1
0
mirror of https://github.com/golang/go synced 2024-11-18 16:04:44 -07:00

go.tools/go/types: Use []*Field instead of *Scope for struct fields

This partially reverts a previous change, using a []*Field is a better
representation for struct fields than a *Scope, after all; however
*Fields remain Objects.

Fixes golang/go#5670.

R=adonovan, axwalk
CC=golang-dev
https://golang.org/cl/10207043
This commit is contained in:
Robert Griesemer 2013-06-11 19:54:47 -07:00
parent 0ca15cc618
commit 5efab5e9c0
11 changed files with 104 additions and 107 deletions

View File

@ -112,7 +112,7 @@ type Context struct {
// of the given struct fields, in bytes. Otherwise DefaultOffsetsof
// is called. Offsetsof must implement the offset guarantees
// required by the spec.
Offsetsof func(fields *Scope) []int64
Offsetsof func(fields []*Field) []int64
// If Sizeof != nil, it is called to determine the size of the
// given type. Otherwise, DefaultSizeof is called. Sizeof must

View File

@ -258,20 +258,17 @@ func writeType(buf *bytes.Buffer, typ Type) {
case *Struct:
buf.WriteString("struct{")
if t.fields != nil {
for i, obj := range t.fields.entries {
if i > 0 {
buf.WriteString("; ")
}
f := obj.(*Field)
if !f.anonymous {
buf.WriteString(f.name)
buf.WriteByte(' ')
}
writeType(buf, f.typ)
if tag := t.Tag(i); tag != "" {
fmt.Fprintf(buf, " %q", tag)
}
for i, f := range t.fields {
if i > 0 {
buf.WriteString("; ")
}
if !f.anonymous {
buf.WriteString(f.name)
buf.WriteByte(' ')
}
writeType(buf, f.typ)
if tag := t.Tag(i); tag != "" {
fmt.Fprintf(buf, " %q", tag)
}
}
buf.WriteByte('}')

View File

@ -182,7 +182,7 @@ func (check *checker) tag(t *ast.BasicLit) string {
return ""
}
func (check *checker) collectFields(scope *Scope, list *ast.FieldList, cycleOk bool) (tags []string) {
func (check *checker) collectFields(scope *Scope, list *ast.FieldList, cycleOk bool) (fields []*Field, tags []string) {
if list == nil {
return
}
@ -190,9 +190,8 @@ func (check *checker) collectFields(scope *Scope, list *ast.FieldList, cycleOk b
var typ Type // current field typ
var tag string // current field tag
add := func(field *ast.Field, ident *ast.Ident, name string, anonymous bool, pos token.Pos) {
// TODO(gri): rethink this - at the moment we allocate only a prefix
if tag != "" && tags == nil {
tags = make([]string, scope.NumEntries())
tags = make([]string, len(fields))
}
if tags != nil {
tags = append(tags, tag)
@ -200,6 +199,7 @@ func (check *checker) collectFields(scope *Scope, list *ast.FieldList, cycleOk b
fld := NewField(pos, check.pkg, name, typ, anonymous)
check.declare(scope, ident, fld)
fields = append(fields, fld)
}
for _, f := range list.List {
@ -1159,7 +1159,7 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
fields := utyp.fields
if _, ok := e.Elts[0].(*ast.KeyValueExpr); ok {
// all elements must have keys
visited := make([]bool, fields.NumEntries())
visited := make([]bool, len(fields))
for _, e := range e.Elts {
kv, _ := e.(*ast.KeyValueExpr)
if kv == nil {
@ -1171,12 +1171,12 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
check.errorf(kv.Pos(), "invalid field name %s in struct literal", kv.Key)
continue
}
i := utyp.fields.Index(check.pkg, key.Name)
i := utyp.index(check.pkg, key.Name)
if i < 0 {
check.errorf(kv.Pos(), "unknown field %s in struct literal", key.Name)
continue
}
fld := fields.At(i).(*Field)
fld := fields[i]
check.callIdent(key, fld)
// 0 <= i < len(fields)
if visited[i] {
@ -1201,12 +1201,12 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
continue
}
check.expr(x, e, nil, iota)
if i >= fields.NumEntries() {
if i >= len(fields) {
check.errorf(x.pos(), "too many values in struct literal")
break // cannot continue
}
// i < len(fields)
etyp := fields.At(i).Type()
etyp := fields[i].typ
if !check.assignment(x, etyp) {
if x.mode != invalid {
check.errorf(x.pos(), "cannot use %s as %s value in struct literal", x, etyp)
@ -1214,7 +1214,7 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
continue
}
}
if len(e.Elts) < fields.NumEntries() {
if len(e.Elts) < len(fields) {
check.errorf(e.Rbrace, "too few values in struct literal")
// ok to continue
}
@ -1703,9 +1703,9 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
case *ast.StructType:
scope := NewScope(check.topScope)
tags := check.collectFields(scope, e.Fields, cycleOk)
fields, tags := check.collectFields(scope, e.Fields, cycleOk)
x.mode = typexpr
x.typ = &Struct{fields: scope, tags: tags}
x.typ = &Struct{fields: fields, tags: tags}
case *ast.FuncType:
scope := NewScope(check.topScope)

