mirror of
https://github.com/golang/go
synced 2024-11-22 00:44:39 -07:00
crypto/rsa: support > 3 primes.
With full multi-prime support we can support version 1 PKCS#1 private keys. This means exporting all the members of rsa.PrivateKey, thus making the API a little messy. However there has already been another request to export this so it seems to be something that's needed. Over time, rsa.GenerateMultiPrimeKey will replace rsa.GenerateKey, but I need to work on the prime balance first because we're no longer generating primes which are a multiples of 8 bits. Fixes #987. R=rsc CC=golang-dev https://golang.org/cl/4378046
This commit is contained in:
parent
781df132f9
commit
555685e26c
@ -164,8 +164,10 @@ func (pk *PrivateKey) parseRSAPrivateKey(data []byte) (err os.Error) {
|
||||
}
|
||||
|
||||
rsaPriv.D = new(big.Int).SetBytes(d)
|
||||
rsaPriv.P = new(big.Int).SetBytes(p)
|
||||
rsaPriv.Q = new(big.Int).SetBytes(q)
|
||||
rsaPriv.Primes = make([]*big.Int, 2)
|
||||
rsaPriv.Primes[0] = new(big.Int).SetBytes(p)
|
||||
rsaPriv.Primes[1] = new(big.Int).SetBytes(q)
|
||||
rsaPriv.Precompute()
|
||||
pk.PrivateKey = rsaPriv
|
||||
pk.Encrypted = false
|
||||
pk.encryptedData = nil
|
||||
|
@ -13,7 +13,6 @@ import (
|
||||
"hash"
|
||||
"io"
|
||||
"os"
|
||||
"sync"
|
||||
)
|
||||
|
||||
var bigZero = big.NewInt(0)
|
||||
@ -90,50 +89,60 @@ type PublicKey struct {
|
||||
|
||||
// A PrivateKey represents an RSA key
|
||||
type PrivateKey struct {
|
||||
PublicKey // public part.
|
||||
D *big.Int // private exponent
|
||||
P, Q, R *big.Int // prime factors of N (R may be nil)
|
||||
PublicKey // public part.
|
||||
D *big.Int // private exponent
|
||||
Primes []*big.Int // prime factors of N, has >= 2 elements.
|
||||
|
||||
rwMutex sync.RWMutex // protects the following
|
||||
dP, dQ, dR *big.Int // D mod (P-1) (or mod Q-1 etc)
|
||||
qInv *big.Int // q^-1 mod p
|
||||
pq *big.Int // P*Q
|
||||
tr *big.Int // pq·tr ≡ 1 mod r
|
||||
// Precomputed contains precomputed values that speed up private
|
||||
// operations, if availible.
|
||||
Precomputed PrecomputedValues
|
||||
}
|
||||
|
||||
type PrecomputedValues struct {
|
||||
Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
|
||||
Qinv *big.Int // Q^-1 mod Q
|
||||
|
||||
// CRTValues is used for the 3rd and subsequent primes. Due to a
|
||||
// historical accident, the CRT for the first two primes is handled
|
||||
// differently in PKCS#1 and interoperability is sufficiently
|
||||
// important that we mirror this.
|
||||
CRTValues []CRTValue
|
||||
}
|
||||
|
||||
// CRTValue contains the precomputed chinese remainder theorem values.
|
||||
type CRTValue struct {
|
||||
Exp *big.Int // D mod (prime-1).
|
||||
Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
|
||||
R *big.Int // product of primes prior to this (inc p and q).
|
||||
}
|
||||
|
||||
// Validate performs basic sanity checks on the key.
|
||||
// It returns nil if the key is valid, or else an os.Error describing a problem.
|
||||
|
||||
func (priv *PrivateKey) Validate() os.Error {
|
||||
// Check that p, q and, maybe, r are prime. Note that this is just a
|
||||
// sanity check. Since the random witnesses chosen by ProbablyPrime are
|
||||
// deterministic, given the candidate number, it's easy for an attack
|
||||
// to generate composites that pass this test.
|
||||
if !big.ProbablyPrime(priv.P, 20) {
|
||||
return os.ErrorString("P is composite")
|
||||
}
|
||||
if !big.ProbablyPrime(priv.Q, 20) {
|
||||
return os.ErrorString("Q is composite")
|
||||
}
|
||||
if priv.R != nil && !big.ProbablyPrime(priv.R, 20) {
|
||||
return os.ErrorString("R is composite")
|
||||
// Check that the prime factors are actually prime. Note that this is
|
||||
// just a sanity check. Since the random witnesses chosen by
|
||||
// ProbablyPrime are deterministic, given the candidate number, it's
|
||||
// easy for an attack to generate composites that pass this test.
