mirror of
https://github.com/golang/go
synced 2024-11-16 20:04:52 -07:00
crypto/elliptic: refactor package structure
Not quite golang.org/wiki/TargetSpecific compliant, but almost. The only substantial code change is in randFieldElement: it used to use Params().BitSize instead of Params().N.BitLen(), which is semantically incorrect, even if the two values are the same for all named curves. For #52182 Change-Id: Ibc47450552afe23ea74fcf55d1d799d5d7e5487c Reviewed-on: https://go-review.googlesource.com/c/go/+/315273 Run-TryBot: Filippo Valsorda <filippo@golang.org> Reviewed-by: Than McIntosh <thanm@google.com> Reviewed-by: Roland Shoemaker <roland@golang.org> TryBot-Result: Gopher Robot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
This commit is contained in:
parent
24b570354c
commit
6796a7924c
@ -128,7 +128,7 @@ func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error)
|
|||||||
params := c.Params()
|
params := c.Params()
|
||||||
// Note that for P-521 this will actually be 63 bits more than the order, as
|
// Note that for P-521 this will actually be 63 bits more than the order, as
|
||||||
// division rounds down, but the extra bit is inconsequential.
|
// division rounds down, but the extra bit is inconsequential.
|
||||||
b := make([]byte, params.BitSize/8+8) // TODO: use params.N.BitLen()
|
b := make([]byte, params.N.BitLen()/8+8)
|
||||||
_, err = io.ReadFull(rand, b)
|
_, err = io.ReadFull(rand, b)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return
|
return
|
||||||
@ -228,13 +228,13 @@ func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err err
|
|||||||
|
|
||||||
// Create a CSPRNG that xors a stream of zeros with
|
// Create a CSPRNG that xors a stream of zeros with
|
||||||
// the output of the AES-CTR instance.
|
// the output of the AES-CTR instance.
|
||||||
csprng := cipher.StreamReader{
|
csprng := &cipher.StreamReader{
|
||||||
R: zeroReader,
|
R: zeroReader,
|
||||||
S: cipher.NewCTR(block, []byte(aesIV)),
|
S: cipher.NewCTR(block, []byte(aesIV)),
|
||||||
}
|
}
|
||||||
|
|
||||||
c := priv.PublicKey.Curve
|
c := priv.PublicKey.Curve
|
||||||
return sign(priv, &csprng, c, hash)
|
return sign(priv, csprng, c, hash)
|
||||||
}
|
}
|
||||||
|
|
||||||
func signGeneric(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) {
|
func signGeneric(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) {
|
||||||
@ -353,16 +353,14 @@ func VerifyASN1(pub *PublicKey, hash, sig []byte) bool {
|
|||||||
return Verify(pub, hash, r, s)
|
return Verify(pub, hash, r, s)
|
||||||
}
|
}
|
||||||
|
|
||||||
type zr struct {
|
type zr struct{}
|
||||||
io.Reader
|
|
||||||
}
|
|
||||||
|
|
||||||
// Read replaces the contents of dst with zeros.
|
// Read replaces the contents of dst with zeros. It is safe for concurrent use.
|
||||||
func (z *zr) Read(dst []byte) (n int, err error) {
|
func (zr) Read(dst []byte) (n int, err error) {
|
||||||
for i := range dst {
|
for i := range dst {
|
||||||
dst[i] = 0
|
dst[i] = 0
|
||||||
}
|
}
|
||||||
return len(dst), nil
|
return len(dst), nil
|
||||||
}
|
}
|
||||||
|
|
||||||
var zeroReader = &zr{}
|
var zeroReader = zr{}
|
||||||
|
@ -36,295 +36,6 @@ type Curve interface {
|
|||||||
ScalarBaseMult(k []byte) (x, y *big.Int)
|
ScalarBaseMult(k []byte) (x, y *big.Int)
|
||||||
}
|
}
|
||||||
|
|
||||||
func matchesSpecificCurve(params *CurveParams, available ...Curve) (Curve, bool) {
|
|
||||||
for _, c := range available {
|
|
||||||
if params == c.Params() {
|
|
||||||
return c, true
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return nil, false
|
|
||||||
}
|
|
||||||
|
|
||||||
// CurveParams contains the parameters of an elliptic curve and also provides
|
|
||||||
// a generic, non-constant time implementation of Curve.
|
|
||||||
type CurveParams struct {
|
|
||||||
P *big.Int // the order of the underlying field
|
|
||||||
N *big.Int // the order of the base point
|
|
||||||
B *big.Int // the constant of the curve equation
|
|
||||||
Gx, Gy *big.Int // (x,y) of the base point
|
|
||||||
BitSize int // the size of the underlying field
|
|
||||||
Name string // the canonical name of the curve
|
|
||||||
}
|
|
||||||
|
|
||||||
func (curve *CurveParams) Params() *CurveParams {
|
|
||||||
return curve
|
|
||||||
}
|
|
||||||
|
|
||||||
// CurveParams operates, internally, on Jacobian coordinates. For a given
|
|
||||||
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
|
|
||||||
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
|
|
||||||
// calculation can be performed within the transform (as in ScalarMult and
|
|
||||||
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
|
|
||||||
// reverse the transform than to operate in affine coordinates.
