mirror of
https://github.com/golang/go
synced 2024-11-21 22:34:48 -07:00
math: Sqrt using 386 FPU.
Note: sqrt_decl.go already in src/pkg/math/. R=rsc CC=golang-dev https://golang.org/cl/183155
This commit is contained in:
parent
5328df6534
commit
5336cd8f91
@ -9,6 +9,9 @@ TARG=math
|
||||
OFILES_amd64=\
|
||||
sqrt_amd64.$O\
|
||||
|
||||
OFILES_386=\
|
||||
sqrt_386.$O\
|
||||
|
||||
OFILES=\
|
||||
$(OFILES_$(GOARCH))
|
||||
|
||||
@ -29,6 +32,7 @@ ALLGOFILES=\
|
||||
sin.go\
|
||||
sinh.go\
|
||||
sqrt.go\
|
||||
sqrt_port.go\
|
||||
tan.go\
|
||||
tanh.go\
|
||||
unsafe.go\
|
||||
|
@ -529,3 +529,9 @@ func BenchmarkAcos(b *testing.B) {
|
||||
Acos(.5)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkSqrt(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
Sqrt(10)
|
||||
}
|
||||
}
|
||||
|
@ -4,84 +4,6 @@
|
||||
|
||||
package math
|
||||
|
||||
// The original C code and the long comment below are
|
||||
// from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and
|
||||
// came with this notice. The go code is a simplified
|
||||
// version of the original C.
|
||||
//
|
||||
// ====================================================
|
||||
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
//
|
||||
// Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
// Permission to use, copy, modify, and distribute this
|
||||
// software is freely granted, provided that this notice
|
||||
// is preserved.
|
||||
// ====================================================
|
||||
//
|
||||
// __ieee754_sqrt(x)
|
||||
// Return correctly rounded sqrt.
|
||||
// -----------------------------------------
|
||||
// | Use the hardware sqrt if you have one |
|
||||
// -----------------------------------------
|
||||
// Method:
|
||||
// Bit by bit method using integer arithmetic. (Slow, but portable)
|
||||
// 1. Normalization
|
||||
// Scale x to y in [1,4) with even powers of 2:
|
||||
// find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
|
||||
// sqrt(x) = 2^k * sqrt(y)
|
||||
// 2. Bit by bit computation
|
||||
// Let q = sqrt(y) truncated to i bit after binary point (q = 1),
|
||||
// i 0
|
||||
// i+1 2
|
||||
// s = 2*q , and y = 2 * ( y - q ). (1)
|
||||
// i i i i
|
||||
//
|
||||
// To compute q from q , one checks whether
|
||||
// i+1 i
|
||||
//
|
||||
// -(i+1) 2
|
||||
// (q + 2 ) <= y. (2)
|
||||
// i
|
||||
// -(i+1)
|
||||
// If (2) is false, then q = q ; otherwise q = q + 2 .
|
||||
// i+1 i i+1 i
|
||||
//
|
||||
// With some algebric manipulation, it is not difficult to see
|
||||
// that (2) is equivalent to
|
||||
// -(i+1)
|
||||
// s + 2 <= y (3)
|
||||
// i i
|
||||
//
|
||||
// The advantage of (3) is that s and y can be computed by
|
||||
// i i
|
||||
// the following recurrence formula:
|
||||
// if (3) is false
|
||||
//
|
||||
// s = s , y = y ; (4)
|
||||
// i+1 i i+1 i
|
||||
//
|
||||
// otherwise,
|
||||
// -i -(i+1)
|
||||
// s = s + 2 , y = y - s - 2 (5)
|
||||
// i+1 i i+1 i i
|
||||
//
|
||||
// One may easily use induction to prove (4) and (5).
|
||||
// Note. Since the left hand side of (3) contain only i+2 bits,
|
||||
// it does not necessary to do a full (53-bit) comparison
|
||||
// in (3).
|
||||
// 3. Final rounding
|
||||
// After generating the 53 bits result, we compute one more bit.
|
||||
// Together with the remainder, we can decide whether the
|
||||
// result is exact, bigger than 1/2ulp, or less than 1/2ulp
|
||||
// (it will never equal to 1/2ulp).
|
||||
// The rounding mode can be detected by checking whether
|
||||
// huge + tiny is equal to huge, and whether huge - tiny is
|
||||
// equal to huge for some floating point number "huge" and "tiny".