|
||||
for _, prime := range priv.Primes {
|
||||
if !big.ProbablyPrime(prime, 20) {
|
||||
return os.ErrorString("Prime factor is composite")
|
||||
}
|
||||
}
|
||||
|
||||
// Check that p*q*r == n.
|
||||
modulus := new(big.Int).Mul(priv.P, priv.Q)
|
||||
if priv.R != nil {
|
||||
modulus.Mul(modulus, priv.R)
|
||||
// Check that Πprimes == n.
|
||||
modulus := new(big.Int).Set(bigOne)
|
||||
for _, prime := range priv.Primes {
|
||||
modulus.Mul(modulus, prime)
|
||||
}
|
||||
if modulus.Cmp(priv.N) != 0 {
|
||||
return os.ErrorString("invalid modulus")
|
||||
}
|
||||
// Check that e and totient(p, q, r) are coprime.
|
||||
pminus1 := new(big.Int).Sub(priv.P, bigOne)
|
||||
qminus1 := new(big.Int).Sub(priv.Q, bigOne)
|
||||
totient := new(big.Int).Mul(pminus1, qminus1)
|
||||
if priv.R != nil {
|
||||
rminus1 := new(big.Int).Sub(priv.R, bigOne)
|
||||
totient.Mul(totient, rminus1)
|
||||
// Check that e and totient(Πprimes) are coprime.
|
||||
totient := new(big.Int).Set(bigOne)
|
||||
for _, prime := range priv.Primes {
|
||||
pminus1 := new(big.Int).Sub(prime, bigOne)
|
||||
totient.Mul(totient, pminus1)
|
||||
}
|
||||
e := big.NewInt(int64(priv.E))
|
||||
gcd := new(big.Int)
|
||||
@ -143,7 +152,7 @@ func (priv *PrivateKey) Validate() os.Error {
|
||||
if gcd.Cmp(bigOne) != 0 {
|
||||
return os.ErrorString("invalid public exponent E")
|
||||
}
|
||||
// Check that de ≡ 1 (mod totient(p, q, r))
|
||||
// Check that de ≡ 1 (mod totient(Πprimes))
|
||||
de := new(big.Int).Mul(priv.D, e)
|
||||
de.Mod(de, totient)
|
||||
if de.Cmp(bigOne) != 0 {
|
||||
@ -154,6 +163,20 @@ func (priv *PrivateKey) Validate() os.Error {
|
||||
|
||||
// GenerateKey generates an RSA keypair of the given bit size.
|
||||
func GenerateKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) {
|
||||
return GenerateMultiPrimeKey(rand, 2, bits)
|
||||
}
|
||||
|
||||
// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
|
||||
// size, as suggested in [1]. Although the public keys are compatible
|
||||
// (actually, indistinguishable) from the 2-prime case, the private keys are
|
||||
// not. Thus it may not be possible to export multi-prime private keys in
|
||||
// certain formats or to subsequently import them into other code.
|
||||
//
|
||||
// Table 1 in [2] suggests maximum numbers of primes for a given size.
|
||||
//
|
||||
// [1] US patent 4405829 (1972, expired)
|
||||
// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
|
||||
func GenerateMultiPrimeKey(rand io.Reader, nprimes int, bits int) (priv *PrivateKey, err os.Error) {
|
||||
priv = new(PrivateKey)
|
||||
// Smaller public exponents lead to faster public key
|
||||
// operations. Since the exponent must be coprime to
|
||||
@ -165,30 +188,41 @@ func GenerateKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) {
|
||||
// [1] http://marc.info/?l=cryptography&m=115694833312008&w=2
|
||||
priv.E = 3
|
||||
|
||||
pminus1 := new(big.Int)
|
||||
qminus1 := new(big.Int)
|
||||
totient := new(big.Int)
|
||||
if nprimes < 2 {
|
||||
return nil, os.ErrorString("rsa.GenerateMultiPrimeKey: nprimes must be >= 2")
|
||||
}
|
||||
|
||||
primes := make([]*big.Int, nprimes)
|
||||
|
||||
NextSetOfPrimes:
|
||||
for {
|
||||
p, err := randomPrime(rand, bits/2)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
todo := bits
|
||||
for i := 0; i < nprimes; i++ {
|
||||
primes[i], err = randomPrime(rand, todo/(nprimes-i))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
todo -= primes[i].BitLen()
|
||||
}
|
||||
|
||||
q, err := randomPrime(rand, bits/2)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
// Make sure that primes is pairwise unequal.