|
|
||||||
|
|
||||||
// polynomial returns x³ - 3x + b.
|
|
||||||
func (curve *CurveParams) polynomial(x *big.Int) *big.Int {
|
|
||||||
x3 := new(big.Int).Mul(x, x)
|
|
||||||
x3.Mul(x3, x)
|
|
||||||
|
|
||||||
threeX := new(big.Int).Lsh(x, 1)
|
|
||||||
threeX.Add(threeX, x)
|
|
||||||
|
|
||||||
x3.Sub(x3, threeX)
|
|
||||||
x3.Add(x3, curve.B)
|
|
||||||
x3.Mod(x3, curve.P)
|
|
||||||
|
|
||||||
return x3
|
|
||||||
}
|
|
||||||
|
|
||||||
func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
|
|
||||||
// If there is a dedicated constant-time implementation for this curve operation,
|
|
||||||
// use that instead of the generic one.
|
|
||||||
if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok {
|
|
||||||
return specific.IsOnCurve(x, y)
|
|
||||||
}
|
|
||||||
|
|
||||||
if x.Sign() < 0 || x.Cmp(curve.P) >= 0 ||
|
|
||||||
y.Sign() < 0 || y.Cmp(curve.P) >= 0 {
|
|
||||||
return false
|
|
||||||
}
|
|
||||||
|
|
||||||
// y² = x³ - 3x + b
|
|
||||||
y2 := new(big.Int).Mul(y, y)
|
|
||||||
y2.Mod(y2, curve.P)
|
|
||||||
|
|
||||||
return curve.polynomial(x).Cmp(y2) == 0
|
|
||||||
}
|
|
||||||
|
|
||||||
// zForAffine returns a Jacobian Z value for the affine point (x, y). If x and
|
|
||||||
// y are zero, it assumes that they represent the point at infinity because (0,
|
|
||||||
// 0) is not on the any of the curves handled here.
|
|
||||||
func zForAffine(x, y *big.Int) *big.Int {
|
|
||||||
z := new(big.Int)
|
|
||||||
if x.Sign() != 0 || y.Sign() != 0 {
|
|
||||||
z.SetInt64(1)
|
|
||||||
}
|
|
||||||
return z
|
|
||||||
}
|
|
||||||
|
|
||||||
// affineFromJacobian reverses the Jacobian transform. See the comment at the
|
|
||||||
// top of the file. If the point is ∞ it returns 0, 0.
|
|
||||||
func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
|
|
||||||
if z.Sign() == 0 {
|
|
||||||
return new(big.Int), new(big.Int)
|
|
||||||
}
|
|
||||||
|
|
||||||
zinv := new(big.Int).ModInverse(z, curve.P)
|
|
||||||
zinvsq := new(big.Int).Mul(zinv, zinv)
|
|
||||||
|
|
||||||
xOut = new(big.Int).Mul(x, zinvsq)
|
|
||||||
xOut.Mod(xOut, curve.P)
|
|
||||||
zinvsq.Mul(zinvsq, zinv)
|
|
||||||
yOut = new(big.Int).Mul(y, zinvsq)
|
|
||||||
yOut.Mod(yOut, curve.P)
|
|
||||||
return
|
|
||||||
}
|
|
||||||
|
|
||||||
func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
|
|
||||||
// If there is a dedicated constant-time implementation for this curve operation,
|
|
||||||
// use that instead of the generic one.
|
|
||||||
if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok {
|
|
||||||
return specific.Add(x1, y1, x2, y2)
|
|
||||||
}
|
|
||||||
|
|
||||||
z1 := zForAffine(x1, y1)
|
|
||||||
z2 := zForAffine(x2, y2)
|
|
||||||
return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2))
|
|
||||||
}
|
|
||||||
|
|
||||||
// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
|
|
||||||
// (x2, y2, z2) and returns their sum, also in Jacobian form.
