1
0
mirror of https://github.com/golang/go synced 2024-11-20 02:54:39 -07:00

exp/types/staging: filling in more blanks

- simplified assignment checking by removing duplicate code
- implemented field lookup (methods, structs, embedded fields)
- importing methods (not just parsing them)
- type-checking functions and methods
- typechecking more statements (inc/dec, select, return)
- tracing support for easier debugging
- handling nil more correctly (comparisons)
- initial support for [...]T{} arrays
- initial support for method expressions
- lots of bug fixes

All packages under pkg/go as well as pkg/exp/types typecheck
now with pkg/exp/gotype applied to them; i.e., a significant
amount of typechecking works now (several statements are not
implemented yet, but handling statements is almost trivial in
comparison with typechecking expressions).

R=rsc
CC=golang-dev
https://golang.org/cl/6768063
This commit is contained in:
Robert Griesemer 2012-11-01 11:23:27 -07:00
parent 3b04d23cbf
commit 5d15963a1f
20 changed files with 714 additions and 394 deletions

View File

@ -22,7 +22,8 @@ func readGopackHeader(r *bufio.Reader) (name string, size int, err error) {
if err != nil {
return
}
if trace {
// leave for debugging
if false {
fmt.Printf("header: %s", hdr)
}
s := strings.TrimSpace(string(hdr[16+12+6+6+8:][:10]))

View File

@ -44,7 +44,7 @@ func (check *checker) builtin(x *operand, call *ast.CallExpr, bin *builtin, iota
switch id {
case _Make, _New:
// argument must be a type
typ0 = underlying(check.typ(arg0, false))
typ0 = check.typ(arg0, false)
if typ0 == Typ[Invalid] {
goto Error
}
@ -191,7 +191,7 @@ func (check *checker) builtin(x *operand, call *ast.CallExpr, bin *builtin, iota
case _Make:
var min int // minimum number of arguments
switch typ0.(type) {
switch underlying(typ0).(type) {
case *Slice:
min = 2
case *Map, *Chan:
@ -301,7 +301,7 @@ func (check *checker) builtin(x *operand, call *ast.CallExpr, bin *builtin, iota
var t operand
x1 := x
for _, arg := range args {
check.exprOrType(x1, arg, nil, iota, true) // permit trace for types, e.g.: new(trace(T))
check.rawExpr(x1, arg, nil, iota, true) // permit trace for types, e.g.: new(trace(T))
check.dump("%s: %s", x1.pos(), x1)
x1 = &t // use incoming x only for first argument
}

View File

@ -13,6 +13,9 @@ import (
"sort"
)
// enable for debugging
const trace = false
type checker struct {
fset *token.FileSet
pkg *ast.Package
@ -23,6 +26,8 @@ type checker struct {
firsterr error
filenames []string // sorted list of package file names for reproducible iteration order
initexprs map[*ast.ValueSpec][]ast.Expr // "inherited" initialization expressions for constant declarations
functypes []*Signature // stack of function signatures; actively typechecked function on top
pos []token.Pos // stack of expr positions; debugging support, used if trace is set
}
// declare declares an object of the given kind and name (ident) in scope;
@ -57,17 +62,19 @@ func (check *checker) valueSpec(pos token.Pos, obj *ast.Object, lhs []*ast.Ident
return
}
// determine type for all of lhs, if any
// (but only set it for the object we typecheck!)
var t Type
if typ != nil {
t = check.typ(typ, false)
}
// len(lhs) >= 1
// len(lhs) > 0
if len(lhs) == len(rhs) {
// check only corresponding lhs and rhs
// check only lhs and rhs corresponding to obj
var l, r ast.Expr
for i, ident := range lhs {
if ident.Obj == obj {
for i, name := range lhs {
if name.Obj == obj {
l = lhs[i]
r = rhs[i]
break
@ -75,14 +82,17 @@ func (check *checker) valueSpec(pos token.Pos, obj *ast.Object, lhs []*ast.Ident
}
assert(l != nil)
obj.Type = t
// check rhs
var x operand
check.expr(&x, r, t, iota)
// assign to lhs
check.assignment(l, &x, true)
check.assign1to1(l, r, nil, true, iota)
return
}
// there must be a type or initialization expressions
if t == nil && len(rhs) == 0 {
check.invalidAST(pos, "missing type or initialization expression")
t = Typ[Invalid]
}
// if we have a type, mark all of lhs
if t != nil {
for _, name := range lhs {
name.Obj.Type = t
@ -100,18 +110,18 @@ func (check *checker) valueSpec(pos token.Pos, obj *ast.Object, lhs []*ast.Ident
}
}
// ident type checks an identifier.
func (check *checker) ident(name *ast.Ident, cycleOk bool) {
obj := name.Obj
if obj == nil {
check.invalidAST(name.Pos(), "missing object for %s", name.Name)
return
}
func (check *checker) function(typ *Signature, body *ast.BlockStmt) {
check.functypes = append(check.functypes, typ)
check.stmt(body)
check.functypes = check.functypes[0 : len(check.functypes)-1]
}
if obj.Type != nil {
// object has already been type checked
return
}
// object typechecks an object by assigning it a type; obj.Type must be nil.
// Callers must check obj.Type before calling object; this eliminates a call
// for each identifier that has been typechecked already, a common scenario.
//
func (check *checker) object(obj *ast.Object, cycleOk bool) {
assert(obj.Type == nil)
switch obj.Kind {
case ast.Bad, ast.Pkg:
@ -128,6 +138,7 @@ func (check *checker) ident(name *ast.Ident, cycleOk bool) {
// Data == nil => the object's expression is being evaluated
if obj.Data == nil {
check.errorf(obj.Pos(), "illegal cycle in initialization of %s", obj.Name)
obj.Type = Typ[Invalid]
return
}
spec := obj.Decl.(*ast.ValueSpec)
@ -144,45 +155,47 @@ func (check *checker) ident(name *ast.Ident, cycleOk bool) {
typ := &NamedType{Obj: obj}
obj.Type = typ // "mark" object so recursion terminates
typ.Underlying = underlying(check.typ(obj.Decl.(*ast.TypeSpec).Type, cycleOk))
// collect associated methods, if any
// typecheck associated method signatures
if obj.Data != nil {
scope := obj.Data.(*ast.Scope)
switch t := typ.Underlying.(type) {
case *Struct:
// struct fields must not conflict with methods
if t, ok := typ.Underlying.(*Struct); ok {
for _, f := range t.Fields {
if m := scope.Lookup(f.Name); m != nil {
check.errorf(m.Pos(), "type %s has both field and method named %s", obj.Name, f.Name)
}
}
}
// collect methods
methods := make(ObjList, len(scope.Objects))
i := 0
for _, m := range scope.Objects {
methods[i] = m
i++
}
methods.Sort()
typ.Methods = methods
// ok to continue
case *Interface:
// methods cannot be associated with an interface type
// (do this check after sorting for reproducible error positions - needed for testing)
if _, ok := typ.Underlying.(*Interface); ok {
for _, m := range methods {
for _, m := range scope.Objects {
recv := m.Decl.(*ast.FuncDecl).Recv.List[0].Type
check.errorf(recv.Pos(), "invalid receiver type %s (%s is an interface type)", obj.Name, obj.Name)
}
// ok to continue
}
// typecheck method signatures
for _, m := range scope.Objects {
mdecl := m.Decl.(*ast.FuncDecl)
// TODO(gri) At the moment, the receiver is type-checked when checking
// the method body. Also, we don't properly track if the receiver is
// a pointer (i.e., currently, method sets are too large). FIX THIS.
mtyp := check.typ(mdecl.Type, cycleOk).(*Signature)
m.Type = mtyp
}
}
case ast.Fun:
fdecl := obj.Decl.(*ast.FuncDecl)
ftyp := check.typ(fdecl.Type, cycleOk).(*Signature)
obj.Type = ftyp
if fdecl.Recv != nil {
// TODO(gri) is this good enough for the receiver?
// This will ensure that the method base type is
// type-checked
check.collectFields(token.FUNC, fdecl.Recv, true)
}
check.stmt(fdecl.Body)
ftyp := check.typ(fdecl.Type, cycleOk).(*Signature)
obj.Type = ftyp
check.function(ftyp, fdecl.Body)
default:
panic("unreachable")
@ -283,20 +296,28 @@ func (check *checker) decl(decl ast.Decl) {
// nothing to do (handled by ast.NewPackage)
case *ast.ValueSpec:
for _, name := range s.Names {
if name.Name == "_" {
// TODO(gri) why is _ special here?
} else {
check.ident(name, false)
if obj := name.Obj; obj.Type == nil {
check.object(obj, false)
}
}
case *ast.TypeSpec:
check.ident(s.Name, false)
if obj := s.Name.Obj; obj.Type == nil {
check.object(obj, false)
}
default:
check.invalidAST(s.Pos(), "unknown ast.Spec node %T", s)
}
}
case *ast.FuncDecl:
check.ident(d.Name, false)
if d.Name.Name == "init" {
// initialization function
// TODO(gri) ignore for now (has no object associated with it)
// (should probably collect in a first phase and properly initialize)
return
}
if obj := d.Name.Obj; obj.Type == nil {
check.object(obj, false)
}
default:
check.invalidAST(d.Pos(), "unknown ast.Decl node %T", d)
}