|
||||
for i, prime := range primes {
|
||||
for j := 0; j < i; j++ {
|
||||
if prime.Cmp(primes[j]) == 0 {
|
||||
continue NextSetOfPrimes
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if p.Cmp(q) == 0 {
|
||||
continue
|
||||
n := new(big.Int).Set(bigOne)
|
||||
totient := new(big.Int).Set(bigOne)
|
||||
pminus1 := new(big.Int)
|
||||
for _, prime := range primes {
|
||||
n.Mul(n, prime)
|
||||
pminus1.Sub(prime, bigOne)
|
||||
totient.Mul(totient, pminus1)
|
||||
}
|
||||
|
||||
n := new(big.Int).Mul(p, q)
|
||||
pminus1.Sub(p, bigOne)
|
||||
qminus1.Sub(q, bigOne)
|
||||
totient.Mul(pminus1, qminus1)
|
||||
|
||||
g := new(big.Int)
|
||||
priv.D = new(big.Int)
|
||||
y := new(big.Int)
|
||||
@ -197,85 +231,14 @@ func GenerateKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) {
|
||||
|
||||
if g.Cmp(bigOne) == 0 {
|
||||
priv.D.Add(priv.D, totient)
|
||||
priv.P = p
|
||||
priv.Q = q
|
||||
priv.N = n
|
||||
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// Generate3PrimeKey generates a 3-prime RSA keypair of the given bit size, as
|
||||
// suggested in [1]. Although the public keys are compatible (actually,
|
||||
// indistinguishable) from the 2-prime case, the private keys are not. Thus it
|
||||
// may not be possible to export 3-prime private keys in certain formats or to
|
||||
// subsequently import them into other code.
|
||||
//
|
||||
// Table 1 in [2] suggests that size should be >= 1024 when using 3 primes.
|
||||
//
|
||||
// [1] US patent 4405829 (1972, expired)
|
||||
// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
|
||||
func Generate3PrimeKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) {
|
||||
priv = new(PrivateKey)
|
||||
priv.E = 3
|
||||
|
||||
pminus1 := new(big.Int)
|
||||
qminus1 := new(big.Int)
|
||||
rminus1 := new(big.Int)
|
||||
totient := new(big.Int)
|
||||
|
||||
for {
|
||||
p, err := randomPrime(rand, bits/3)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
todo := bits - p.BitLen()
|
||||
q, err := randomPrime(rand, todo/2)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
todo -= q.BitLen()
|
||||
r, err := randomPrime(rand, todo)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if p.Cmp(q) == 0 ||
|
||||
q.Cmp(r) == 0 ||
|
||||
r.Cmp(p) == 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
n := new(big.Int).Mul(p, q)
|
||||
n.Mul(n, r)
|
||||
pminus1.Sub(p, bigOne)
|
||||
qminus1.Sub(q, bigOne)
|
||||
rminus1.Sub(r, bigOne)
|
||||
totient.Mul(pminus1, qminus1)
|
||||
totient.Mul(totient, rminus1)
|
||||
|
||||
g := new(big.Int)
|
||||
priv.D = new(big.Int)
|
||||
y := new(big.Int)
|
||||
e := big.NewInt(int64(priv.E))
|
||||
big.GcdInt(g, priv.D, y, e, totient)
|
||||
|
||||
if g.Cmp(bigOne) == 0 {
|
||||
priv.D.Add(priv.D, totient)
|
||||
priv.P = p
|
||||
priv.Q = q
|
||||
priv.R = r
|
||||
priv.Primes = primes
|
||||
priv.N = n
|
||||
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
priv.Precompute()
|
||||
return
|
||||
}
|
||||
|
||||
@ -409,23 +372,34 @@ func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
|
||||
return x, true
|
||||
}
|
||||
|
||||
// precompute performs some calculations that speed up private key operations
|
||||
// Precompute performs some calculations that speed up private key operations
|
||||
// in the future.