View File

@ -485,29 +485,27 @@ func (p *gcParser) parseField() (*Field, string) {
// FieldList = Field { ";" Field } .
//
func (p *gcParser) parseStructType() Type {
var fields *Scope // lazily initialized
var fields []*Field
var tags []string
p.expectKeyword("struct")
p.expect('{')
scope := NewScope(nil)
for i := 0; p.tok != '}'; i++ {
if i > 0 {
p.expect(';')
}
fld, tag := p.parseField()
// TODO(gri) same code in collectFields (expr.go) - factor?
if tag != "" && tags == nil {
tags = make([]string, i)
}
if tags != nil {
tags = append(tags, tag)
}
if fields == nil {
fields = NewScope(nil)
}
if alt := fields.Insert(fld); alt != nil {
if alt := scope.Insert(fld); alt != nil {
p.errorf("multiple fields named %s.%s", alt.Pkg().name, alt.Name())
}
fields = append(fields, fld)
}
p.expect('}')

View File

@ -276,11 +276,7 @@ func lookupFieldBreadthFirst(list []embeddedType, pkg *Package, name string) (re
switch t := typ.underlying.(type) {
case *Struct:
// look for a matching field and collect embedded types
if t.fields == nil {
break
}
for i, obj := range t.fields.entries {
f := obj.(*Field)
for i, f := range t.fields {
if f.isMatch(pkg, name) {
assert(f.typ != nil)
if !potentialMatch(e.multiples, variable, f) {
@ -375,12 +371,8 @@ func lookupField(typ Type, pkg *Package, name string) lookupResult {
switch t := typ.(type) {
case *Struct:
if t.fields == nil {
break
}
var next []embeddedType
for i, obj := range t.fields.entries {
f := obj.(*Field)
for i, f := range t.fields {
if f.isMatch(pkg, name) {
return lookupResult{variable, f, []int{i}}
}

View File

@ -74,11 +74,9 @@ func isComparable(typ Type) bool {
// assumes types are equal for pointers and channels
return true
case *Struct:
if t.fields != nil {
for _, f := range t.fields.entries {
if !isComparable(f.Type()) {
return false
}
for _, f := range t.fields {
if !isComparable(f.typ) {
return false
}
}
return true
@ -131,16 +129,13 @@ func IsIdentical(x, y Type) bool {
// name. Lower-case field names from different packages are always different.
if y, ok := y.(*Struct); ok {
if x.NumFields() == y.NumFields() {
if x.fields != nil {
for i, obj := range x.fields.entries {
f := obj.(*Field)
g := y.fields.At(i).(*Field)
if f.anonymous != g.anonymous ||
x.Tag(i) != y.Tag(i) ||
!f.isMatch(g.pkg, g.name) ||
!IsIdentical(f.typ, g.typ) {
return false
}
for i, f := range x.fields {
g := y.fields[i]
if f.anonymous != g.anonymous ||
x.Tag(i) != y.Tag(i) ||
!f.isMatch(g.pkg, g.name) ||
!IsIdentical(f.typ, g.typ) {
return false
}
}
return true