View File

@ -54,7 +54,7 @@ var (
zeroConst = int64(0)
oneConst = int64(1)
minusOneConst = int64(-1)
nilConst = new(nilType)
nilConst = nilType{}
)
// int64 bounds

View File

@ -29,7 +29,9 @@ func (check *checker) conversion(x *operand, conv *ast.CallExpr, typ Type, iota
}
// TODO(gri) fix this - implement all checks and constant evaluation
if x.mode != constant {
x.mode = value
}
x.expr = conv
x.typ = typ
return

View File

@ -13,10 +13,6 @@ import (
"go/token"
)
// debugging flags
const debug = false
const trace = false
// TODO(gri) eventually assert and unimplemented should disappear.
func assert(p bool) {
if !p {
@ -25,15 +21,40 @@ func assert(p bool) {
}
func unimplemented() {
if debug {
panic("unimplemented")
}
// enable for debugging
// panic("unimplemented")
}
func unreachable() {
panic("unreachable")
}
func (check *checker) printTrace(format string, args []interface{}) {
const dots = ". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
n := len(check.pos) - 1
i := 2 * n
for i > len(dots) {
fmt.Print(dots)
i -= len(dots)
}
// i <= len(dots)
fmt.Printf("%s: ", check.fset.Position(check.pos[n]))
fmt.Print(dots[0:i])
fmt.Println(check.formatMsg(format, args))
}
func (check *checker) trace(pos token.Pos, format string, args ...interface{}) {
check.pos = append(check.pos, pos)
check.printTrace(format, args)
}
func (check *checker) untrace(format string, args ...interface{}) {
if len(format) > 0 {
check.printTrace(format, args)
}
check.pos = check.pos[:len(check.pos)-1]
}
func (check *checker) formatMsg(format string, args []interface{}) string {
for i, arg := range args {
switch a := arg.(type) {

View File

@ -22,7 +22,8 @@ func readGopackHeader(r *bufio.Reader) (name string, size int, err error) {
if err != nil {
return
}
if trace {
// leave for debugging
if false {
fmt.Printf("header: %s", hdr)
}
s := strings.TrimSpace(string(hdr[16+12+6+6+8:][:10]))

