")
}
func testCanonicalText(t *testing.T, input, expected string) {
r := recordingHash{bytes.NewBuffer(nil)}
c := NewCanonicalTextHash(r)
c.Write([]byte(input))
result := c.Sum()
if expected != string(result) {
t.Errorf("input: %x got: %x want: %x", input, result, expected)
}
}
func TestCanonicalText(t *testing.T) {
testCanonicalText(t, "foo\n", "foo\r\n")
testCanonicalText(t, "foo", "foo")
testCanonicalText(t, "foo\r\n", "foo\r\n")
testCanonicalText(t, "foo\r\nbar", "foo\r\nbar")
testCanonicalText(t, "foo\r\nbar\n\n", "foo\r\nbar\r\n\r\n")
}

View File

@ -0,0 +1,280 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import (
"crypto/openpgp/error"
"crypto/openpgp/packet"
"io"
"os"
)
// PublicKeyType is the armor type for a PGP public key.
var PublicKeyType = "PGP PUBLIC KEY BLOCK"
// An Entity represents the components of an OpenPGP key: a primary public key
// (which must be a signing key), one or more identities claimed by that key,
// and zero or more subkeys, which may be encryption keys.
type Entity struct {
PrimaryKey *packet.PublicKey
PrivateKey *packet.PrivateKey
Identities map[string]*Identity // indexed by Identity.Name
Subkeys []Subkey
}
// An Identity represents an identity claimed by an Entity and zero or more
// assertions by other entities about that claim.
type Identity struct {
Name string // by convention, has the form "Full Name (comment) <email@example.com>"
UserId *packet.UserId
SelfSignature *packet.Signature
Signatures []*packet.Signature
}
// A Subkey is an additional public key in an Entity. Subkeys can be used for
// encryption.
type Subkey struct {
PublicKey *packet.PublicKey
PrivateKey *packet.PrivateKey
Sig *packet.Signature
}
// A Key identifies a specific public key in an Entity. This is either the
// Entity's primary key or a subkey.
type Key struct {
Entity *Entity
PublicKey *packet.PublicKey
PrivateKey *packet.PrivateKey
SelfSignature *packet.Signature
}
// A KeyRing provides access to public and private keys.
type KeyRing interface {
// KeysById returns the set of keys that have the given key id.
KeysById(id uint64) []Key
// DecryptionKeys returns all private keys that are valid for
// decryption.
DecryptionKeys() []Key
}
// An EntityList contains one or more Entities.
type EntityList []*Entity
// KeysById returns the set of keys that have the given key id.
func (el EntityList) KeysById(id uint64) (keys []Key) {
for _, e := range el {
if e.PrimaryKey.KeyId == id {
var selfSig *packet.Signature
for _, ident := range e.Identities {
if selfSig == nil {
selfSig = ident.SelfSignature
} else if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId {
selfSig = ident.SelfSignature
break
}
}
keys = append(keys, Key{e, e.PrimaryKey, e.PrivateKey, selfSig})
}
for _, subKey := range e.Subkeys {
if subKey.PublicKey.KeyId == id {
keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig})
}
}
}
return
}
// DecryptionKeys returns all private keys that are valid for decryption.
func (el EntityList) DecryptionKeys() (keys []Key) {
for _, e := range el {
for _, subKey := range e.Subkeys {
if subKey.PrivateKey != nil && (!subKey.Sig.FlagsValid || subKey.Sig.FlagEncryptStorage || subKey.Sig.FlagEncryptCommunications) {
keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig})
}
}
}
return
}
// ReadArmoredKeyRing reads one or more public/private keys from an armor keyring file.
func ReadArmoredKeyRing(r io.Reader) (EntityList, os.Error) {
body, err := readArmored(r, PublicKeyType)
if err != nil {
return nil, err
}
return ReadKeyRing(body)
}
// ReadKeyRing reads one or more public/private keys, ignoring unsupported keys.
func ReadKeyRing(r io.Reader) (el EntityList, err os.Error) {
packets := packet.NewReader(r)
for {
var e *Entity