|
||||
//
|
||||
//
|
||||
// Notes: Rounding mode detection omitted. The constants "mask", "shift",
|
||||
// and "bias" are found in src/pkg/math/bits.go
|
||||
|
||||
// Sqrt returns the square root of x.
|
||||
//
|
||||
// Special cases are:
|
||||
@ -89,54 +11,4 @@ package math
|
||||
// Sqrt(0) = 0
|
||||
// Sqrt(x < 0) = NaN
|
||||
// Sqrt(NaN) = NaN
|
||||
func Sqrt(x float64) float64 {
|
||||
// special cases
|
||||
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
|
||||
// when compiler does it for us
|
||||
switch {
|
||||
case x != x || x > MaxFloat64: // IsNaN(x) || IsInf(x, 1):
|
||||
return x
|
||||
case x == 0:
|
||||
return 0
|
||||
case x < 0:
|
||||
return NaN()
|
||||
}
|
||||
ix := Float64bits(x)
|
||||
// normalize x
|
||||
exp := int((ix >> shift) & mask)
|
||||
if exp == 0 { // subnormal x
|
||||
for ix&1<<shift == 0 {
|
||||
ix <<= 1
|
||||
exp--
|
||||
}
|
||||
exp++
|
||||
}
|
||||
exp -= bias + 1 // unbias exponent
|
||||
ix &^= mask << shift
|
||||
ix |= 1 << shift
|
||||
if exp&1 == 1 { // odd exp, double x to make it even
|
||||
ix <<= 1
|
||||
}
|
||||
exp >>= 1 // exp = exp/2, exponent of square root
|
||||
// generate sqrt(x) bit by bit
|
||||
ix <<= 1
|
||||
var q, s uint64 // q = sqrt(x)
|
||||
r := uint64(1 << (shift + 1)) // r = moving bit from MSB to LSB
|
||||
for r != 0 {
|
||||
t := s + r
|
||||
if t <= ix {
|
||||
s = t + r
|
||||
ix -= t
|
||||
q += r
|
||||
}
|
||||
ix <<= 1
|
||||
r >>= 1
|
||||
}
|
||||
// final rounding
|
||||
if ix != 0 { // remainder, result not exact
|
||||
q += q & 1 // round according to extra bit
|
||||
}
|
||||
ix = q>>1 + 0x3fe0000000000000 // q/2 + 0.5
|
||||
ix += uint64(exp) << shift
|
||||
return Float64frombits(ix)
|
||||
}
|
||||
func Sqrt(x float64) float64 { return sqrtGo(x) }
|
||||
|
10
src/pkg/math/sqrt_386.s
Normal file
10
src/pkg/math/sqrt_386.s
Normal file
@ -0,0 +1,10 @@
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// func Sqrt(x float64) float64
|
||||
TEXT math·Sqrt(SB),7,$0
|
||||
FMOVD x+0(FP),F0
|
||||
FSQRT
|
||||
FMOVDP F0,r+8(FP)
|
||||
RET
|
141
src/pkg/math/sqrt_port.go
Normal file
141
src/pkg/math/sqrt_port.go
Normal file
@ -0,0 +1,141 @@
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package math
|
||||
|
||||
// The original C code and the long comment below are
|
||||
// from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and
|
||||
// came with this notice. The go code is a simplified
|
||||
// version of the original C.
|
||||
//
|
||||
// ====================================================
|
||||
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
//
|
||||
// Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
// Permission to use, copy, modify, and distribute this
|
||||
// software is freely granted, provided that this notice
|
||||
// is preserved.
|
||||
// ====================================================
|
||||
//
|
||||
// __ieee754_sqrt(x)
|
||||
// Return correctly rounded sqrt.
|
||||
// -----------------------------------------
|
||||
// | Use the hardware sqrt if you have one |
|
||||
// -----------------------------------------
|
||||
// Method:
|
||||
// Bit by bit method using integer arithmetic. (Slow, but portable)
|
||||
// 1. Normalization
|
||||
// Scale x to y in [1,4) with even powers of 2:
|
||||
// find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
|
||||
// sqrt(x) = 2^k * sqrt(y)
|
||||
// 2. Bit by bit computation
|
||||
// Let q = sqrt(y) truncated to i bit after binary point (q = 1),
|
||||
// i 0
|
||||
// i+1 2
|
||||
// s = 2*q , and y = 2 * ( y - q ). (1)
|
||||
// i i i i
|
||||
//
|
||||
// To compute q from q , one checks whether
|
||||
// i+1 i
|
||||
//
|
||||
// -(i+1) 2
|
||||
// (q + 2 ) <= y. (2)
|
||||
// i
|
||||
// -(i+1)
|
||||
// If (2) is false, then q = q ; otherwise q = q + 2 .