|
|
||||||
func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
|
|
||||||
// See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
|
|
||||||
x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int)
|
|
||||||
if z1.Sign() == 0 {
|
|
||||||
x3.Set(x2)
|
|
||||||
y3.Set(y2)
|
|
||||||
z3.Set(z2)
|
|
||||||
return x3, y3, z3
|
|
||||||
}
|
|
||||||
if z2.Sign() == 0 {
|
|
||||||
x3.Set(x1)
|
|
||||||
y3.Set(y1)
|
|
||||||
z3.Set(z1)
|
|
||||||
return x3, y3, z3
|
|
||||||
}
|
|
||||||
|
|
||||||
z1z1 := new(big.Int).Mul(z1, z1)
|
|
||||||
z1z1.Mod(z1z1, curve.P)
|
|
||||||
z2z2 := new(big.Int).Mul(z2, z2)
|
|
||||||
z2z2.Mod(z2z2, curve.P)
|
|
||||||
|
|
||||||
u1 := new(big.Int).Mul(x1, z2z2)
|
|
||||||
u1.Mod(u1, curve.P)
|
|
||||||
u2 := new(big.Int).Mul(x2, z1z1)
|
|
||||||
u2.Mod(u2, curve.P)
|
|
||||||
h := new(big.Int).Sub(u2, u1)
|
|
||||||
xEqual := h.Sign() == 0
|
|
||||||
if h.Sign() == -1 {
|
|
||||||
h.Add(h, curve.P)
|
|
||||||
}
|
|
||||||
i := new(big.Int).Lsh(h, 1)
|
|
||||||
i.Mul(i, i)
|
|
||||||
j := new(big.Int).Mul(h, i)
|
|
||||||
|
|
||||||
s1 := new(big.Int).Mul(y1, z2)
|
|
||||||
s1.Mul(s1, z2z2)
|
|
||||||
s1.Mod(s1, curve.P)
|
|
||||||
s2 := new(big.Int).Mul(y2, z1)
|
|
||||||
s2.Mul(s2, z1z1)
|
|
||||||
s2.Mod(s2, curve.P)
|
|
||||||
r := new(big.Int).Sub(s2, s1)
|
|
||||||
if r.Sign() == -1 {
|
|
||||||
r.Add(r, curve.P)
|
|
||||||
}
|
|
||||||
yEqual := r.Sign() == 0
|
|
||||||
if xEqual && yEqual {
|
|
||||||
return curve.doubleJacobian(x1, y1, z1)
|
|
||||||
}
|
|
||||||
r.Lsh(r, 1)
|
|
||||||
v := new(big.Int).Mul(u1, i)
|
|
||||||
|
|
||||||
x3.Set(r)
|
|
||||||
x3.Mul(x3, x3)
|
|
||||||
x3.Sub(x3, j)
|
|
||||||
x3.Sub(x3, v)
|
|
||||||
x3.Sub(x3, v)
|
|
||||||
x3.Mod(x3, curve.P)
|
|
||||||
|
|
||||||
y3.Set(r)
|
|
||||||
v.Sub(v, x3)
|
|
||||||
y3.Mul(y3, v)
|
|
||||||
s1.Mul(s1, j)
|
|
||||||
s1.Lsh(s1, 1)
|
|
||||||
y3.Sub(y3, s1)
|
|
||||||
y3.Mod(y3, curve.P)
|
|
||||||
|
|
||||||
z3.Add(z1, z2)
|
|
||||||
z3.Mul(z3, z3)
|
|
||||||
z3.Sub(z3, z1z1)
|
|
||||||
z3.Sub(z3, z2z2)
|
|
||||||
z3.Mul(z3, h)
|
|
||||||
z3.Mod(z3, curve.P)
|
|
||||||
|
|
||||||
return x3, y3, z3
|
|
||||||
}
|
|
||||||
|
|
||||||
func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
|
|
||||||
// If there is a dedicated constant-time implementation for this curve operation,
|
|
||||||
// use that instead of the generic one.
|
|
||||||
if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok {
|
|
||||||
return specific.Double(x1, y1)
|
|
||||||
}
|
|
||||||
|
|
||||||
z1 := zForAffine(x1, y1)
|
|
||||||
return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1))
|
|
||||||
}
|
|
||||||
|
|
||||||
// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
|
|
||||||
// returns its double, also in Jacobian form.