View File

@ -483,10 +483,9 @@ func (check *checker) declareType(obj *TypeName, typ ast.Expr, cycleOk bool) {
if t.fields == nil {
break
}
for _, f := range t.fields.entries {
name := f.Name()
if m := scope.Lookup(nil, name); m != nil {
check.errorf(m.Pos(), "type %s has both field and method named %s", obj.name, name)
for _, f := range t.fields {
if m := scope.Lookup(nil, f.name); m != nil {
check.errorf(m.Pos(), "type %s has both field and method named %s", obj.name, f.name)
// ok to continue
}
}

View File

@ -52,64 +52,54 @@ func (s *Scope) At(i int) Object {
return s.entries[i]
}
// Index returns the index of the scope entry with the given package
// (path) and name if such an entry exists in s; otherwise the result
// is negative. A nil scope acts like an empty scope, and parent scopes
// are ignored.
// Lookup returns the object in scope s with the given package
// and name if such an object exists; otherwise the result is nil.
// A nil scope acts like an empty scope, and parent scopes are ignored.
//
// If pkg != nil, both pkg.Path() and name are used to identify an
// entry, per the Go rules for identifier equality. If pkg == nil,
// only the name is used and the package path is ignored.
func (s *Scope) Index(pkg *Package, name string) int {
func (s *Scope) Lookup(pkg *Package, name string) Object {
if s == nil {
return -1 // empty scope
return nil // empty scope
}
// fast path: only the name must match
if pkg == nil {
for i, obj := range s.entries {
for _, obj := range s.entries {
if obj.Name() == name {
return i
return obj
}
}
return -1
return nil
}
// slow path: both pkg path and name must match
// TODO(gri) if packages were canonicalized, we could just compare the packages
for i, obj := range s.entries {
for _, obj := range s.entries {
// spec:
// "Two identifiers are different if they are spelled differently,
// or if they appear in different packages and are not exported.
// Otherwise, they are the same."
if obj.Name() == name && (ast.IsExported(name) || obj.Pkg().path == pkg.path) {
return i
return obj
}
}
// not found
return -1
return nil
// TODO(gri) Optimize Lookup by also maintaining a map representation
// for larger scopes.
}
// Lookup returns the scope entry At(i) for i = Index(pkg, name), if i >= 0.
// Otherwise it returns nil.
func (s *Scope) Lookup(pkg *Package, name string) Object {
if i := s.Index(pkg, name); i >= 0 {
return s.At(i)
}
return nil
}
// LookupParent follows the parent chain of scopes starting with s until it finds
// a scope where Lookup(nil, name) returns a non-nil entry, and then returns that
// entry. If no such scope exists, the result is nil.
// a scope where Lookup(nil, name) returns a non-nil object, and then returns that
// object. If no such scope exists, the result is nil.
func (s *Scope) LookupParent(name string) Object {
for s != nil {
if i := s.Index(nil, name); i >= 0 {
return s.At(i)
if obj := s.Lookup(nil, name); obj != nil {
return obj
}
s = s.parent
}