View File

@ -15,6 +15,7 @@ import (
// TODO(gri)
// - don't print error messages referring to invalid types (they are likely spurious errors)
// - simplify invalid handling: maybe just use Typ[Invalid] as marker, get rid of invalid Mode for values?
// - rethink error handling: should all callers check if x.mode == valid after making a call?
func (check *checker) tag(field *ast.Field) string {
if t := field.Tag; t != nil {
@ -94,7 +95,7 @@ func (check *checker) collectStructFields(list *ast.FieldList, cycleOk bool) (fi
fields = append(fields, &StructField{t.Obj.Name, t, tag, true})
default:
if typ != Typ[Invalid] {
check.errorf(f.Type.Pos(), "invalid anonymous field type %s", typ)
check.invalidAST(f.Type.Pos(), "anonymous field type %s must be named", typ)
}
}
}
@ -109,7 +110,6 @@ var unaryOpPredicates = opPredicates{
token.SUB: isNumeric,
token.XOR: isInteger,
token.NOT: isBoolean,
token.ARROW: func(typ Type) bool { t, ok := underlying(typ).(*Chan); return ok && t.Dir&ast.RECV != 0 },
}
func (check *checker) op(m opPredicates, x *operand, op token.Token) bool {
@ -129,20 +129,33 @@ func (check *checker) op(m opPredicates, x *operand, op token.Token) bool {
}
func (check *checker) unary(x *operand, op token.Token) {
if op == token.AND {
switch op {
case token.AND:
// TODO(gri) need to check for composite literals, somehow (they are not variables, in general)
if x.mode != variable {
check.invalidOp(x.pos(), "cannot take address of %s", x)
x.mode = invalid
return
goto Error
}
x.typ = &Pointer{Base: x.typ}
return
case token.ARROW:
typ, ok := underlying(x.typ).(*Chan)
if !ok {
check.invalidOp(x.pos(), "cannot receive from non-channel %s", x)
goto Error
}
if typ.Dir&ast.RECV == 0 {
check.invalidOp(x.pos(), "cannot receive from send-only channel %s", x)
goto Error
}
x.mode = valueok
x.typ = typ.Elt
return
}
if !check.op(unaryOpPredicates, x, op) {
x.mode = invalid
return
goto Error
}
if x.mode == constant {
@ -156,7 +169,7 @@ func (check *checker) unary(x *operand, op token.Token) {
case token.NOT:
x.val = !x.val.(bool)
default:
unreachable()
unreachable() // operators where checked by check.op
}
// Typed constants must be representable in
// their type after each constant operation.
@ -165,6 +178,11 @@ func (check *checker) unary(x *operand, op token.Token) {
}
x.mode = value
// x.typ remains unchanged
return
Error:
x.mode = invalid
}
func isShift(op token.Token) bool {
@ -216,8 +234,7 @@ func (check *checker) convertUntyped(x *operand, target Type) {
x.typ = target
}
} else if xkind != tkind {
check.errorf(x.pos(), "cannot convert %s to %s", x, target)
x.mode = invalid // avoid spurious errors
goto Error
}
return
}
@ -226,15 +243,22 @@ func (check *checker) convertUntyped(x *operand, target Type) {
switch t := underlying(target).(type) {
case *Basic:
check.isRepresentable(x, t)
case *Pointer, *Signature, *Interface, *Slice, *Map, *Chan:
if x.typ != Typ[UntypedNil] {
check.errorf(x.pos(), "cannot convert %s to %s", x, target)
x.mode = invalid
case *Interface:
if !x.isNil() && len(t.Methods) > 0 /* empty interfaces are ok */ {
goto Error
}
case *Pointer, *Signature, *Slice, *Map, *Chan:
if !x.isNil() {
goto Error
}
}
x.typ = target
return
Error:
check.errorf(x.pos(), "cannot convert %s to %s", x, target)
x.mode = invalid
}
func (check *checker) comparison(x, y *operand, op token.Token) {
@ -244,9 +268,11 @@ func (check *checker) comparison(x, y *operand, op token.Token) {
if x.isAssignable(y.typ) || y.isAssignable(x.typ) {
switch op {
case token.EQL, token.NEQ:
valid = isComparable(x.typ)
valid = isComparable(x.typ) ||
x.isNil() && hasNil(y.typ) ||
y.isNil() && hasNil(x.typ)
case token.LSS, token.LEQ, token.GTR, token.GEQ:
valid = isOrdered(y.typ)
valid = isOrdered(x.typ)
default:
unreachable()
}
@ -389,7 +415,7 @@ func (check *checker) binary(x, y *operand, op token.Token, hint Type) {
x.val = binaryOpConst(x.val, y.val, op, isInteger(x.typ))
// Typed constants must be representable in
// their type after each constant operation.
check.isRepresentable(x, x.typ.(*Basic))
check.isRepresentable(x, underlying(x.typ).(*Basic))
return
}
@ -431,20 +457,25 @@ func (check *checker) callRecord(x *operand) {
}
}
// expr typechecks expression e and initializes x with the expression
// rawExpr typechecks expression e and initializes x with the expression
// value or type. If an error occured, x.mode is set to invalid.
// A hint != nil is used as operand type for untyped shifted operands;
// iota >= 0 indicates that the expression is part of a constant declaration.
// cycleOk indicates whether it is ok for a type expression to refer to itself.
//
func (check *checker) exprOrType(x *operand, e ast.Expr, hint Type, iota int, cycleOk bool) {
func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycleOk bool) {
if trace {
check.trace(e.Pos(), "expr(%s, iota = %d, cycleOk = %v)", e, iota, cycleOk)
defer check.untrace("=> %s", x)
}
if check.mapf != nil {
defer check.callRecord(x)
}
switch e := e.(type) {
case *ast.BadExpr:
x.mode = invalid
goto Error // error was reported before
case *ast.Ident:
if e.Name == "_" {
@ -453,13 +484,14 @@ func (check *checker) exprOrType(x *operand, e ast.Expr, hint Type, iota int, cy
}
obj := e.Obj
if obj == nil {
// unresolved identifier (error has been reported before)
goto Error
goto Error // error was reported before
}
if obj.Type == nil {
check.object(obj, cycleOk)
}
check.ident(e, cycleOk)
switch obj.Kind {
case ast.Bad:
goto Error
goto Error // error was reported before
case ast.Pkg:
check.errorf(e.Pos(), "use of package %s not in selector", obj.Name)
goto Error
@ -494,6 +526,9 @@ func (check *checker) exprOrType(x *operand, e ast.Expr, hint Type, iota int, cy
}
x.typ = obj.Type.(Type)
case *ast.Ellipsis:
unimplemented()
case *ast.BasicLit:
x.setConst(e.Kind, e.Value)
if x.mode == invalid {
@ -504,32 +539,41 @@ func (check *checker) exprOrType(x *operand, e ast.Expr, hint Type, iota int, cy
case *ast.FuncLit:
x.mode = value
x.typ = check.typ(e.Type, false)
check.stmt(e.Body)
// TODO(gri) handle errors (e.g. x.typ is not a *Signature)
check.function(x.typ.(*Signature), e.Body)
case *ast.CompositeLit:
// TODO(gri)
// - determine element type if nil
// - deal with map elements
var typ Type
if e.Type != nil {
// TODO(gri) Fix this - just to get going for now