|
|
||||||
func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
|
|
||||||
// See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
|
|
||||||
delta := new(big.Int).Mul(z, z)
|
|
||||||
delta.Mod(delta, curve.P)
|
|
||||||
gamma := new(big.Int).Mul(y, y)
|
|
||||||
gamma.Mod(gamma, curve.P)
|
|
||||||
alpha := new(big.Int).Sub(x, delta)
|
|
||||||
if alpha.Sign() == -1 {
|
|
||||||
alpha.Add(alpha, curve.P)
|
|
||||||
}
|
|
||||||
alpha2 := new(big.Int).Add(x, delta)
|
|
||||||
alpha.Mul(alpha, alpha2)
|
|
||||||
alpha2.Set(alpha)
|
|
||||||
alpha.Lsh(alpha, 1)
|
|
||||||
alpha.Add(alpha, alpha2)
|
|
||||||
|
|
||||||
beta := alpha2.Mul(x, gamma)
|
|
||||||
|
|
||||||
x3 := new(big.Int).Mul(alpha, alpha)
|
|
||||||
beta8 := new(big.Int).Lsh(beta, 3)
|
|
||||||
beta8.Mod(beta8, curve.P)
|
|
||||||
x3.Sub(x3, beta8)
|
|
||||||
if x3.Sign() == -1 {
|
|
||||||
x3.Add(x3, curve.P)
|
|
||||||
}
|
|
||||||
x3.Mod(x3, curve.P)
|
|
||||||
|
|
||||||
z3 := new(big.Int).Add(y, z)
|
|
||||||
z3.Mul(z3, z3)
|
|
||||||
z3.Sub(z3, gamma)
|
|
||||||
if z3.Sign() == -1 {
|
|
||||||
z3.Add(z3, curve.P)
|
|
||||||
}
|
|
||||||
z3.Sub(z3, delta)
|
|
||||||
if z3.Sign() == -1 {
|
|
||||||
z3.Add(z3, curve.P)
|
|
||||||
}
|
|
||||||
z3.Mod(z3, curve.P)
|
|
||||||
|
|
||||||
beta.Lsh(beta, 2)
|
|
||||||
beta.Sub(beta, x3)
|
|
||||||
if beta.Sign() == -1 {
|
|
||||||
beta.Add(beta, curve.P)
|
|
||||||
}
|
|
||||||
y3 := alpha.Mul(alpha, beta)
|
|
||||||
|
|
||||||
gamma.Mul(gamma, gamma)
|
|
||||||
gamma.Lsh(gamma, 3)
|
|
||||||
gamma.Mod(gamma, curve.P)
|
|
||||||
|
|
||||||
y3.Sub(y3, gamma)
|
|
||||||
if y3.Sign() == -1 {
|
|
||||||
y3.Add(y3, curve.P)
|
|
||||||
}
|
|
||||||
y3.Mod(y3, curve.P)
|
|
||||||
|
|
||||||
return x3, y3, z3
|
|
||||||
}
|
|
||||||
|
|
||||||
func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
|
|
||||||
// If there is a dedicated constant-time implementation for this curve operation,
|
|
||||||
// use that instead of the generic one.
|
|
||||||
if specific, ok := matchesSpecificCurve(curve, p224, p256, p384, p521); ok {
|
|
||||||
return specific.ScalarMult(Bx, By, k)
|
|
||||||
}
|
|
||||||
|
|
||||||
Bz := new(big.Int).SetInt64(1)
|
|
||||||
x, y, z := new(big.Int), new(big.Int), new(big.Int)
|
|
||||||
|
|
||||||
for _, byte := range k {
|
|
||||||
for bitNum := 0; bitNum < 8; bitNum++ {
|
|
||||||
x, y, z = curve.doubleJacobian(x, y, z)
|
|
||||||
if byte&0x80 == 0x80 {
|
|
||||||
x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z)
|
|
||||||
}
|
|
||||||
byte <<= 1
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return curve.affineFromJacobian(x, y, z)
|
|
||||||
}
|
|
||||||
|
|
||||||
func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
|
|
||||||
// If there is a dedicated constant-time implementation for this curve operation,
|
|
||||||
// use that instead of the generic one.
|
|
||||||
if specific, ok := matchesSpecificCurve(curve, p224, p256, p384, p521); ok {
|
|
||||||
return specific.ScalarBaseMult(k)
|
|
||||||
}
|
|
||||||
|
|
||||||
return curve.ScalarMult(curve.Gx, curve.Gy, k)
|
|
||||||
}
|
|
||||||
|
|
||||||
var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f}
|
var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f}
|
||||||
|
|
||||||
// GenerateKey returns a public/private key pair. The private key is
|
// GenerateKey returns a public/private key pair. The private key is
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -24,27 +24,18 @@ import (
|
|||||||
//go:embed p256_asm_table.bin
|
//go:embed p256_asm_table.bin
|
||||||
var p256Precomputed string
|
var p256Precomputed string
|
||||||
|
|
||||||
type (
|
type p256Curve struct {
|
||||||
p256Curve struct {
|
*CurveParams
|
||||||
*CurveParams
|
}
|
||||||
}
|
|
||||||
|
|
||||||
p256Point struct {
|
type p256Point struct {
|
||||||
xyz [12]uint64
|
xyz [12]uint64
|
||||||
}
|
}
|
||||||
)
|
|
||||||
|
|
||||||
var p256 p256Curve
|
var p256 p256Curve
|
||||||
|
|
||||||
func initP256() {
|
func initP256Arch() {
|
||||||
// See FIPS 186-3, section D.2.3
|
p256 = p256Curve{p256Params}
|
||||||
p256.CurveParams = &CurveParams{Name: "P-256"}
|
|
||||||
p256.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10)
|
|
||||||
p256.N, _ = new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369", 10)
|
|
||||||
p256.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16)
|
|
||||||
p256.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16)
|
|
||||||
p256.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16)
|
|
||||||
p256.BitSize = 256
|
|
||||||
}
|
}
|
||||||
|
|
||||||
func (curve p256Curve) Params() *CurveParams {
|
func (curve p256Curve) Params() *CurveParams {
|
||||||
|
File diff suppressed because it is too large
Load Diff
15
src/crypto/elliptic/p256_noasm.go
Normal file
15
src/crypto/elliptic/p256_noasm.go
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
// Copyright 2016 The Go Authors. All rights reserved.