|
||||
// i+1 i i+1 i
|
||||
//
|
||||
// With some algebric manipulation, it is not difficult to see
|
||||
// that (2) is equivalent to
|
||||
// -(i+1)
|
||||
// s + 2 <= y (3)
|
||||
// i i
|
||||
//
|
||||
// The advantage of (3) is that s and y can be computed by
|
||||
// i i
|
||||
// the following recurrence formula:
|
||||
// if (3) is false
|
||||
//
|
||||
// s = s , y = y ; (4)
|
||||
// i+1 i i+1 i
|
||||
//
|
||||
// otherwise,
|
||||
// -i -(i+1)
|
||||
// s = s + 2 , y = y - s - 2 (5)
|
||||
// i+1 i i+1 i i
|
||||
//
|
||||
// One may easily use induction to prove (4) and (5).
|
||||
// Note. Since the left hand side of (3) contain only i+2 bits,
|
||||
// it does not necessary to do a full (53-bit) comparison
|
||||
// in (3).
|
||||
// 3. Final rounding
|
||||
// After generating the 53 bits result, we compute one more bit.
|
||||
// Together with the remainder, we can decide whether the
|
||||
// result is exact, bigger than 1/2ulp, or less than 1/2ulp
|
||||
// (it will never equal to 1/2ulp).
|
||||
// The rounding mode can be detected by checking whether
|
||||
// huge + tiny is equal to huge, and whether huge - tiny is
|
||||
// equal to huge for some floating point number "huge" and "tiny".
|
||||
//
|
||||
//
|
||||
// Notes: Rounding mode detection omitted. The constants "mask", "shift",
|
||||
// and "bias" are found in src/pkg/math/bits.go
|
||||
|
||||
// Sqrt returns the square root of x.
|
||||
//
|
||||
// Special cases are:
|
||||
// Sqrt(+Inf) = +Inf
|
||||
// Sqrt(0) = 0
|
||||
// Sqrt(x < 0) = NaN
|
||||
// Sqrt(NaN) = NaN
|
||||
func sqrtGo(x float64) float64 {
|
||||
// special cases
|
||||
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
|
||||
// when compiler does it for us
|
||||
switch {
|
||||
case x != x || x > MaxFloat64: // IsNaN(x) || IsInf(x, 1):
|
||||
return x
|
||||
case x == 0:
|
||||
return 0
|
||||
case x < 0:
|
||||
return NaN()
|
||||
}
|
||||
ix := Float64bits(x)
|
||||
// normalize x
|
||||
exp := int((ix >> shift) & mask)
|
||||
if exp == 0 { // subnormal x
|
||||
for ix&1<<shift == 0 {
|
||||
ix <<= 1
|
||||
exp--
|
||||
}
|
||||
exp++
|
||||
}
|
||||
exp -= bias + 1 // unbias exponent
|
||||
ix &^= mask << shift
|
||||
ix |= 1 << shift
|
||||
if exp&1 == 1 { // odd exp, double x to make it even
|
||||
ix <<= 1
|
||||
}
|
||||
exp >>= 1 // exp = exp/2, exponent of square root
|
||||
// generate sqrt(x) bit by bit
|
||||
ix <<= 1
|
||||
var q, s uint64 // q = sqrt(x)
|
||||
r := uint64(1 << (shift + 1)) // r = moving bit from MSB to LSB
|
||||
for r != 0 {
|
||||
t := s + r
|
||||
if t <= ix {
|
||||
s = t + r
|
||||
ix -= t
|
||||
q += r
|
||||
}
|
||||
ix <<= 1
|
||||
r >>= 1
|
||||
}
|
||||
// final rounding
|
||||
if ix != 0 { // remainder, result not exact
|
||||
q += q & 1 // round according to extra bit
|
||||
}
|
||||
ix = q>>1 + uint64(exp+bias)<<shift // significand + biased exponent
|
||||
return Float64frombits(ix)
|
||||
}
|
Loading…
Reference in New Issue
Block a user