|
||||
func (priv *PrivateKey) precompute() {
|
||||
priv.dP = new(big.Int).Sub(priv.P, bigOne)
|
||||
priv.dP.Mod(priv.D, priv.dP)
|
||||
func (priv *PrivateKey) Precompute() {
|
||||
if priv.Precomputed.Dp != nil {
|
||||
return
|
||||
}
|
||||
|
||||
priv.dQ = new(big.Int).Sub(priv.Q, bigOne)
|
||||
priv.dQ.Mod(priv.D, priv.dQ)
|
||||
priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
|
||||
priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
|
||||
|
||||
priv.qInv = new(big.Int).ModInverse(priv.Q, priv.P)
|
||||
priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
|
||||
priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
|
||||
|
||||
if priv.R != nil {
|
||||
priv.dR = new(big.Int).Sub(priv.R, bigOne)
|
||||
priv.dR.Mod(priv.D, priv.dR)
|
||||
priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
|
||||
|
||||
priv.pq = new(big.Int).Mul(priv.P, priv.Q)
|
||||
priv.tr = new(big.Int).ModInverse(priv.pq, priv.R)
|
||||
r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
|
||||
priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
|
||||
for i := 2; i < len(priv.Primes); i++ {
|
||||
prime := priv.Primes[i]
|
||||
values := &priv.Precomputed.CRTValues[i-2]
|
||||
|
||||
values.Exp = new(big.Int).Sub(prime, bigOne)
|
||||
values.Exp.Mod(priv.D, values.Exp)
|
||||
|
||||
values.R = new(big.Int).Set(r)
|
||||
values.Coeff = new(big.Int).ModInverse(r, prime)
|
||||
|
||||
r.Mul(r, prime)
|
||||
}
|
||||
}
|
||||
|
||||
@ -463,53 +437,41 @@ func decrypt(rand io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.E
|
||||
}
|
||||
bigE := big.NewInt(int64(priv.E))
|
||||
rpowe := new(big.Int).Exp(r, bigE, priv.N)
|
||||
c.Mul(c, rpowe)
|
||||
c.Mod(c, priv.N)
|
||||
cCopy := new(big.Int).Set(c)
|
||||
cCopy.Mul(cCopy, rpowe)
|
||||
cCopy.Mod(cCopy, priv.N)
|
||||
c = cCopy
|
||||
}
|
||||
|
||||
priv.rwMutex.RLock()
|
||||
|
||||
if priv.dP == nil && priv.P != nil {
|
||||
priv.rwMutex.RUnlock()
|
||||
priv.rwMutex.Lock()
|
||||
if priv.dP == nil && priv.P != nil {
|
||||
priv.precompute()
|
||||
}
|
||||
priv.rwMutex.Unlock()
|
||||
priv.rwMutex.RLock()
|
||||
}
|
||||
|
||||
if priv.dP == nil {
|
||||
if priv.Precomputed.Dp == nil {
|
||||
m = new(big.Int).Exp(c, priv.D, priv.N)
|
||||
} else {
|
||||
// We have the precalculated values needed for the CRT.
|
||||
m = new(big.Int).Exp(c, priv.dP, priv.P)
|
||||
m2 := new(big.Int).Exp(c, priv.dQ, priv.Q)
|
||||
m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
|
||||
m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
|
||||
m.Sub(m, m2)
|
||||
if m.Sign() < 0 {
|
||||
m.Add(m, priv.P)
|
||||
m.Add(m, priv.Primes[0])
|
||||
}
|
||||
m.Mul(m, priv.qInv)
|
||||
m.Mod(m, priv.P)
|
||||
m.Mul(m, priv.Q)
|
||||
m.Mul(m, priv.Precomputed.Qinv)
|
||||
m.Mod(m, priv.Primes[0])
|
||||
m.Mul(m, priv.Primes[1])
|
||||
m.Add(m, m2)
|
||||
|
||||
if priv.dR != nil {
|
||||
// 3-prime CRT.
|
||||
m2.Exp(c, priv.dR, priv.R)
|
||||
for i, values := range priv.Precomputed.CRTValues {
|
||||
prime := priv.Primes[2+i]
|
||||
m2.Exp(c, values.Exp, prime)
|
||||
m2.Sub(m2, m)
|
||||
m2.Mul(m2, priv.tr)
|
||||
m2.Mod(m2, priv.R)
|
||||
m2.Mul(m2, values.Coeff)
|
||||
m2.Mod(m2, prime)
|
||||
if m2.Sign() < 0 {
|
||||
m2.Add(m2, priv.R)
|
||||
m2.Add(m2, prime)
|
||||
}
|
||||
m2.Mul(m2, priv.pq)
|
||||
m2.Mul(m2, values.R)
|
||||
m.Add(m, m2)
|
||||
}
|
||||
}
|
||||
|
||||
priv.rwMutex.RUnlock()
|
||||
|
||||
if ir != nil {
|
||||
// Unblind.