typ = check.typ(e.Type, false)
}
for _, e := range e.Elts {
var x operand
check.expr(&x, e, hint, iota)
// TODO(gri) check assignment compatibility to element type
}
x.mode = value // TODO(gri) composite literals are addressable
// TODO(gri) this is not correct - leave for now to get going
x.mode = variable
x.typ = typ
case *ast.ParenExpr:
check.exprOrType(x, e.X, hint, iota, cycleOk)
check.rawExpr(x, e.X, hint, iota, cycleOk)
case *ast.SelectorExpr:
sel := e.Sel.Name
// If the identifier refers to a package, handle everything here
// so we don't need a "package" mode for operands: package names
// can only appear in qualified identifiers which are mapped to
// selector expressions.
if ident, ok := e.X.(*ast.Ident); ok {
if obj := ident.Obj; obj != nil && obj.Kind == ast.Pkg {
exp := obj.Data.(*ast.Scope).Lookup(e.Sel.Name)
exp := obj.Data.(*ast.Scope).Lookup(sel)
if exp == nil {
check.errorf(e.Sel.Pos(), "cannot refer to unexported %s", e.Sel.Name)
check.errorf(e.Sel.Pos(), "cannot refer to unexported %s", sel)
goto Error
}
// simplified version of the code for *ast.Idents:
@ -554,24 +598,39 @@ func (check *checker) exprOrType(x *operand, e ast.Expr, hint Type, iota int, cy
}
}
// TODO(gri) lots of checks missing below - just raw outline
check.expr(x, e.X, hint, iota)
switch typ := x.typ.(type) {
case *Struct:
if fld := lookupField(typ, e.Sel.Name); fld != nil {
// TODO(gri) only variable if struct is variable
x.mode = variable
x.expr = e
x.typ = fld.Type
return
}
case *Interface:
unimplemented()
case *NamedType:
unimplemented()
}
check.invalidOp(e.Pos(), "%s has no field or method %s", x.typ, e.Sel.Name)
check.exprOrType(x, e.X, nil, iota, false)
if x.mode == invalid {
goto Error
}
mode, typ := lookupField(x.typ, sel)
if mode == invalid {
check.invalidOp(e.Pos(), "%s has no field or method %s", x, sel)
goto Error
}
if x.mode == typexpr {
// method expression
sig, ok := typ.(*Signature)
if !ok {
check.invalidOp(e.Pos(), "%s has no method %s", x, sel)
goto Error
}
// the receiver type becomes the type of the first function
// argument of the method expression's function type
// TODO(gri) at the moment, method sets don't correctly track
// pointer vs non-pointer receivers -> typechecker is too lenient
arg := ast.NewObj(ast.Var, "")
arg.Type = x.typ
x.mode = value
x.typ = &Signature{
Params: append(ObjList{arg}, sig.Params...),
Results: sig.Results,
IsVariadic: sig.IsVariadic,
}
} else {
// regular selector
x.mode = mode
x.typ = typ
}
case *ast.IndexExpr:
check.expr(x, e.X, hint, iota)
@ -607,7 +666,7 @@ func (check *checker) exprOrType(x *operand, e ast.Expr, hint Type, iota int, cy
case *Map:
// TODO(gri) check index type
x.mode = variable
x.mode = valueok
x.typ = typ.Elt
return
}
@ -684,7 +743,7 @@ func (check *checker) exprOrType(x *operand, e ast.Expr, hint Type, iota int, cy
case *ast.TypeAssertExpr:
check.expr(x, e.X, hint, iota)
if _, ok := x.typ.(*Interface); !ok {
if _, ok := underlying(x.typ).(*Interface); !ok {
check.invalidOp(e.X.Pos(), "non-interface type %s in type assertion", x.typ)
// ok to continue
}
@ -695,9 +754,10 @@ func (check *checker) exprOrType(x *operand, e ast.Expr, hint Type, iota int, cy
case *ast.CallExpr:
check.exprOrType(x, e.Fun, nil, iota, false)
if x.mode == typexpr {
if x.mode == invalid {
goto Error
} else if x.mode == typexpr {
check.conversion(x, e, x.typ, iota)
} else if sig, ok := underlying(x.typ).(*Signature); ok {
// check parameters
// TODO(gri) complete this
@ -743,9 +803,6 @@ func (check *checker) exprOrType(x *operand, e ast.Expr, hint Type, iota int, cy
check.exprOrType(x, e.X, hint, iota, true)
switch x.mode {
case invalid:
// ignore - error reported before
case novalue:
check.errorf(x.pos(), "%s used as value or type", x)
goto Error
case typexpr:
x.typ = &Pointer{Base: x.typ}
@ -774,11 +831,18 @@ func (check *checker) exprOrType(x *operand, e ast.Expr, hint Type, iota int, cy
case *ast.ArrayType:
if e.Len != nil {
var n int64 = -1
if ellip, ok := e.Len.(*ast.Ellipsis); ok {
// TODO(gri) need to check somewhere that [...]T types are only used with composite literals
if ellip.Elt != nil {
check.invalidAST(ellip.Pos(), "ellipsis only expected")
// ok to continue
}
} else {
check.expr(x, e.Len, nil, 0)
if x.mode == invalid {
goto Error
}
var n int64 = -1
if x.mode == constant {
if i, ok := x.val.(int64); ok && i == int64(int(i)) {
n = i
@ -789,6 +853,7 @@ func (check *checker) exprOrType(x *operand, e ast.Expr, hint Type, iota int, cy
// ok to continue
n = 0
}
}
x.typ = &Array{Len: n, Elt: check.typ(e.Elt, cycleOk)}
} else {
x.typ = &Slice{Elt: check.typ(e.Elt, true)}
@ -833,28 +898,34 @@ Error:
x.expr = e
}
// expr is like exprOrType but also checks that e represents a value (rather than a type).
func (check *checker) expr(x *operand, e ast.Expr, hint Type, iota int) {
check.exprOrType(x, e, hint, iota, false)
switch x.mode {
case invalid:
// ignore - error reported before
case novalue:
check.errorf(x.pos(), "%s used as value", x)
case typexpr:
check.errorf(x.pos(), "%s is not an expression", x)
default:
return
}
// exprOrType is like rawExpr but reports an error if e doesn't represents a value or type.
func (check *checker) exprOrType(x *operand, e ast.Expr, hint Type, iota int, cycleOk bool) {
check.rawExpr(x, e, hint, iota, cycleOk)
if x.mode == novalue {
check.errorf(x.pos(), "%s used as value or type", x)
x.mode = invalid
}
}
// typ is like exprOrType but also checks that e represents a type (rather than a value).
// If an error occured, the result is Typ[Invalid].
// expr is like rawExpr but reports an error if e doesn't represents a value.
func (check *checker) expr(x *operand, e ast.Expr, hint Type, iota int) {
check.rawExpr(x, e, hint, iota, false)
switch x.mode {
case novalue:
check.errorf(x.pos(), "%s used as value", x)
x.mode = invalid
case typexpr:
check.errorf(x.pos(), "%s is not an expression", x)
x.mode = invalid
}
}
// expr is like rawExpr but reports an error if e doesn't represents a type.
// It returns e's type, or Typ[Invalid] if an error occured.
//
func (check *checker) typ(e ast.Expr, cycleOk bool) Type {
var x operand
check.exprOrType(&x, e, nil, -1, cycleOk)
check.rawExpr(&x, e, nil, -1, cycleOk)
switch x.mode {
case invalid:
// ignore - error reported before