|
||||||
|
// Use of this source code is governed by a BSD-style
|
||||||
|
// license that can be found in the LICENSE file.
|
||||||
|
|
||||||
|
//go:build !amd64 && !s390x && !arm64 && !ppc64le
|
||||||
|
// +build !amd64,!s390x,!arm64,!ppc64le
|
||||||
|
|
||||||
|
package elliptic
|
||||||
|
|
||||||
|
var p256 p256Curve
|
||||||
|
|
||||||
|
func initP256Arch() {
|
||||||
|
// Use pure Go constant-time implementation.
|
||||||
|
p256 = p256Curve{p256Params}
|
||||||
|
}
|
@ -35,7 +35,6 @@ var (
|
|||||||
func initP256Arch() {
|
func initP256Arch() {
|
||||||
p256 = p256CurveFast{p256Params}
|
p256 = p256CurveFast{p256Params}
|
||||||
initTable()
|
initTable()
|
||||||
return
|
|
||||||
}
|
}
|
||||||
|
|
||||||
func (curve p256CurveFast) Params() *CurveParams {
|
func (curve p256CurveFast) Params() *CurveParams {
|
||||||
@ -73,7 +72,6 @@ func p256MovCond(res, a, b *p256Point, cond int)
|
|||||||
//go:noescape
|
//go:noescape
|
||||||
func p256Select(point *p256Point, table []p256Point, idx int)
|
func p256Select(point *p256Point, table []p256Point, idx int)
|
||||||
|
|
||||||
//
|
|
||||||
//go:noescape
|
//go:noescape
|
||||||
func p256SelectBase(point *p256Point, table []p256Point, idx int)
|
func p256SelectBase(point *p256Point, table []p256Point, idx int)
|
||||||
|
|
||||||
@ -85,12 +83,9 @@ func p256SelectBase(point *p256Point, table []p256Point, idx int)
|
|||||||
//go:noescape
|
//go:noescape
|
||||||
func p256PointAddAffineAsm(res, in1, in2 *p256Point, sign, sel, zero int)
|
func p256PointAddAffineAsm(res, in1, in2 *p256Point, sign, sel, zero int)
|
||||||
|
|
||||||
// Point add
|
|
||||||
//
|
|
||||||
//go:noescape
|
//go:noescape
|
||||||
func p256PointAddAsm(res, in1, in2 *p256Point) int
|
func p256PointAddAsm(res, in1, in2 *p256Point) int
|
||||||
|
|
||||||
//
|
|
||||||
//go:noescape
|
//go:noescape
|
||||||
func p256PointDoubleAsm(res, in *p256Point)
|
func p256PointDoubleAsm(res, in *p256Point)
|
||||||
|
|
||||||
@ -340,7 +335,6 @@ func boothW7(in uint) (int, int) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
func initTable() {
|
func initTable() {
|
||||||
|
|
||||||
p256PreFast = new([37][64]p256Point)
|
p256PreFast = new([37][64]p256Point)
|
||||||
|
|
||||||
// TODO: For big endian, these slices should be in reverse byte order,
|
// TODO: For big endian, these slices should be in reverse byte order,
|
||||||
@ -352,7 +346,6 @@ func initTable() {
|
|||||||
0x25, 0xf3, 0x21, 0xdd, 0x88, 0x86, 0xe8, 0xd2, 0x85, 0x5d, 0x88, 0x25, 0x18, 0xff, 0x71, 0x85}, //(p256.y*2^256)%p
|
0x25, 0xf3, 0x21, 0xdd, 0x88, 0x86, 0xe8, 0xd2, 0x85, 0x5d, 0x88, 0x25, 0x18, 0xff, 0x71, 0x85}, //(p256.y*2^256)%p
|
||||||
z: [32]byte{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
|
z: [32]byte{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
|
||||||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00}, //(p256.z*2^256)%p
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00}, //(p256.z*2^256)%p
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
t1 := new(p256Point)
|
t1 := new(p256Point)
|
||||||
|
@ -60,7 +60,6 @@ func initP256Arch() {
|
|||||||
|
|
||||||
// No vector support, use pure Go implementation.
|
// No vector support, use pure Go implementation.