|
||||
m.Mul(m, ir)
|
||||
|
@ -30,7 +30,20 @@ func Test3PrimeKeyGeneration(t *testing.T) {
|
||||
}
|
||||
|
||||
size := 768
|
||||
priv, err := Generate3PrimeKey(rand.Reader, size)
|
||||
priv, err := GenerateMultiPrimeKey(rand.Reader, 3, size)
|
||||
if err != nil {
|
||||
t.Errorf("failed to generate key")
|
||||
}
|
||||
testKeyBasics(t, priv)
|
||||
}
|
||||
|
||||
func Test4PrimeKeyGeneration(t *testing.T) {
|
||||
if testing.Short() {
|
||||
return
|
||||
}
|
||||
|
||||
size := 768
|
||||
priv, err := GenerateMultiPrimeKey(rand.Reader, 4, size)
|
||||
if err != nil {
|
||||
t.Errorf("failed to generate key")
|
||||
}
|
||||
@ -45,6 +58,7 @@ func testKeyBasics(t *testing.T, priv *PrivateKey) {
|
||||
pub := &priv.PublicKey
|
||||
m := big.NewInt(42)
|
||||
c := encrypt(new(big.Int), pub, m)
|
||||
|
||||
m2, err := decrypt(nil, priv, c)
|
||||
if err != nil {
|
||||
t.Errorf("error while decrypting: %s", err)
|
||||
@ -59,7 +73,7 @@ func testKeyBasics(t *testing.T, priv *PrivateKey) {
|
||||
t.Errorf("error while decrypting (blind): %s", err)
|
||||
}
|
||||
if m.Cmp(m3) != 0 {
|
||||
t.Errorf("(blind) got:%v, want:%v", m3, m)
|
||||
t.Errorf("(blind) got:%v, want:%v (%#v)", m3, m, priv)
|
||||
}
|
||||
}
|
||||
|
||||
@ -77,10 +91,12 @@ func BenchmarkRSA2048Decrypt(b *testing.B) {
|
||||
E: 3,
|
||||
},
|
||||
D: fromBase10("9542755287494004433998723259516013739278699355114572217325597900889416163458809501304132487555642811888150937392013824621448709836142886006653296025093941418628992648429798282127303704957273845127141852309016655778568546006839666463451542076964744073572349705538631742281931858219480985907271975884773482372966847639853897890615456605598071088189838676728836833012254065983259638538107719766738032720239892094196108713378822882383694456030043492571063441943847195939549773271694647657549658603365629458610273821292232646334717612674519997533901052790334279661754176490593041941863932308687197618671528035670452762731"),
|
||||
P: fromBase10("130903255182996722426771613606077755295583329135067340152947172868415809027537376306193179624298874215608270802054347609836776473930072411958753044562214537013874103802006369634761074377213995983876788718033850153719421695468704276694983032644416930879093914927146648402139231293035971427838068945045019075433"),
|
||||
Q: fromBase10("109348945610485453577574767652527472924289229538286649661240938988020367005475727988253438647560958573506159449538793540472829815903949343191091817779240101054552748665267574271163617694640513549693841337820602726596756351006149518830932261246698766355347898158548465400674856021497190430791824869615170301029"),
|
||||
Primes: []*big.Int{
|
||||
fromBase10("130903255182996722426771613606077755295583329135067340152947172868415809027537376306193179624298874215608270802054347609836776473930072411958753044562214537013874103802006369634761074377213995983876788718033850153719421695468704276694983032644416930879093914927146648402139231293035971427838068945045019075433"),
|
||||
fromBase10("109348945610485453577574767652527472924289229538286649661240938988020367005475727988253438647560958573506159449538793540472829815903949343191091817779240101054552748665267574271163617694640513549693841337820602726596756351006149518830932261246698766355347898158548465400674856021497190430791824869615170301029"),
|
||||
},
|
||||
}
|
||||
priv.precompute()
|
||||
priv.Precompute()
|
||||
|
||||
c := fromBase10("1000")
|
||||
|
||||
@ -99,11 +115,13 @@ func Benchmark3PrimeRSA2048Decrypt(b *testing.B) {
|
||||
E: 3,
|
||||
},
|
||||
D: fromBase10("10897585948254795600358846499957366070880176878341177571733155050184921896034527397712889205732614568234385175145686545381899460748279607074689061600935843283397424506622998458510302603922766336783617368686090042765718290914099334449154829375179958369993407724946186243249568928237086215759259909861748642124071874879861299389874230489928271621259294894142840428407196932444474088857746123104978617098858619445675532587787023228852383149557470077802718705420275739737958953794088728369933811184572620857678792001136676902250566845618813972833750098806496641114644760255910789397593428910198080271317419213080834885003"),
|
||||
P: fromBase10("1025363189502892836833747188838978207017355117492483312747347695538428729137306368764177201532277413433182799108299960196606011786562992097313508180436744488171474690412562218914213688661311117337381958560443"),
|
||||