View File

@ -84,10 +84,6 @@ func FindPkg(path, srcDir string) (filename, id string) {
// in error messages.
//
func GcImportData(imports map[string]*ast.Object, filename, id string, data *bufio.Reader) (pkg *ast.Object, err error) {
if trace {
fmt.Printf("importing %s (%s)\n", id, filename)
}
// support for gcParser error handling
defer func() {
if r := recover(); r != nil {
@ -185,7 +181,8 @@ func (p *gcParser) next() {
default:
p.lit = ""
}
if trace {
// leave for debugging
if false {
fmt.Printf("%s: %q -> %q\n", scanner.TokenString(p.tok), p.scanner.TokenText(), p.lit)
}
}
@ -202,7 +199,7 @@ func (p *gcParser) declare(scope *ast.Scope, kind ast.ObjKind, name string) *ast
// otherwise create a new object and insert it into the package scope
obj := ast.NewObj(kind, name)
if scope.Insert(obj) != nil {
p.errorf("already declared: %v %s", kind, obj.Name)
unreachable() // Lookup should have found it
}
// if the new type object is a named type it may be referred
@ -397,6 +394,7 @@ func (p *gcParser) parseField() *StructField {
// anonymous field - typ must be T or *T and T must be a type name
if typ, ok := deref(f.Type).(*NamedType); ok && typ.Obj != nil {
f.Name = typ.Obj.Name
f.IsAnonymous = true
} else {
p.errorf("anonymous field expected")
}
@ -442,7 +440,7 @@ func (p *gcParser) parseParameter() (par *ast.Object, isVariadic bool) {
ptyp := p.parseType()
// ignore argument tag (e.g. "noescape")
if p.tok == scanner.String {
p.expect(scanner.String)
p.next()
}
par = ast.NewObj(ast.Var, name)
par.Type = ptyp
@ -507,9 +505,9 @@ func (p *gcParser) parseSignature() *Signature {
// MethodList = Method { ";" Method } .
// Method = Name Signature .
//
// (The methods of embedded interfaces are always "inlined"
// The methods of embedded interfaces are always "inlined"
// by the compiler and thus embedded interfaces are never
// visible in the export data.)
// visible in the export data.
//
func (p *gcParser) parseInterfaceType() Type {
var methods ObjList
@ -558,6 +556,7 @@ func (p *gcParser) parseChanType() Type {
// BasicType | TypeName | ArrayType | SliceType | StructType |
// PointerType | FuncType | InterfaceType | MapType | ChanType |
// "(" Type ")" .
//
// BasicType = ident .
// TypeName = ExportedName .
// SliceType = "[" "]" Type .
@ -783,10 +782,14 @@ func (p *gcParser) parseVarDecl() {
obj.Type = p.parseType()
}
// FuncBody = "{" ... "}" .
// Func = Signature [ Body ] .
// Body = "{" ... "}" .
//
func (p *gcParser) parseFuncBody() {
p.expect('{')
func (p *gcParser) parseFunc(scope *ast.Scope, name string) {
obj := p.declare(scope, ast.Fun, name)
obj.Type = p.parseSignature()
if p.tok == '{' {
p.next()
for i := 1; i > 0; p.next() {
switch p.tok {
case '{':
@ -795,33 +798,45 @@ func (p *gcParser) parseFuncBody() {
i--
}
}
}
// FuncDecl = "func" ExportedName Signature [ FuncBody ] .
//
func (p *gcParser) parseFuncDecl() {
// "func" already consumed
pkg, name := p.parseExportedName()
obj := p.declare(pkg.Data.(*ast.Scope), ast.Fun, name)
obj.Type = p.parseSignature()
if p.tok == '{' {
p.parseFuncBody()
}
}
// MethodDecl = "func" Receiver Name Signature .
// Receiver = "(" ( identifier | "?" ) [ "*" ] ExportedName ")" [ FuncBody ].
// MethodDecl = "func" Receiver Name Func .
// Receiver = "(" ( identifier | "?" ) [ "*" ] ExportedName ")" .
//
func (p *gcParser) parseMethodDecl() {
// "func" already consumed
p.expect('(')
p.parseParameter() // receiver
recv, _ := p.parseParameter() // receiver
p.expect(')')
p.parseName() // unexported method names in imports are qualified with their package.
p.parseSignature()
if p.tok == '{' {
p.parseFuncBody()
// determine receiver base type object
typ := recv.Type.(Type)
if ptr, ok := typ.(*Pointer); ok {
typ = ptr.Base
}
obj := typ.(*NamedType).Obj
// determine base type scope
var scope *ast.Scope
if obj.Data != nil {
scope = obj.Data.(*ast.Scope)
} else {
scope = ast.NewScope(nil)
obj.Data = scope
}
// declare method in base type scope
name := p.parseName() // unexported method names in imports are qualified with their package.
p.parseFunc(scope, name)
}
// FuncDecl = "func" ExportedName Func .
//
func (p *gcParser) parseFuncDecl() {
// "func" already consumed
pkg, name := p.parseExportedName()
p.parseFunc(pkg.Data.(*ast.Scope), name)
}
// Decl = [ ImportDecl | ConstDecl | TypeDecl | VarDecl | FuncDecl | MethodDecl ] "\n" .

View File

@ -69,7 +69,11 @@ func (x *operand) String() string {
}
buf.WriteString(operandModeString[x.mode])
if x.mode == constant {
fmt.Fprintf(&buf, " %v", x.val)
format := " %v"
if isString(x.typ) {
format = " %q"
}
fmt.Fprintf(&buf, format, x.val)
}
if x.mode != novalue && (x.mode != constant || !isUntyped(x.typ)) {
fmt.Fprintf(&buf, " of type %s", typeString(x.typ))
@ -125,6 +129,11 @@ func (x *operand) implements(T *Interface) bool {
return true
}
// isNil reports whether x is the predeclared nil constant.
func (x *operand) isNil() bool {
return x.mode == constant && x.val == nilConst
}
// isAssignable reports whether x is assignable to a variable of type T.
func (x *operand) isAssignable(T Type) bool {
if x.mode == invalid || T == Typ[Invalid] {
@ -163,7 +172,7 @@ func (x *operand) isAssignable(T Type) bool {
// x is the predeclared identifier nil and T is a pointer,
// function, slice, map, channel, or interface type
if x.typ == Typ[UntypedNil] {
if x.isNil() {
switch Tu.(type) {
case *Pointer, *Signature, *Slice, *Map, *Chan, *Interface:
return true
@ -185,17 +194,135 @@ func (x *operand) isInteger() bool {
x.mode == constant && isRepresentableConst(x.val, UntypedInt)
}
// lookupField returns the struct field with the given name in typ.
// If no such field exists, the result is nil.
// TODO(gri) should this be a method of Struct?
//
func lookupField(typ *Struct, name string) *StructField {
// TODO(gri) deal with embedding and conflicts - this is
// a very basic version to get going for now.
type lookupResult struct {
mode operandMode
typ Type
}
// lookupFieldRecursive is similar to FieldByNameFunc in reflect/type.go
// TODO(gri): FieldByNameFunc seems more complex - what are we missing?
func lookupFieldRecursive(list []*NamedType, name string) (res lookupResult) {
// visited records the types that have been searched already
visited := make(map[Type]bool)
// embedded types of the next lower level
var next []*NamedType
potentialMatch := func(mode operandMode, typ Type) bool {
if res.mode != invalid {
// name appeared multiple times at this level - annihilate
res.mode = invalid
return false
}
res.mode = mode
res.typ = typ
return true
}
// look for name in all types of this level
for len(list) > 0 {
assert(res.mode == invalid)
for _, typ := range list {
if visited[typ] {
// We have seen this type before, at a higher level.
// That higher level shadows the lower level we are
// at now, and either we would have found or not
// found the field before. Ignore this type now.
continue
}
visited[typ] = true
// look for a matching attached method
if data := typ.Obj.Data; data != nil {
if obj := data.(*ast.Scope).Lookup(name); obj != nil {
assert(obj.Type != nil)
if !potentialMatch(value, obj.Type.(Type)) {
return // name collision
}
}
}
switch typ := underlying(typ).(type) {
case *Struct:
// look for a matching fieldm and collect embedded types
for _, f := range typ.Fields {
if f.Name == name {
return f
assert(f.Type != nil)
if !potentialMatch(variable, f.Type) {
return // name collision
}
continue
}
// Collect embedded struct fields for searching the next
// lower level, but only if we have not seen a match yet.
// Embedded fields are always of the form T or *T where
// T is a named type.
if f.IsAnonymous && res.mode == invalid {
next = append(next, deref(f.Type).(*NamedType))
}
}
return nil
case *Interface:
// look for a matching method
for _, obj := range typ.Methods {
if obj.Name == name {
assert(obj.Type != nil)
if !potentialMatch(value, obj.Type.(Type)) {
return // name collision
}
}
}
}
}
if res.mode != invalid {
// we found a match on this level
return
}
// search the next level
list = append(list[:0], next...) // don't waste underlying arrays
next = next[:0]
}
return
}
func lookupField(typ Type, name string) (operandMode, Type) {
typ = deref(typ)
if typ, ok := typ.(*NamedType); ok {
if data := typ.Obj.Data; data != nil {
if obj := data.(*ast.Scope).Lookup(name); obj != nil {
assert(obj.Type != nil)
return value, obj.Type.(Type)
}
}
}
switch typ := underlying(typ).(type) {
case *Struct:
var list []*NamedType
for _, f := range typ.Fields {
if f.Name == name {
return variable, f.Type
}
if f.IsAnonymous {
list = append(list, deref(f.Type).(*NamedType))
}
}
if len(list) > 0 {
res := lookupFieldRecursive(list, name)
return res.mode, res.typ
}
case *Interface:
for _, obj := range typ.Methods {
if obj.Name == name {
return value, obj.Type.(Type)
}
}
}
// not found
return invalid, nil
}