|
||||||
p256 = p256Curve{p256Params}
|
p256 = p256Curve{p256Params}
|
||||||
return
|
|
||||||
}
|
}
|
||||||
|
|
||||||
func (curve p256CurveFast) Params() *CurveParams {
|
func (curve p256CurveFast) Params() *CurveParams {
|
||||||
|
296
src/crypto/elliptic/params.go
Normal file
296
src/crypto/elliptic/params.go
Normal file
@ -0,0 +1,296 @@
|
|||||||
|
// Copyright 2021 The Go Authors. All rights reserved.
|
||||||
|
// Use of this source code is governed by a BSD-style
|
||||||
|
// license that can be found in the LICENSE file.
|
||||||
|
|
||||||
|
package elliptic
|
||||||
|
|
||||||
|
import "math/big"
|
||||||
|
|
||||||
|
// CurveParams contains the parameters of an elliptic curve and also provides
|
||||||
|
// a generic, non-constant time implementation of Curve.
|
||||||
|
type CurveParams struct {
|
||||||
|
P *big.Int // the order of the underlying field
|
||||||
|
N *big.Int // the order of the base point
|
||||||
|
B *big.Int // the constant of the curve equation
|
||||||
|
Gx, Gy *big.Int // (x,y) of the base point
|
||||||
|
BitSize int // the size of the underlying field
|
||||||
|
Name string // the canonical name of the curve
|
||||||
|
}
|
||||||
|
|
||||||
|
func (curve *CurveParams) Params() *CurveParams {
|
||||||
|
return curve
|
||||||
|
}
|
||||||
|
|
||||||
|
// CurveParams operates, internally, on Jacobian coordinates. For a given
|
||||||
|
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
|
||||||
|
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
|
||||||
|
// calculation can be performed within the transform (as in ScalarMult and
|
||||||
|
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
|
||||||
|
// reverse the transform than to operate in affine coordinates.
|
||||||
|
|
||||||
|
// polynomial returns x³ - 3x + b.
|
||||||
|
func (curve *CurveParams) polynomial(x *big.Int) *big.Int {
|
||||||
|
x3 := new(big.Int).Mul(x, x)
|
||||||
|
x3.Mul(x3, x)
|
||||||
|
|
||||||
|
threeX := new(big.Int).Lsh(x, 1)
|
||||||
|
threeX.Add(threeX, x)
|
||||||
|
|
||||||
|
x3.Sub(x3, threeX)
|
||||||
|
x3.Add(x3, curve.B)
|
||||||
|
x3.Mod(x3, curve.P)
|
||||||
|
|
||||||
|
return x3
|
||||||
|
}
|
||||||
|
|
||||||
|
func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
|
||||||
|
// If there is a dedicated constant-time implementation for this curve operation,
|
||||||
|
// use that instead of the generic one.
|
||||||
|
if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok {
|
||||||
|
return specific.IsOnCurve(x, y)
|
||||||
|
}
|
||||||
|
|
||||||
|
if x.Sign() < 0 || x.Cmp(curve.P) >= 0 ||
|
||||||
|
y.Sign() < 0 || y.Cmp(curve.P) >= 0 {
|
||||||
|
return false
|
||||||
|
}
|
||||||
|
|
||||||
|
// y² = x³ - 3x + b
|
||||||
|
y2 := new(big.Int).Mul(y, y)
|
||||||
|
y2.Mod(y2, curve.P)
|
||||||
|
|
||||||
|
return curve.polynomial(x).Cmp(y2) == 0
|
||||||
|
}
|
||||||
|
|
||||||
|
// zForAffine returns a Jacobian Z value for the affine point (x, y). If x and
|
||||||
|
// y are zero, it assumes that they represent the point at infinity because (0,
|
||||||
|
// 0) is not on the any of the curves handled here.
|
||||||
|
func zForAffine(x, y *big.Int) *big.Int {
|
||||||
|
z := new(big.Int)
|
||||||
|
if x.Sign() != 0 || y.Sign() != 0 {
|
||||||
|
z.SetInt64(1)
|
||||||
|
}
|
||||||
|
return z
|
||||||
|
}
|
||||||
|
|
||||||
|
// affineFromJacobian reverses the Jacobian transform. See the comment at the
|
||||||
|
// top of the file. If the point is ∞ it returns 0, 0.
|
||||||
|
func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
|
||||||
|
if z.Sign() == 0 {
|
||||||
|
return new(big.Int), new(big.Int)
|
||||||
|
}
|
||||||
|
|
||||||
|
zinv := new(big.Int).ModInverse(z, curve.P)
|
||||||
|
zinvsq := new(big.Int).Mul(zinv, zinv)
|
||||||
|
|
||||||
|
xOut = new(big.Int).Mul(x, zinvsq)
|
||||||
|
xOut.Mod(xOut, curve.P)
|
||||||
|
zinvsq.Mul(zinvsq, zinv)
|
||||||
|
yOut = new(big.Int).Mul(y, zinvsq)
|
||||||
|
yOut.Mod(yOut, curve.P)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
|
||||||
|
// If there is a dedicated constant-time implementation for this curve operation,
|
||||||
|
// use that instead of the generic one.