Q: fromBase10("3467903426626310123395340254094941045497208049900750380025518552334536945536837294961497712862519984786362199788654739924501424784631315081391467293694361474867825728031147665777546570788493758372218019373"),
|
||||
R: fromBase10("4597024781409332673052708605078359346966325141767460991205742124888960305710298765592730135879076084498363772408626791576005136245060321874472727132746643162385746062759369754202494417496879741537284589047"),
|
||||
Primes: []*big.Int{
|
||||
fromBase10("1025363189502892836833747188838978207017355117492483312747347695538428729137306368764177201532277413433182799108299960196606011786562992097313508180436744488171474690412562218914213688661311117337381958560443"),
|
||||
fromBase10("3467903426626310123395340254094941045497208049900750380025518552334536945536837294961497712862519984786362199788654739924501424784631315081391467293694361474867825728031147665777546570788493758372218019373"),
|
||||
fromBase10("4597024781409332673052708605078359346966325141767460991205742124888960305710298765592730135879076084498363772408626791576005136245060321874472727132746643162385746062759369754202494417496879741537284589047"),
|
||||
},
|
||||
}
|
||||
priv.precompute()
|
||||
priv.Precompute()
|
||||
|
||||
c := fromBase10("1000")
|
||||
|
||||
|
@ -188,8 +188,10 @@ var testPrivateKey = &rsa.PrivateKey{
|
||||
E: 65537,
|
||||
},
|
||||
D: bigFromString("29354450337804273969007277378287027274721892607543397931919078829901848876371746653677097639302788129485893852488285045793268732234230875671682624082413996177431586734171663258657462237320300610850244186316880055243099640544518318093544057213190320837094958164973959123058337475052510833916491060913053867729"),
|
||||
P: bigFromString("11969277782311800166562047708379380720136961987713178380670422671426759650127150688426177829077494755200794297055316163155755835813760102405344560929062149"),
|
||||
Q: bigFromString("10998999429884441391899182616418192492905073053684657075974935218461686523870125521822756579792315215543092255516093840728890783887287417039645833477273829"),
|
||||
Primes: []*big.Int{
|
||||
bigFromString("11969277782311800166562047708379380720136961987713178380670422671426759650127150688426177829077494755200794297055316163155755835813760102405344560929062149"),
|
||||
bigFromString("10998999429884441391899182616418192492905073053684657075974935218461686523870125521822756579792315215543092255516093840728890783887287417039645833477273829"),
|
||||
},
|
||||
}
|
||||
|
||||
// Script of interaction with gnutls implementation.
|
||||
|
@ -8,6 +8,7 @@ package x509
|
||||
import (
|
||||
"asn1"
|
||||
"big"
|
||||
"bytes"
|
||||
"container/vector"
|
||||
"crypto"
|
||||
"crypto/rsa"
|
||||
@ -26,6 +27,20 @@ type pkcs1PrivateKey struct {
|
||||
D asn1.RawValue
|
||||
P asn1.RawValue
|
||||
Q asn1.RawValue
|
||||
// We ignore these values, if present, because rsa will calculate them.
|
||||
Dp asn1.RawValue "optional"
|
||||
Dq asn1.RawValue "optional"
|
||||
Qinv asn1.RawValue "optional"
|
||||
|
||||
AdditionalPrimes []pkcs1AddtionalRSAPrime "optional"
|
||||
}
|
||||
|
||||
type pkcs1AddtionalRSAPrime struct {
|
||||
Prime asn1.RawValue
|
||||
|
||||
// We ignore these values because rsa will calculate them.
|
||||
Exp asn1.RawValue
|
||||
Coeff asn1.RawValue
|
||||
}
|
||||
|
||||
// rawValueIsInteger returns true iff the given ASN.1 RawValue is an INTEGER type.
|
||||
@ -45,6 +60,10 @@ func ParsePKCS1PrivateKey(der []byte) (key *rsa.PrivateKey, err os.Error) {
|
||||
return
|
||||
}
|
||||
|
||||
if priv.Version > 1 {
|
||||
return nil, os.ErrorString("x509: unsupported private key version")
|
||||
}
|
||||
|
||||
if !rawValueIsInteger(&priv.N) ||
|
||||
!rawValueIsInteger(&priv.D) ||
|
||||
!rawValueIsInteger(&priv.P) ||
|
||||
@ -60,26 +79,66 @@ func ParsePKCS1PrivateKey(der []byte) (key *rsa.PrivateKey, err os.Error) {
|
||||
}
|
||||
|
||||
key.D = new(big.Int).SetBytes(priv.D.Bytes)
|
||||
key.P = new(big.Int).SetBytes(priv.P.Bytes)
|
||||
key.Q = new(big.Int).SetBytes(priv.Q.Bytes)
|
||||
key.Primes = make([]*big.Int, 2+len(priv.AdditionalPrimes))
|
||||
key.Primes[0] = new(big.Int).SetBytes(priv.P.Bytes)
|
||||
key.Primes[1] = new(big.Int).SetBytes(priv.Q.Bytes)
|
||||
for i, a := range priv.AdditionalPrimes {
|
||||
if !rawValueIsInteger(&a.Prime) {
|
||||
return nil, asn1.StructuralError{"tags don't match"}
|
||||
}
|
||||
key.Primes[i+2] = new(big.Int).SetBytes(a.Prime.Bytes)
|
||||
// We ignore the other two values because rsa will calculate
|
||||
// them as needed.