e, err = readEntity(packets)
if err != nil {
if _, ok := err.(error.UnsupportedError); ok {
err = readToNextPublicKey(packets)
}
if err == os.EOF {
err = nil
return
}
if err != nil {
el = nil
return
}
} else {
el = append(el, e)
}
}
return
}
// readToNextPublicKey reads packets until the start of the entity and leaves
// the first packet of the new entity in the Reader.
func readToNextPublicKey(packets *packet.Reader) (err os.Error) {
var p packet.Packet
for {
p, err = packets.Next()
if err == os.EOF {
return
} else if err != nil {
if _, ok := err.(error.UnsupportedError); ok {
err = nil
continue
}
return
}
if pk, ok := p.(*packet.PublicKey); ok && !pk.IsSubkey {
packets.Unread(p)
return
}
}
panic("unreachable")
}
// readEntity reads an entity (public key, identities, subkeys etc) from the
// given Reader.
func readEntity(packets *packet.Reader) (*Entity, os.Error) {
e := new(Entity)
e.Identities = make(map[string]*Identity)
p, err := packets.Next()
if err != nil {
return nil, err
}
var ok bool
if e.PrimaryKey, ok = p.(*packet.PublicKey); !ok {
if e.PrivateKey, ok = p.(*packet.PrivateKey); !ok {
packets.Unread(p)
return nil, error.StructuralError("first packet was not a public/private key")
} else {
e.PrimaryKey = &e.PrivateKey.PublicKey
}
}
var current *Identity
EachPacket:
for {
p, err := packets.Next()
if err == os.EOF {
break
} else if err != nil {
return nil, err
}
switch pkt := p.(type) {
case *packet.UserId:
current = new(Identity)
current.Name = pkt.Id
current.UserId = pkt
e.Identities[pkt.Id] = current
p, err = packets.Next()
if err == os.EOF {
err = io.ErrUnexpectedEOF
}
if err != nil {
if _, ok := err.(error.UnsupportedError); ok {
return nil, err
}
return nil, error.StructuralError("identity self-signature invalid: " + err.String())
}
current.SelfSignature, ok = p.(*packet.Signature)
if !ok {
return nil, error.StructuralError("user ID packet not followed by self signature")
}
if current.SelfSignature.SigType != packet.SigTypePositiveCert {
return nil, error.StructuralError("user ID self-signature with wrong type")
}
if err = e.PrimaryKey.VerifyUserIdSignature(pkt.Id, current.SelfSignature); err != nil {
return nil, error.StructuralError("user ID self-signature invalid: " + err.String())
}
case *packet.Signature:
if current == nil {
return nil, error.StructuralError("signature packet found before user id packet")
}
current.Signatures = append(current.Signatures, pkt)
case *packet.PrivateKey:
if pkt.IsSubkey == false {
packets.Unread(p)
break EachPacket
}
err = addSubkey(e, packets, &pkt.PublicKey, pkt)
if err != nil {
return nil, err
}
case *packet.PublicKey:
if pkt.IsSubkey == false {
packets.Unread(p)
break EachPacket
}
err = addSubkey(e, packets, pkt, nil)
if err != nil {
return nil, err
}
default:
// we ignore unknown packets
}
}
if len(e.Identities) == 0 {
return nil, error.StructuralError("entity without any identities")
}
return e, nil
}
func addSubkey(e *Entity, packets *packet.Reader, pub *packet.PublicKey, priv *packet.PrivateKey) os.Error {
var subKey Subkey
subKey.PublicKey = pub
subKey.PrivateKey = priv
p, err := packets.Next()
if err == os.EOF {
return io.ErrUnexpectedEOF
}
if err != nil {
return error.StructuralError("subkey signature invalid: " + err.String())
}
var ok bool
subKey.Sig, ok = p.(*packet.Signature)
if !ok {
return error.StructuralError("subkey packet not followed by signature")
}
if subKey.Sig.SigType != packet.SigTypeSubkeyBinding {
return error.StructuralError("subkey signature with wrong type")
}
err = e.PrimaryKey.VerifyKeySignature(subKey.PublicKey, subKey.Sig)
if err != nil {
return error.StructuralError("subkey signature invalid: " + err.String())
}
e.Subkeys = append(e.Subkeys, subKey)
return nil
}