View File

@ -59,11 +59,16 @@ func isOrdered(typ Type) bool {
return ok && t.Info&IsOrdered != 0
}
func isConstType(typ Type) bool {
t, ok := underlying(typ).(*Basic)
return ok && t.Info&IsConstType != 0
}
func isComparable(typ Type) bool {
switch t := underlying(typ).(type) {
case *Basic:
return t.Kind != Invalid
case *Pointer, *Chan, *Interface:
return t.Kind != Invalid && t.Kind != UntypedNil
case *Pointer, *Interface, *Chan:
// assumes types are equal for pointers and channels
return true
case *Struct:
@ -79,6 +84,14 @@ func isComparable(typ Type) bool {
return false
}
func hasNil(typ Type) bool {
switch underlying(typ).(type) {
case *Slice, *Pointer, *Signature, *Interface, *Map, *Chan:
return true
}
return false
}
// identical returns true if x and y are identical.
func isIdentical(x, y Type) bool {
if x == y {

View File

@ -27,25 +27,73 @@ func (check *checker) assignOperand(z, x *operand) {
}
}
// assignment typechecks a single assignment of the form lhs := x. If decl is set,
// the lhs operand must be an identifier. If its type is not set, it is deduced
// from the type or value of x.
// assign1to1 typechecks a single assignment of the form lhs := rhs (if rhs != nil),
// or lhs := x (if rhs == nil). If decl is set, the lhs operand must be an identifier.
// If its type is not set, it is deduced from the type or value of x. If lhs has a
// type it is used as a hint when evaluating rhs, if present.
//
func (check *checker) assignment(lhs ast.Expr, x *operand, decl bool) {
if decl {
ident, ok := lhs.(*ast.Ident)
if !ok {
func (check *checker) assign1to1(lhs, rhs ast.Expr, x *operand, decl bool, iota int) {
ident, _ := lhs.(*ast.Ident)
if x == nil {
assert(rhs != nil)
x = new(operand)
}
if ident != nil && ident.Name == "_" {
// anything can be assigned to a blank identifier - check rhs only, if present
if rhs != nil {
check.expr(x, rhs, nil, iota)
}
return
}
if !decl {
// regular assignment - start with lhs to obtain a type hint
var z operand
check.expr(&z, lhs, nil, -1)
if z.mode == invalid {
z.typ = nil // so we can proceed with rhs
}
if rhs != nil {
check.expr(x, rhs, z.typ, -1)
if x.mode == invalid {
return
}
}
check.assignOperand(&z, x)
if x.mode != invalid && z.mode == constant {
check.errorf(x.pos(), "cannot assign %s to %s", x, &z)
}
return
}
// declaration - lhs must be an identifier
if ident == nil {
check.errorf(lhs.Pos(), "cannot declare %s", lhs)
return
}
// lhs may or may not be typed yet
obj := ident.Obj
if obj.Type == nil {
// determine type from rhs expression
var typ Type = Typ[Invalid]
var typ Type
if obj.Type != nil {
typ = obj.Type.(Type)
}
if rhs != nil {
check.expr(x, rhs, typ, iota)
// continue even if x.mode == invalid
}
if typ == nil {
// determine lhs type from rhs expression;
// for variables, convert untyped types to
// default types
typ = Typ[Invalid]
if x.mode != invalid {
typ = x.typ
// determine the default type for variables
if obj.Kind == ast.Var && isUntyped(typ) {
typ = defaultType(typ)
}
@ -53,135 +101,7 @@ func (check *checker) assignment(lhs ast.Expr, x *operand, decl bool) {
obj.Type = typ
}
var z operand
switch obj.Kind {
case ast.Con:
z.mode = constant
case ast.Var:
z.mode = variable
default:
unreachable()
}
z.expr = ident
z.typ = obj.Type.(Type)
check.assignOperand(&z, x)
// for constants, set the constant value
if obj.Kind == ast.Con {
assert(obj.Data == nil)
if x.mode != invalid && x.mode != constant {
check.errorf(x.pos(), "%s is not constant", x) // TODO(gri) better error position
x.mode = invalid
}
if x.mode == constant {
obj.Data = x.val
} else {
// set the constant to the type's zero value to reduce spurious errors
// TODO(gri) factor this out - useful elsewhere
switch typ := underlying(obj.Type.(Type)); {
case typ == Typ[Invalid]:
// ignore
case isBoolean(typ):
obj.Data = false
case isNumeric(typ):
obj.Data = int64(0)
case isString(typ):
obj.Data = ""
default:
check.dump("%s: typ(%s) = %s", obj.Pos(), obj.Name, typ)
unreachable()
}
}
}
return
}
// regular assignment
var z operand
check.expr(&z, lhs, nil, -1)
check.assignOperand(&z, x)
if x.mode != invalid && z.mode == constant {
check.errorf(x.pos(), "cannot assign %s to %s", x, z)
}
}
func (check *checker) assign1to1(lhs, rhs ast.Expr, decl bool, iota int) {
ident, _ := lhs.(*ast.Ident)
if ident != nil && ident.Name == "_" {
// anything can be assigned to a blank identifier - check rhs only
var x operand
check.expr(&x, rhs, nil, iota)
return
}
if !decl {
// regular assignment - start with lhs[0] to obtain a type hint
var z operand
check.expr(&z, lhs, nil, -1)
if z.mode == invalid {
z.typ = nil // so we can proceed with rhs
}
var x operand
check.expr(&x, rhs, z.typ, -1)
if x.mode == invalid {
return
}
check.assignOperand(&z, &x)
return
}
// declaration - rhs may or may not be typed yet
if ident == nil {
check.errorf(lhs.Pos(), "cannot declare %s", lhs)
return
}
obj := ident.Obj
var typ Type
if obj.Type != nil {
typ = obj.Type.(Type)
}
var x operand
check.expr(&x, rhs, typ, iota)
if x.mode == invalid {
return
}
if typ == nil {
// determine lhs type from rhs expression;
// for variables, convert untyped types to
// default types
typ = x.typ
if obj.Kind == ast.Var && isUntyped(typ) {
// TODO(gri) factor this out
var k BasicKind
switch typ.(*Basic).Kind {
case UntypedBool:
k = Bool
case UntypedRune:
k = Rune
case UntypedInt:
k = Int
case UntypedFloat:
k = Float64
case UntypedComplex:
k = Complex128
case UntypedString:
k = String
default:
unreachable()
}
typ = Typ[k]
}
obj.Type = typ
}
if x.mode != invalid {
var z operand
switch obj.Kind {
case ast.Con:
@ -193,17 +113,26 @@ func (check *checker) assign1to1(lhs, rhs ast.Expr, decl bool, iota int) {
}
z.expr = ident
z.typ = typ
check.assignOperand(&z, &x)
check.assignOperand(&z, x)
}
// for constants, set their value
if obj.Kind == ast.Con {
assert(obj.Data == nil)
if x.mode != constant {
if x.mode != invalid {
if x.mode == constant {
if isConstType(x.typ) {
obj.Data = x.val
} else {
check.errorf(x.pos(), "%s has invalid constant type", x)
}
} else {
check.errorf(x.pos(), "%s is not constant", x)
// set the constant to the type's zero value to reduce spurious errors
// TODO(gri) factor this out - useful elsewhere
switch typ := underlying(typ); {
}
}
if obj.Data == nil {
// set the constant to its type's zero value to reduce spurious errors
switch typ := underlying(obj.Type.(Type)); {
case typ == Typ[Invalid]:
// ignore
case isBoolean(typ):
@ -212,12 +141,13 @@ func (check *checker) assign1to1(lhs, rhs ast.Expr, decl bool, iota int) {
obj.Data = int64(0)
case isString(typ):
obj.Data = ""
case hasNil(typ):
obj.Data = nilConst
default:
unreachable()
// in all other cases just prevent use of the constant
obj.Kind = ast.Bad
}
return
}
obj.Data = x.val
}
}
@ -228,18 +158,18 @@ func (check *checker) assign1to1(lhs, rhs ast.Expr, decl bool, iota int) {
// Precondition: len(lhs) > 0 .
//
func (check *checker) assignNtoM(lhs, rhs []ast.Expr, decl bool, iota int) {
assert(len(lhs) >= 1)
assert(len(lhs) > 0)
if len(lhs) == len(rhs) {
for i, e := range rhs {
check.assign1to1(lhs[i], e, decl, iota)
check.assign1to1(lhs[i], e, nil, decl, iota)
}
return
}
if len(rhs) == 1 {
// len(lhs) >= 2; therefore a correct rhs expression
// cannot be a shift and we don't need a type hint -
// len(lhs) > 1, therefore a correct rhs expression
// cannot be a shift and we don't need a type hint;
// ok to evaluate rhs first
var x operand
check.expr(&x, rhs[0], nil, iota)
@ -253,7 +183,7 @@ func (check *checker) assignNtoM(lhs, rhs []ast.Expr, decl bool, iota int) {
for i, typ := range t.list {
x.expr = nil // TODO(gri) should do better here
x.typ = typ
check.assignment(lhs[i], &x, decl)
check.assign1to1(lhs[i], nil, &x, decl, iota)
}
return
}
@ -261,11 +191,11 @@ func (check *checker) assignNtoM(lhs, rhs []ast.Expr, decl bool, iota int) {
if x.mode == valueok && len(lhs) == 2 {
// comma-ok expression
x.mode = value
check.assignment(lhs[0], &x, decl)
check.assign1to1(lhs[0], nil, &x, decl, iota)
x.mode = value
x.typ = Typ[UntypedBool]
check.assignment(lhs[1], &x, decl)
check.assign1to1(lhs[1], nil, &x, decl, iota)
return
}
}
@ -303,10 +233,11 @@ func (check *checker) stmt(s ast.Stmt) {
// ignore
case *ast.DeclStmt:
unimplemented()
check.decl(s.Decl)
case *ast.LabeledStmt:
unimplemented()
// TODO(gri) anything to do with label itself?
check.stmt(s.Stmt)
case *ast.ExprStmt:
var x operand
@ -332,7 +263,7 @@ func (check *checker) stmt(s ast.Stmt) {
check.errorf(s.Pos(), "%s not used", s.X)
// ok to continue
}
check.exprOrType(&x, s.X, nil, -1, false)
check.rawExpr(&x, s.X, nil, -1, false)
if x.mode == typexpr {
check.errorf(x.pos(), "%s is not an expression", x)
}
@ -349,7 +280,21 @@ func (check *checker) stmt(s ast.Stmt) {
}
case *ast.IncDecStmt:
unimplemented()
var op token.Token
switch s.Tok {
case token.INC:
op = token.ADD
case token.DEC:
op = token.SUB
default:
check.invalidAST(s.TokPos, "unknown inc/dec operation %s", s.Tok)
return
}
var x, y operand
check.expr(&x, s.X, nil, -1)
check.expr(&y, &ast.BasicLit{ValuePos: x.pos(), Kind: token.INT, Value: "1"}, nil, -1) // use x's position
check.binary(&x, &y, op, nil)
check.assign1to1(s.X, nil, &x, false, -1)
case *ast.AssignStmt:
switch s.Tok {
@ -390,12 +335,15 @@ func (check *checker) stmt(s ast.Stmt) {
op = token.SHR
case token.AND_NOT_ASSIGN:
op = token.AND_NOT
default:
check.invalidAST(s.TokPos, "unknown assignment operation %s", s.Tok)
return
}
var x, y operand
check.expr(&x, s.Lhs[0], nil, -1)
check.expr(&y, s.Rhs[0], nil, -1)
check.binary(&x, &y, op, nil)
check.assignment(s.Lhs[0], &x, false)
check.assign1to1(s.Lhs[0], nil, &x, false, -1)
}
case *ast.GoStmt:
@ -405,7 +353,28 @@ func (check *checker) stmt(s ast.Stmt) {
unimplemented()
case *ast.ReturnStmt:
unimplemented()
sig := check.functypes[len(check.functypes)-1]
if n := len(sig.Results); n > 0 {
// TODO(gri) should not have to compute lhs, named every single time - clean this up
lhs := make([]ast.Expr, n)
named := false // if set, function has named results
for i, res := range sig.Results {
if len(res.Name) > 0 {
// a blank (_) result parameter is a named result parameter!
named = true
}
name := ast.NewIdent(res.Name)
name.NamePos = s.Pos()
name.Obj = res
lhs[i] = name
}
if len(s.Results) > 0 || !named {
// TODO(gri) assignNtoM should perhaps not require len(lhs) > 0
check.assignNtoM(lhs, s.Results, false, -1)
}
} else if len(s.Results) > 0 {
check.errorf(s.Pos(), "no result values expected")
}
case *ast.BranchStmt:
unimplemented()
@ -429,6 +398,7 @@ func (check *checker) stmt(s ast.Stmt) {
if s.Tag != nil {
check.expr(&x, s.Tag, nil, -1)
} else {
// TODO(gri) should provide a position (see IncDec) for good error messages
x.mode = constant
x.typ = Typ[UntypedBool]
x.val = true
@ -450,7 +420,15 @@ func (check *checker) stmt(s ast.Stmt) {
unimplemented()
case *ast.SelectStmt:
unimplemented()
for _, s := range s.Body.List {
c, ok := s.(*ast.CommClause)
if !ok {
check.invalidAST(s.Pos(), "communication clause expected")
continue
}
check.optionalStmt(c.Comm) // TODO(gri) check correctness of c.Comm (must be Send/RecvStmt)
check.stmtList(c.Body)
}
case *ast.ForStmt:
check.optionalStmt(s.Init)