|
||||
}
|
||||
|
||||
err = key.Validate()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
key.Precompute()
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// rawValueForBig returns an asn1.RawValue which represents the given integer.
|
||||
func rawValueForBig(n *big.Int) asn1.RawValue {
|
||||
b := n.Bytes()
|
||||
if n.Sign() >= 0 && len(b) > 0 && b[0]&0x80 != 0 {
|
||||
// This positive number would be interpreted as a negative
|
||||
// number in ASN.1 because the MSB is set.
|
||||
padded := make([]byte, len(b)+1)
|
||||
copy(padded[1:], b)
|
||||
b = padded
|
||||
}
|
||||
return asn1.RawValue{Tag: 2, Bytes: b}
|
||||
}
|
||||
|
||||
// MarshalPKCS1PrivateKey converts a private key to ASN.1 DER encoded form.
|
||||
func MarshalPKCS1PrivateKey(key *rsa.PrivateKey) []byte {
|
||||
key.Precompute()
|
||||
|
||||
version := 0
|
||||
if len(key.Primes) > 2 {
|
||||
version = 1
|
||||
}
|
||||
|
||||
priv := pkcs1PrivateKey{
|
||||
Version: 1,
|
||||
N: asn1.RawValue{Tag: 2, Bytes: key.PublicKey.N.Bytes()},
|
||||
Version: version,
|
||||
N: rawValueForBig(key.N),
|
||||
E: key.PublicKey.E,
|
||||
D: asn1.RawValue{Tag: 2, Bytes: key.D.Bytes()},
|
||||
P: asn1.RawValue{Tag: 2, Bytes: key.P.Bytes()},
|
||||
Q: asn1.RawValue{Tag: 2, Bytes: key.Q.Bytes()},
|
||||
D: rawValueForBig(key.D),
|
||||
P: rawValueForBig(key.Primes[0]),
|
||||
Q: rawValueForBig(key.Primes[1]),
|
||||
Dp: rawValueForBig(key.Precomputed.Dp),
|
||||
Dq: rawValueForBig(key.Precomputed.Dq),
|
||||
Qinv: rawValueForBig(key.Precomputed.Qinv),
|
||||
}
|
||||
|
||||
priv.AdditionalPrimes = make([]pkcs1AddtionalRSAPrime, len(key.Precomputed.CRTValues))
|
||||
for i, values := range key.Precomputed.CRTValues {
|
||||
priv.AdditionalPrimes[i].Prime = rawValueForBig(key.Primes[2+i])
|
||||
priv.AdditionalPrimes[i].Exp = rawValueForBig(values.Exp)
|
||||
priv.AdditionalPrimes[i].Coeff = rawValueForBig(values.Coeff)
|
||||
}
|
||||
|
||||
b, _ := asn1.Marshal(priv)
|
||||
@ -396,6 +455,10 @@ func (ConstraintViolationError) String() string {
|
||||
return "invalid signature: parent certificate cannot sign this kind of certificate"
|
||||
}
|
||||
|
||||
func (c *Certificate) Equal(other *Certificate) bool {
|
||||
return bytes.Equal(c.Raw, other.Raw)
|
||||
}
|
||||
|
||||
// CheckSignatureFrom verifies that the signature on c is a valid signature
|
||||
// from parent.