View File

@ -261,13 +261,13 @@ func Read(r io.Reader) (p Packet, err os.Error) {
case packetTypePrivateKey, packetTypePrivateSubkey:
pk := new(PrivateKey)
if tag == packetTypePrivateSubkey {
pk.IsSubKey = true
pk.IsSubkey = true
}
p = pk
case packetTypePublicKey, packetTypePublicSubkey:
pk := new(PublicKey)
if tag == packetTypePublicSubkey {
pk.IsSubKey = true
pk.IsSubkey = true
}
p = pk
case packetTypeCompressed:

View File

@ -23,7 +23,7 @@ type PublicKey struct {
PublicKey interface{} // Either a *rsa.PublicKey or *dsa.PublicKey
Fingerprint [20]byte
KeyId uint64
IsSubKey bool
IsSubkey bool
n, e, p, q, g, y parsedMPI
}

View File

@ -0,0 +1,413 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This openpgp package implements high level operations on OpenPGP messages.
package openpgp
import (
"crypto"
"crypto/openpgp/armor"
"crypto/openpgp/error"
"crypto/openpgp/packet"
"crypto/rsa"
_ "crypto/sha256"
"hash"
"io"
"os"
"strconv"
)
// SignatureType is the armor type for a PGP signature.
var SignatureType = "PGP SIGNATURE"
// readArmored reads an armored block with the given type.
func readArmored(r io.Reader, expectedType string) (body io.Reader, err os.Error) {
block, err := armor.Decode(r)
if err != nil {
return
}
if block.Type != expectedType {
return nil, error.InvalidArgumentError("expected '" + expectedType + "', got: " + block.Type)
}
return block.Body, nil
}
// MessageDetails contains the result of parsing an OpenPGP encrypted and/or
// signed message.
type MessageDetails struct {
IsEncrypted bool // true if the message was encrypted.
EncryptedToKeyIds []uint64 // the list of recipient key ids.
IsSymmetricallyEncrypted bool // true if a passphrase could have decrypted the message.
DecryptedWith Key // the private key used to decrypt the message, if any.
IsSigned bool // true if the message is signed.
SignedByKeyId uint64 // the key id of the signer, if any.
SignedBy *Key // the key of the signer, if availible.
LiteralData *packet.LiteralData // the metadata of the contents
UnverifiedBody io.Reader // the contents of the message.
// If IsSigned is true and SignedBy is non-zero then the signature will
// be verified as UnverifiedBody is read. The signature cannot be
// checked until the whole of UnverifiedBody is read so UnverifiedBody
// must be consumed until EOF before the data can trusted. Even if a
// message isn't signed (or the signer is unknown) the data may contain
// an authentication code that is only checked once UnverifiedBody has
// been consumed. Once EOF has been seen, the following fields are
// valid. (An authentication code failure is reported as a
// SignatureError error when reading from UnverifiedBody.)
SignatureError os.Error // nil if the signature is good.
Signature *packet.Signature // the signature packet itself.
decrypted io.ReadCloser
}
// A PromptFunction is used as a callback by functions that may need to decrypt
// a private key, or prompt for a passphrase. It is called with a list of
// acceptable, encrypted private keys and a boolean that indicates whether a
// passphrase is usable. It should either decrypt a private key or return a
// passphrase to try. If the decrypted private key or given passphrase isn't
// correct, the function will be called again, forever. Any error returned will
// be passed up.
type PromptFunction func(keys []Key, symmetric bool) ([]byte, os.Error)
// A keyEnvelopePair is used to store a private key with the envelope that
// contains a symmetric key, encrypted with that key.
type keyEnvelopePair struct {
key Key
encryptedKey *packet.EncryptedKey
}
// ReadMessage parses an OpenPGP message that may be signed and/or encrypted.
// The given KeyRing should contain both public keys (for signature
// verification) and, possibly encrypted, private keys for decrypting.
func ReadMessage(r io.Reader, keyring KeyRing, prompt PromptFunction) (md *MessageDetails, err os.Error) {
var p packet.Packet
var symKeys []*packet.SymmetricKeyEncrypted
var pubKeys []keyEnvelopePair
var se *packet.SymmetricallyEncrypted
packets := packet.NewReader(r)