|
||||||
|
if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok {
|
||||||
|
return specific.Add(x1, y1, x2, y2)
|
||||||
|
}
|
||||||
|
|
||||||
|
z1 := zForAffine(x1, y1)
|
||||||
|
z2 := zForAffine(x2, y2)
|
||||||
|
return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2))
|
||||||
|
}
|
||||||
|
|
||||||
|
// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
|
||||||
|
// (x2, y2, z2) and returns their sum, also in Jacobian form.
|
||||||
|
func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
|
||||||
|
// See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
|
||||||
|
x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int)
|
||||||
|
if z1.Sign() == 0 {
|
||||||
|
x3.Set(x2)
|
||||||
|
y3.Set(y2)
|
||||||
|
z3.Set(z2)
|
||||||
|
return x3, y3, z3
|
||||||
|
}
|
||||||
|
if z2.Sign() == 0 {
|
||||||
|
x3.Set(x1)
|
||||||
|
y3.Set(y1)
|
||||||
|
z3.Set(z1)
|
||||||
|
return x3, y3, z3
|
||||||
|
}
|
||||||
|
|
||||||
|
z1z1 := new(big.Int).Mul(z1, z1)
|
||||||
|
z1z1.Mod(z1z1, curve.P)
|
||||||
|
z2z2 := new(big.Int).Mul(z2, z2)
|
||||||
|
z2z2.Mod(z2z2, curve.P)
|
||||||
|
|
||||||
|
u1 := new(big.Int).Mul(x1, z2z2)
|
||||||
|
u1.Mod(u1, curve.P)
|
||||||
|
u2 := new(big.Int).Mul(x2, z1z1)
|
||||||
|
u2.Mod(u2, curve.P)
|
||||||
|
h := new(big.Int).Sub(u2, u1)
|
||||||
|
xEqual := h.Sign() == 0
|
||||||
|
if h.Sign() == -1 {
|
||||||
|
h.Add(h, curve.P)
|
||||||
|
}
|
||||||
|
i := new(big.Int).Lsh(h, 1)
|
||||||
|
i.Mul(i, i)
|
||||||
|
j := new(big.Int).Mul(h, i)
|
||||||
|
|
||||||
|
s1 := new(big.Int).Mul(y1, z2)
|
||||||
|
s1.Mul(s1, z2z2)
|
||||||
|
s1.Mod(s1, curve.P)
|
||||||
|
s2 := new(big.Int).Mul(y2, z1)
|
||||||
|
s2.Mul(s2, z1z1)
|
||||||
|
s2.Mod(s2, curve.P)
|
||||||
|
r := new(big.Int).Sub(s2, s1)
|
||||||
|
if r.Sign() == -1 {
|
||||||
|
r.Add(r, curve.P)
|
||||||
|
}
|
||||||
|
yEqual := r.Sign() == 0
|
||||||
|
if xEqual && yEqual {
|
||||||
|
return curve.doubleJacobian(x1, y1, z1)
|
||||||
|
}
|
||||||
|
r.Lsh(r, 1)
|
||||||
|
v := new(big.Int).Mul(u1, i)
|
||||||
|
|
||||||
|
x3.Set(r)
|
||||||
|
x3.Mul(x3, x3)
|
||||||
|
x3.Sub(x3, j)
|
||||||
|
x3.Sub(x3, v)
|
||||||
|
x3.Sub(x3, v)
|
||||||
|
x3.Mod(x3, curve.P)
|
||||||
|
|
||||||
|
y3.Set(r)
|
||||||
|
v.Sub(v, x3)
|
||||||
|
y3.Mul(y3, v)
|
||||||
|
s1.Mul(s1, j)
|
||||||
|
s1.Lsh(s1, 1)
|
||||||
|
y3.Sub(y3, s1)
|
||||||
|
y3.Mod(y3, curve.P)
|
||||||
|
|
||||||
|
z3.Add(z1, z2)
|
||||||
|
z3.Mul(z3, z3)
|
||||||
|
z3.Sub(z3, z1z1)
|
||||||
|
z3.Sub(z3, z2z2)
|
||||||
|
z3.Mul(z3, h)
|
||||||
|
z3.Mod(z3, curve.P)
|
||||||
|
|
||||||
|
return x3, y3, z3
|
||||||
|
}
|
||||||
|
|
||||||
|
func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
|
||||||
|
// If there is a dedicated constant-time implementation for this curve operation,
|
||||||
|
// use that instead of the generic one.
|
||||||
|
if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok {
|
||||||
|
return specific.Double(x1, y1)
|
||||||
|
}
|
||||||
|
|
||||||
|
z1 := zForAffine(x1, y1)
|
||||||
|
return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1))
|
||||||
|
}
|
||||||
|
|
||||||
|
// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
|
||||||
|
// returns its double, also in Jacobian form.