View File

@ -207,3 +207,9 @@ const (
_b0 = iota
_b1 = assert(iota + iota2 == 5)
)
// special cases
const (
_n0 = nil /* ERROR "invalid constant type" */
_n1 = [ /* ERROR "not constant" */ ]int{}
)

View File

@ -13,3 +13,16 @@ func (T1) m /* ERROR "redeclared" */ () {}
type T3 struct {
f *T3
}
type T6 struct {
x int
}
func (t *T6) m1() int {
return t.x
}
func f() {
var t *T6
t.m1()
}

View File

@ -20,7 +20,7 @@ var (
b9 = *b0 /* ERROR "cannot indirect" */
b10 = &true /* ERROR "cannot take address" */
b11 = &b0
b12 = <-b0 /* ERROR "not defined" */
b12 = <-b0 /* ERROR "cannot receive" */
// int
i0 = 1
@ -41,7 +41,7 @@ var (
i15 = *i0 /* ERROR "cannot indirect" */
i16 = &i0
i17 = *i16
i18 = <-i16 /* ERROR "not defined" */
i18 = <-i16 /* ERROR "cannot receive" */
// uint
u0 = uint(1)
@ -62,7 +62,7 @@ var (
u15 = *u0 /* ERROR "cannot indirect" */
u16 = &u0
u17 = *u16
u18 = <-u16 /* ERROR "not defined" */
u18 = <-u16 /* ERROR "cannot receive" */
// float64
f0 = float64(1)
@ -83,7 +83,7 @@ var (
f15 = *f0 /* ERROR "cannot indirect" */
f16 = &f0
f17 = *u16
f18 = <-u16 /* ERROR "not defined" */
f18 = <-u16 /* ERROR "cannot receive" */
// complex128
c0 = complex128(1)
@ -104,7 +104,7 @@ var (
c15 = *c0 /* ERROR "cannot indirect" */
c16 = &c0
c17 = *u16
c18 = <-u16 /* ERROR "not defined" */
c18 = <-u16 /* ERROR "cannot receive" */
// string
s0 = "foo"
@ -115,7 +115,7 @@ var (
s5 = *s4 /* ERROR "cannot indirect" */
s6 = &s4
s7 = *s6
s8 = <-s7 /* ERROR "not defined" */
s8 = <-s7 /* ERROR "cannot receive" */
// channel
ch chan int
@ -130,6 +130,6 @@ var (
ch6 = *ch5
ch7 = <-ch
ch8 = <-rc
ch9 = <-sc /* ERROR "not defined" */
ch9 = <-sc /* ERROR "cannot receive" */
)

View File

@ -5,3 +5,8 @@
// comparisons
package expr2
// corner cases
var (
v0 = nil /* ERROR "cannot compare" */ == nil
)

View File

@ -118,3 +118,17 @@ func indexes() {
_ = s[1<<30] // no compile-time error here
}
type T struct {
x int
}
func (*T) m() {}
func method_expressions() {
_ = T /* ERROR "no field or method" */ .a
_ = T /* ERROR "has no method" */ .x
_ = T.m
var f func(*T) = (*T).m
var g func(*T) = ( /* ERROR "cannot assign" */ T).m
}

View File

@ -31,6 +31,22 @@ func _() {
s += 1 /* ERROR "cannot convert.*string" */
}
func _incdecs() {
const c = 3.14
c /* ERROR "cannot assign" */ ++
s := "foo"
s /* ERROR "cannot convert" */ --
3.14 /* ERROR "cannot assign" */ ++
var (
x int
y float32
z complex128
)
x++
y--
z++
}
func _sends() {
var ch chan int
var rch <-chan int
@ -40,3 +56,19 @@ func _sends() {
ch /* ERROR "cannot send" */ <- "foo"
ch <- x
}
func _selects() {
select {}
var (
ch chan int
sc chan <- bool
x int
)
select {
case <-ch:
ch <- x
case t, ok := <-ch:
x = t
case <-sc /* ERROR "cannot receive from send-only channel" */ :
}
}

View File

@ -88,6 +88,7 @@ const (
IsOrdered = IsInteger | IsFloat | IsString
IsNumeric = IsInteger | IsFloat | IsComplex
IsConstType = IsBoolean | IsNumeric | IsString
)
// A Basic represents a basic type.
@ -212,9 +213,8 @@ type Chan struct {
// A NamedType represents a named type as declared in a type declaration.
type NamedType struct {
implementsType
Obj *ast.Object // corresponding declared object
Underlying Type // nil if not fully declared yet, never a *NamedType
Methods ObjList // associated methods; or nil
Obj *ast.Object // corresponding declared object; Obj.Data.(*ast.Scope) contains methods, if any
Underlying Type // nil if not fully declared yet; never a *NamedType
}
// An ObjList represents an ordered (in some fashion) list of objects.

View File

@ -141,11 +141,11 @@ var testExprs = []testEntry{
// arbitrary expressions
dup("&x"),
dup("*x"),
dup("*&x"),
dup("(x)"),
dup("x + y"),
dup("x + y * 10"),
dup("s.foo"),
dup("t.foo"),
dup("s[0]"),
dup("s[x:y]"),
dup("s[:y]"),
@ -158,12 +158,12 @@ var testExprs = []testEntry{
{"func(a, b int) []int {}()[x]", "(func literal)()[x]"},
{"[]int{1, 2, 3}", "(composite literal)"},
{"[]int{1, 2, 3}[x:]", "(composite literal)[x:]"},
{"x.([]string)", "x.(...)"},
{"i.([]string)", "i.(...)"},
}
func TestExprs(t *testing.T) {
for _, test := range testExprs {
src := "package p; var _ = " + test.src + "; var (x, y int; s []string; f func(int, float32))"
src := "package p; var _ = " + test.src + "; var (x, y int; s []string; f func(int, float32) int; i interface{}; t interface { foo() })"
pkg, err := makePkg(t, src)
if err != nil {
t.Errorf("%s: %s", src, err)