md = new(MessageDetails)
md.IsEncrypted = true
// The message, if encrypted, starts with a number of packets
// containing an encrypted decryption key. The decryption key is either
// encrypted to a public key, or with a passphrase. This loop
// collects these packets.
ParsePackets:
for {
p, err = packets.Next()
if err != nil {
return nil, err
}
switch p := p.(type) {
case *packet.SymmetricKeyEncrypted:
// This packet contains the decryption key encrypted with a passphrase.
md.IsSymmetricallyEncrypted = true
symKeys = append(symKeys, p)
case *packet.EncryptedKey:
// This packet contains the decryption key encrypted to a public key.
md.EncryptedToKeyIds = append(md.EncryptedToKeyIds, p.KeyId)
if p.Algo != packet.PubKeyAlgoRSA && p.Algo != packet.PubKeyAlgoRSAEncryptOnly {
continue
}
var keys []Key
if p.KeyId == 0 {
keys = keyring.DecryptionKeys()
} else {
keys = keyring.KeysById(p.KeyId)
}
for _, k := range keys {
pubKeys = append(pubKeys, keyEnvelopePair{k, p})
}
case *packet.SymmetricallyEncrypted:
se = p
break ParsePackets
case *packet.Compressed, *packet.LiteralData, *packet.OnePassSignature:
// This message isn't encrypted.
if len(symKeys) != 0 || len(pubKeys) != 0 {
return nil, error.StructuralError("key material not followed by encrypted message")
}
packets.Unread(p)
return readSignedMessage(packets, nil, keyring)
}
}
var candidates []Key
var decrypted io.ReadCloser
// Now that we have the list of encrypted keys we need to decrypt at
// least one of them or, if we cannot, we need to call the prompt
// function so that it can decrypt a key or give us a passphrase.
FindKey:
for {
// See if any of the keys already have a private key availible
candidates = candidates[:0]
candidateFingerprints := make(map[string]bool)
for _, pk := range pubKeys {
if pk.key.PrivateKey == nil {
continue
}
if !pk.key.PrivateKey.Encrypted {
if len(pk.encryptedKey.Key) == 0 {
pk.encryptedKey.DecryptRSA(pk.key.PrivateKey.PrivateKey.(*rsa.PrivateKey))
}
if len(pk.encryptedKey.Key) == 0 {
continue
}
decrypted, err = se.Decrypt(pk.encryptedKey.CipherFunc, pk.encryptedKey.Key)
if err != nil && err != error.KeyIncorrectError {
return nil, err
}
if decrypted != nil {
md.DecryptedWith = pk.key
break FindKey
}
} else {
fpr := string(pk.key.PublicKey.Fingerprint[:])
if v := candidateFingerprints[fpr]; v {
continue
}
candidates = append(candidates, pk.key)
candidateFingerprints[fpr] = true
}
}
if len(candidates) == 0 && len(symKeys) == 0 {
return nil, error.KeyIncorrectError
}
if prompt == nil {
return nil, error.KeyIncorrectError
}
passphrase, err := prompt(candidates, len(symKeys) != 0)
if err != nil {
return nil, err
}
// Try the symmetric passphrase first
if len(symKeys) != 0 && passphrase != nil {
for _, s := range symKeys {
err = s.Decrypt(passphrase)
if err == nil && !s.Encrypted {
decrypted, err = se.Decrypt(s.CipherFunc, s.Key)
if err != nil && err != error.KeyIncorrectError {
return nil, err
}
if decrypted != nil {
break FindKey
}
}
}
}
}
md.decrypted = decrypted
packets.Push(decrypted)
return readSignedMessage(packets, md, keyring)
}
// readSignedMessage reads a possibily signed message if mdin is non-zero then
// that structure is updated and returned. Otherwise a fresh MessageDetails is
// used.
func readSignedMessage(packets *packet.Reader, mdin *MessageDetails, keyring KeyRing) (md *MessageDetails, err os.Error) {
if mdin == nil {
mdin = new(MessageDetails)
}
md = mdin
var p packet.Packet
var h hash.Hash
var wrappedHash hash.Hash
FindLiteralData:
for {
p, err = packets.Next()
if err != nil {
return nil, err
}
switch p := p.(type) {
case *packet.Compressed:
packets.Push(p.Body)
case *packet.OnePassSignature:
if !p.IsLast {
return nil, error.UnsupportedError("nested signatures")
}
h, wrappedHash, err = hashForSignature(p.Hash, p.SigType)
if err != nil {
md = nil
return
}
md.IsSigned = true
md.SignedByKeyId = p.KeyId
keys := keyring.KeysById(p.KeyId)
for _, key := range keys {
if key.SelfSignature.FlagsValid && !key.SelfSignature.FlagSign {
continue
}
md.SignedBy = &key
}
case *packet.LiteralData:
md.LiteralData = p
break FindLiteralData
}
}
if md.SignedBy != nil {
md.UnverifiedBody = &signatureCheckReader{packets, h, wrappedHash, md}
} else if md.decrypted != nil {
md.UnverifiedBody = checkReader{md}
} else {
md.UnverifiedBody = md.LiteralData.Body
}
return md, nil
}
// hashForSignature returns a pair of hashes that can be used to verify a
// signature. The signature may specify that the contents of the signed message
// should be preprocessed (i.e. to normalise line endings). Thus this function
// returns two hashes. The second should be used to hash the message itself and
// performs any needed preprocessing.
func hashForSignature(hashId crypto.Hash, sigType packet.SignatureType) (hash.Hash, hash.Hash, os.Error) {
h := hashId.New()
if h == nil {
return nil, nil, error.UnsupportedError("hash not availible: " + strconv.Itoa(int(hashId)))
}
switch sigType {
case packet.SigTypeBinary:
return h, h, nil
case packet.SigTypeText:
return h, NewCanonicalTextHash(h), nil
}
return nil, nil, error.UnsupportedError("unsupported signature type: " + strconv.Itoa(int(sigType)))
}
// checkReader wraps an io.Reader from a LiteralData packet. When it sees EOF
// it closes the ReadCloser from any SymmetricallyEncrypted packet to trigger
// MDC checks.
type checkReader struct {
md *MessageDetails
}
func (cr checkReader) Read(buf []byte) (n int, err os.Error) {
n, err = cr.md.LiteralData.Body.Read(buf)
if err == os.EOF {
mdcErr := cr.md.decrypted.Close()
if mdcErr != nil {
err = mdcErr
}
}
return
}
// signatureCheckReader wraps an io.Reader from a LiteralData packet and hashes
// the data as it is read. When it sees an EOF from the underlying io.Reader
// it parses and checks a trailing Signature packet and triggers any MDC checks.
type signatureCheckReader struct {
packets *packet.Reader
h, wrappedHash hash.Hash
md *MessageDetails
}
func (scr *signatureCheckReader) Read(buf []byte) (n int, err os.Error) {
n, err = scr.md.LiteralData.Body.Read(buf)
scr.wrappedHash.Write(buf[:n])
if err == os.EOF {
var p packet.Packet
p, scr.md.SignatureError = scr.packets.Next()
if scr.md.SignatureError != nil {
return
}
var ok bool
if scr.md.Signature, ok = p.(*packet.Signature); !ok {
scr.md.SignatureError = error.StructuralError("LiteralData not followed by Signature")
return
}
scr.md.SignatureError = scr.md.SignedBy.PublicKey.VerifySignature(scr.h, scr.md.Signature)
// The SymmetricallyEncrypted packet, if any, might have an
// unsigned hash of its own. In order to check this we need to
// close that Reader.
if scr.md.decrypted != nil {
mdcErr := scr.md.decrypted.Close()
if mdcErr != nil {
err = mdcErr
}
}
}
return
}
// CheckDetachedSignature takes a signed file and a detached signature and
// returns the signer if the signature is valid. If the signer isn't know,
// UnknownIssuerError is returned.
func CheckDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, err os.Error) {
p, err := packet.Read(signature)
if err != nil {
return
}
sig, ok := p.(*packet.Signature)
if !ok {
return nil, error.StructuralError("non signature packet found")
}
if sig.IssuerKeyId == nil {
return nil, error.StructuralError("signature doesn't have an issuer")
}
keys := keyring.KeysById(*sig.IssuerKeyId)
if len(keys) == 0 {
return nil, error.UnknownIssuerError
}
h, wrappedHash, err := hashForSignature(sig.Hash, sig.SigType)
if err != nil {
return
}
_, err = io.Copy(wrappedHash, signed)
if err != nil && err != os.EOF {
return
}
for _, key := range keys {
if key.SelfSignature.FlagsValid && !key.SelfSignature.FlagSign {
continue
}
err = key.PublicKey.VerifySignature(h, sig)
if err == nil {
return key.Entity, nil
}
}
if err != nil {
return
}
return nil, error.UnknownIssuerError
}
// CheckArmoredDetachedSignature performs the same actions as
// CheckDetachedSignature but expects the signature to be armored.
func CheckArmoredDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, err os.Error) {
body, err := readArmored(signature, SignatureType)
if err != nil {
return
}
return CheckDetachedSignature(keyring, signed, body)
}