View File

@ -50,7 +50,7 @@ func (ctxt *Context) offsetof(typ Type, index []int) int64 {
return -1
}
o += ctxt.offsetsof(s)[i]
typ = s.fields.At(i).Type()
typ = s.fields[i].typ
}
return o
}
@ -84,12 +84,9 @@ func DefaultAlignof(typ Type) int64 {
// is the largest of the values unsafe.Alignof(x.f) for each
// field f of x, but at least 1."
max := int64(1)
if t.fields != nil {
for _, obj := range t.fields.entries {
f := obj.(*Field)
if a := DefaultAlignof(f.typ); a > max {
max = a
}
for _, f := range t.fields {
if a := DefaultAlignof(f.typ); a > max {
max = a
}
}
return max
@ -113,15 +110,10 @@ func align(x, a int64) int64 {
// DefaultOffsetsof implements the default field offset computation
// for unsafe.Offsetof. It is used if Context.Offsetsof == nil.
func DefaultOffsetsof(fields *Scope) []int64 {
n := fields.NumEntries()
if n == 0 {
return nil
}
offsets := make([]int64, n)
func DefaultOffsetsof(fields []*Field) []int64 {
offsets := make([]int64, len(fields))
var o int64
for i, obj := range fields.entries {
f := obj.(*Field)
for i, f := range fields {
a := DefaultAlignof(f.typ)
o = align(o, a)
offsets[i] = o
@ -162,7 +154,7 @@ func DefaultSizeof(typ Type) int64 {
offsets = DefaultOffsetsof(t.fields)
t.offsets = offsets
}
return offsets[n-1] + DefaultSizeof(t.fields.At(n-1).Type())
return offsets[n-1] + DefaultSizeof(t.fields[n-1].typ)
case *Signature:
return DefaultPtrSize * 2
}

View File

@ -410,6 +410,14 @@ func _Sizeof() {
var y2 S2
assert(unsafe.Sizeof(y2) == 8)
// test case for issue 5670
type T struct {
a int32
_ int32
c int32
}
assert(unsafe.Sizeof(T{}) == 12)
}
// self-testing only

View File

@ -132,17 +132,26 @@ func (s *Slice) Elem() Type { return s.elt }
// A Struct represents a struct type.
type Struct struct {
fields *Scope
fields []*Field
tags []string // field tags; nil if there are no tags
offsets []int64 // field offsets in bytes, lazily computed
}
func NewStruct(fields *Scope, tags []string) *Struct {
// NewStruct returns a new struct with the given fields and corresponding field tags.
// If a field with index i has a tag, tags[i] must be that tag, but len(tags) may be
// only as long as required to hold the tag with the largest index i. Consequently,
// if no field has a tag, tags may be nil.
func NewStruct(fields []*Field, tags []string) *Struct {
return &Struct{fields: fields, tags: tags}
}
func (s *Struct) NumFields() int { return s.fields.NumEntries() }
func (s *Struct) Field(i int) *Field { return s.fields.At(i).(*Field) }
// NumFields returns the number of fields in the struct (including blank and anonymous fields).
func (s *Struct) NumFields() int { return len(s.fields) }
// Field returns the i'th field for 0 <= i < NumFields().
func (s *Struct) Field(i int) *Field { return s.fields[i] }
// Tag returns the i'th field tag for 0 <= i < NumFields().
func (s *Struct) Tag(i int) string {
if i < len(s.tags) {
return s.tags[i]
@ -150,6 +159,21 @@ func (s *Struct) Tag(i int) string {
return ""
}
// Index returns the index for the field in s with matching package and name.
// TODO(gri) should this be exported?
func (s *Struct) index(pkg *Package, name string) int {
for i, f := range s.fields {
// spec:
// "Two identifiers are different if they are spelled differently,
// or if they appear in different packages and are not exported.
// Otherwise, they are the same."
if f.name == name && (ast.IsExported(name) || f.pkg.path == pkg.path) {
return i
}
}
return -1
}
// A Pointer represents a pointer type.
type Pointer struct {
base Type
@ -264,6 +288,7 @@ func (b *Builtin) Name() string {
// An Interface represents an interface type.
type Interface struct {
// TODO(gri) Change back to a sorted slice of methods.
methods *Scope // may be nil
}
@ -315,7 +340,8 @@ func (c *Chan) Elem() Type { return c.elt }
type Named struct {
obj *TypeName // corresponding declared object
underlying Type // nil if not fully declared yet; never a *Named
methods *Scope // directly associated methods (not the method set of this type); may be nil
// TODO(gri): change back to a sorted slice of methods
methods *Scope // directly associated methods (not the method set of this type); may be nil
}
// NewNamed returns a new named type for the given type name, underlying type, and associated methods.