|
||||||
|
func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
|
||||||
|
// See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
|
||||||
|
delta := new(big.Int).Mul(z, z)
|
||||||
|
delta.Mod(delta, curve.P)
|
||||||
|
gamma := new(big.Int).Mul(y, y)
|
||||||
|
gamma.Mod(gamma, curve.P)
|
||||||
|
alpha := new(big.Int).Sub(x, delta)
|
||||||
|
if alpha.Sign() == -1 {
|
||||||
|
alpha.Add(alpha, curve.P)
|
||||||
|
}
|
||||||
|
alpha2 := new(big.Int).Add(x, delta)
|
||||||
|
alpha.Mul(alpha, alpha2)
|
||||||
|
alpha2.Set(alpha)
|
||||||
|
alpha.Lsh(alpha, 1)
|
||||||
|
alpha.Add(alpha, alpha2)
|
||||||
|
|
||||||
|
beta := alpha2.Mul(x, gamma)
|
||||||
|
|
||||||
|
x3 := new(big.Int).Mul(alpha, alpha)
|
||||||
|
beta8 := new(big.Int).Lsh(beta, 3)
|
||||||
|
beta8.Mod(beta8, curve.P)
|
||||||
|
x3.Sub(x3, beta8)
|
||||||
|
if x3.Sign() == -1 {
|
||||||
|
x3.Add(x3, curve.P)
|
||||||
|
}
|
||||||
|
x3.Mod(x3, curve.P)
|
||||||
|
|
||||||
|
z3 := new(big.Int).Add(y, z)
|
||||||
|
z3.Mul(z3, z3)
|
||||||
|
z3.Sub(z3, gamma)
|
||||||
|
if z3.Sign() == -1 {
|
||||||
|
z3.Add(z3, curve.P)
|
||||||
|
}
|
||||||
|
z3.Sub(z3, delta)
|
||||||
|
if z3.Sign() == -1 {
|
||||||
|
z3.Add(z3, curve.P)
|
||||||
|
}
|
||||||
|
z3.Mod(z3, curve.P)
|
||||||
|
|
||||||
|
beta.Lsh(beta, 2)
|
||||||
|
beta.Sub(beta, x3)
|
||||||
|
if beta.Sign() == -1 {
|
||||||
|
beta.Add(beta, curve.P)
|
||||||
|
}
|
||||||
|
y3 := alpha.Mul(alpha, beta)
|
||||||
|
|
||||||
|
gamma.Mul(gamma, gamma)
|
||||||
|
gamma.Lsh(gamma, 3)
|
||||||
|
gamma.Mod(gamma, curve.P)
|
||||||
|
|
||||||
|
y3.Sub(y3, gamma)
|
||||||
|
if y3.Sign() == -1 {
|
||||||
|
y3.Add(y3, curve.P)
|
||||||
|
}
|
||||||
|
y3.Mod(y3, curve.P)
|
||||||
|
|
||||||
|
return x3, y3, z3
|
||||||
|
}
|
||||||
|
|
||||||
|
func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
|
||||||
|
// If there is a dedicated constant-time implementation for this curve operation,
|
||||||
|
// use that instead of the generic one.
|
||||||
|
if specific, ok := matchesSpecificCurve(curve, p224, p256, p384, p521); ok {
|
||||||
|
return specific.ScalarMult(Bx, By, k)
|
||||||
|
}
|
||||||
|
|
||||||
|
Bz := new(big.Int).SetInt64(1)
|
||||||
|
x, y, z := new(big.Int), new(big.Int), new(big.Int)
|
||||||
|
|
||||||
|
for _, byte := range k {
|
||||||
|
for bitNum := 0; bitNum < 8; bitNum++ {
|
||||||
|
x, y, z = curve.doubleJacobian(x, y, z)
|
||||||
|
if byte&0x80 == 0x80 {
|
||||||
|
x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z)
|
||||||
|
}
|
||||||
|
byte <<= 1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return curve.affineFromJacobian(x, y, z)
|
||||||
|
}
|
||||||
|
|
||||||
|
func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
|
||||||
|
// If there is a dedicated constant-time implementation for this curve operation,
|
||||||
|
// use that instead of the generic one.
|
||||||
|
if specific, ok := matchesSpecificCurve(curve, p224, p256, p384, p521); ok {
|
||||||
|
return specific.ScalarBaseMult(k)
|
||||||
|
}
|
||||||
|
|
||||||
|
return curve.ScalarMult(curve.Gx, curve.Gy, k)
|
||||||
|
}
|
||||||
|
|
||||||
|
func matchesSpecificCurve(params *CurveParams, available ...Curve) (Curve, bool) {
|
||||||
|
for _, c := range available {
|
||||||
|
if params == c.Params() {
|
||||||
|
return c, true
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return nil, false
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user