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,92 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import (
"crypto"
"crypto/openpgp/armor"
"crypto/openpgp/error"
"crypto/openpgp/packet"
"crypto/rsa"
_ "crypto/sha256"
"io"
"os"
"strconv"
"time"
)
// DetachSign signs message with the private key from signer (which must
// already have been decrypted) and writes the signature to w.
func DetachSign(w io.Writer, signer *Entity, message io.Reader) os.Error {
return detachSign(w, signer, message, packet.SigTypeBinary)
}
// ArmoredDetachSign signs message with the private key from signer (which
// must already have been decrypted) and writes an armored signature to w.
func ArmoredDetachSign(w io.Writer, signer *Entity, message io.Reader) (err os.Error) {
return armoredDetachSign(w, signer, message, packet.SigTypeBinary)
}
// DetachSignText signs message (after canonicalising the line endings) with
// the private key from signer (which must already have been decrypted) and
// writes the signature to w.
func DetachSignText(w io.Writer, signer *Entity, message io.Reader) os.Error {
return detachSign(w, signer, message, packet.SigTypeText)
}
// ArmoredDetachSignText signs message (after canonicalising the line endings)
// with the private key from signer (which must already have been decrypted)
// and writes an armored signature to w.
func SignTextDetachedArmored(w io.Writer, signer *Entity, message io.Reader) os.Error {
return armoredDetachSign(w, signer, message, packet.SigTypeText)
}
func armoredDetachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType) (err os.Error) {
out, err := armor.Encode(w, SignatureType, nil)
if err != nil {
return
}
err = detachSign(out, signer, message, sigType)
if err != nil {
return
}
return out.Close()
}
func detachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType) (err os.Error) {
if signer.PrivateKey == nil {
return error.InvalidArgumentError("signing key doesn't have a private key")
}
if signer.PrivateKey.Encrypted {
return error.InvalidArgumentError("signing key is encrypted")
}
sig := new(packet.Signature)
sig.SigType = sigType
sig.PubKeyAlgo = signer.PrivateKey.PubKeyAlgo
sig.Hash = crypto.SHA256
sig.CreationTime = uint32(time.Seconds())
sig.IssuerKeyId = &signer.PrivateKey.KeyId
h, wrappedHash, err := hashForSignature(sig.Hash, sig.SigType)
if err != nil {
return
}
io.Copy(wrappedHash, message)
switch signer.PrivateKey.PubKeyAlgo {
case packet.PubKeyAlgoRSA, packet.PubKeyAlgoRSASignOnly:
priv := signer.PrivateKey.PrivateKey.(*rsa.PrivateKey)
err = sig.SignRSA(h, priv)
default:
err = error.UnsupportedError("public key algorithm: " + strconv.Itoa(int(sig.PubKeyAlgo)))
}
if err != nil {
return
}
return sig.Serialize(w)
}

View File

@ -0,0 +1,34 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import (
"bytes"
"testing"
)
func TestSignDetached(t *testing.T) {
kring, _ := ReadKeyRing(readerFromHex(testKeys1And2PrivateHex))
out := bytes.NewBuffer(nil)
message := bytes.NewBufferString(signedInput)
err := DetachSign(out, kring[0], message)
if err != nil {
t.Error(err)
}
testDetachedSignature(t, kring, out, signedInput, "check")
}
func TestSignTextDetached(t *testing.T) {
kring, _ := ReadKeyRing(readerFromHex(testKeys1And2PrivateHex))
out := bytes.NewBuffer(nil)
message := bytes.NewBufferString(signedInput)
err := DetachSignText(out, kring[0], message)
if err != nil {
t.Error(err)
}
testDetachedSignature(t, kring, out, signedInput, "check")
}