|
||||
func (c *Certificate) CheckSignatureFrom(parent *Certificate) (err os.Error) {
|
||||
|
@ -20,12 +20,13 @@ func TestParsePKCS1PrivateKey(t *testing.T) {
|
||||
priv, err := ParsePKCS1PrivateKey(block.Bytes)
|
||||
if err != nil {
|
||||
t.Errorf("Failed to parse private key: %s", err)
|
||||
return
|
||||
}
|
||||
if priv.PublicKey.N.Cmp(rsaPrivateKey.PublicKey.N) != 0 ||
|
||||
priv.PublicKey.E != rsaPrivateKey.PublicKey.E ||
|
||||
priv.D.Cmp(rsaPrivateKey.D) != 0 ||
|
||||
priv.P.Cmp(rsaPrivateKey.P) != 0 ||
|
||||
priv.Q.Cmp(rsaPrivateKey.Q) != 0 {
|
||||
priv.Primes[0].Cmp(rsaPrivateKey.Primes[0]) != 0 ||
|
||||
priv.Primes[1].Cmp(rsaPrivateKey.Primes[1]) != 0 {
|
||||
t.Errorf("got:%+v want:%+v", priv, rsaPrivateKey)
|
||||
}
|
||||
}
|
||||
@ -47,14 +48,54 @@ func bigFromString(s string) *big.Int {
|
||||
return ret
|
||||
}
|
||||
|
||||
func fromBase10(base10 string) *big.Int {
|
||||
i := new(big.Int)
|
||||
i.SetString(base10, 10)
|
||||
return i
|
||||
}
|
||||
|
||||
var rsaPrivateKey = &rsa.PrivateKey{
|
||||
PublicKey: rsa.PublicKey{
|
||||
N: bigFromString("9353930466774385905609975137998169297361893554149986716853295022578535724979677252958524466350471210367835187480748268864277464700638583474144061408845077"),
|
||||
E: 65537,
|
||||
},
|
||||
D: bigFromString("7266398431328116344057699379749222532279343923819063639497049039389899328538543087657733766554155839834519529439851673014800261285757759040931985506583861"),
|
||||
P: bigFromString("98920366548084643601728869055592650835572950932266967461790948584315647051443"),
|
||||
Q: bigFromString("94560208308847015747498523884063394671606671904944666360068158221458669711639"),
|
||||
Primes: []*big.Int{
|
||||
bigFromString("98920366548084643601728869055592650835572950932266967461790948584315647051443"),
|
||||
bigFromString("94560208308847015747498523884063394671606671904944666360068158221458669711639"),
|
||||
},
|
||||
}
|
||||
|
||||
func TestMarshalRSAPrivateKey(t *testing.T) {
|
||||
priv := &rsa.PrivateKey{
|
||||
PublicKey: rsa.PublicKey{
|
||||
N: fromBase10("16346378922382193400538269749936049106320265317511766357599732575277382844051791096569333808598921852351577762718529818072849191122419410612033592401403764925096136759934497687765453905884149505175426053037420486697072448609022753683683718057795566811401938833367954642951433473337066311978821180526439641496973296037000052546108507805269279414789035461158073156772151892452251106173507240488993608650881929629163465099476849643165682709047462010581308719577053905787496296934240246311806555924593059995202856826239801816771116902778517096212527979497399966526283516447337775509777558018145573127308919204297111496233"),
|
||||
E: 3,
|
||||
},
|
||||
D: fromBase10("10897585948254795600358846499957366070880176878341177571733155050184921896034527397712889205732614568234385175145686545381899460748279607074689061600935843283397424506622998458510302603922766336783617368686090042765718290914099334449154829375179958369993407724946186243249568928237086215759259909861748642124071874879861299389874230489928271621259294894142840428407196932444474088857746123104978617098858619445675532587787023228852383149557470077802718705420275739737958953794088728369933811184572620857678792001136676902250566845618813972833750098806496641114644760255910789397593428910198080271317419213080834885003"),
|
||||
Primes: []*big.Int{
|
||||
fromBase10("1025363189502892836833747188838978207017355117492483312747347695538428729137306368764177201532277413433182799108299960196606011786562992097313508180436744488171474690412562218914213688661311117337381958560443"),
|
||||
fromBase10("3467903426626310123395340254094941045497208049900750380025518552334536945536837294961497712862519984786362199788654739924501424784631315081391467293694361474867825728031147665777546570788493758372218019373"),
|
||||
fromBase10("4597024781409332673052708605078359346966325141767460991205742124888960305710298765592730135879076084498363772408626791576005136245060321874472727132746643162385746062759369754202494417496879741537284589047"),
|
||||
},
|
||||
}
|
||||
|
||||
derBytes := MarshalPKCS1PrivateKey(priv)
|
||||
|
||||
priv2, err := ParsePKCS1PrivateKey(derBytes)
|
||||
if err != nil {
|
||||
t.Errorf("error parsing serialized key: %s", err)
|
||||
return
|
||||
}
|
||||
if priv.PublicKey.N.Cmp(priv2.PublicKey.N) != 0 ||
|
||||
priv.PublicKey.E != priv2.PublicKey.E ||
|
||||
priv.D.Cmp(priv2.D) != 0 ||
|
||||
len(priv2.Primes) != 3 ||
|
||||
priv.Primes[0].Cmp(priv2.Primes[0]) != 0 ||
|
||||
priv.Primes[1].Cmp(priv2.Primes[1]) != 0 ||
|
||||
priv.Primes[2].Cmp(priv2.Primes[2]) != 0 {
|
||||
t.Errorf("got:%+v want:%+v", priv, priv2)
|
||||
}
|
||||
}
|
||||
|
||||
type matchHostnamesTest struct {
|
||||
|
Loading…
Reference in New Issue
Block a user