1
0
mirror of https://github.com/golang/go synced 2024-09-30 12:28:35 -06:00

x/tools: remove remaining files tagged for Go 1.4

(accidentally omitted from https://go-review.googlesource.com/20810)

Change-Id: Ib6ee4b2e43b6f32c5c0c031910087cc39d5c5d14
Reviewed-on: https://go-review.googlesource.com/21862
Reviewed-by: Robert Griesemer <gri@golang.org>
This commit is contained in:
Alan Donovan 2016-04-12 13:07:16 -04:00
parent d601baae9c
commit 51487f711d
23 changed files with 0 additions and 7900 deletions

View File

@ -1,97 +0,0 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package ssautil
// This file defines utility functions for constructing programs in SSA form.
import (
"go/ast"
"go/token"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/ssa"
"golang.org/x/tools/go/types"
)
// CreateProgram returns a new program in SSA form, given a program
// loaded from source. An SSA package is created for each transitively
// error-free package of lprog.
//
// Code for bodies of functions is not built until BuildAll() is called
// on the result.
//
// mode controls diagnostics and checking during SSA construction.
//
func CreateProgram(lprog *loader.Program, mode ssa.BuilderMode) *ssa.Program {
prog := ssa.NewProgram(lprog.Fset, mode)
for _, info := range lprog.AllPackages {
if info.TransitivelyErrorFree {
prog.CreatePackage(info.Pkg, info.Files, &info.Info, info.Importable)
}
}
return prog
}
// BuildPackage builds an SSA program with IR for a single package.
//
// It populates pkg by type-checking the specified file ASTs. All
// dependencies are loaded using the importer specified by tc, which
// typically loads compiler export data; SSA code cannot be built for
// those packages. BuildPackage then constructs an ssa.Program with all
// dependency packages created, and builds and returns the SSA package
// corresponding to pkg.
//
// The caller must have set pkg.Path() to the import path.
//
// The operation fails if there were any type-checking or import errors.
//
// See ../ssa/example_test.go for an example.
//
func BuildPackage(tc *types.Config, fset *token.FileSet, pkg *types.Package, files []*ast.File, mode ssa.BuilderMode) (*ssa.Package, *types.Info, error) {
if fset == nil {
panic("no token.FileSet")
}
if pkg.Path() == "" {
panic("package has no import path")
}
info := &types.Info{
Types: make(map[ast.Expr]types.TypeAndValue),
Defs: make(map[*ast.Ident]types.Object),
Uses: make(map[*ast.Ident]types.Object),
Implicits: make(map[ast.Node]types.Object),
Scopes: make(map[ast.Node]*types.Scope),
Selections: make(map[*ast.SelectorExpr]*types.Selection),
}
if err := types.NewChecker(tc, fset, pkg, info).Files(files); err != nil {
return nil, nil, err
}
prog := ssa.NewProgram(fset, mode)
// Create SSA packages for all imports.
// Order is not significant.
created := make(map[*types.Package]bool)
var createAll func(pkgs []*types.Package)
createAll = func(pkgs []*types.Package) {
for _, p := range pkgs {
if !created[p] {
created[p] = true
prog.CreatePackage(p, nil, nil, true)
createAll(p.Imports())
}
}
}
createAll(pkg.Imports())
// Create and build the primary package.
ssapkg := prog.CreatePackage(pkg, files, info, false)
ssapkg.Build()
return ssapkg, info, nil
}

View File

@ -1,67 +0,0 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package ssautil_test
import (
"go/ast"
"go/parser"
"go/token"
"os"
"testing"
"golang.org/x/tools/go/ssa/ssautil"
"golang.org/x/tools/go/types"
_ "golang.org/x/tools/go/gcimporter"
)
const hello = `package main
import "fmt"
func main() {
fmt.Println("Hello, world")
}
`
func TestBuildPackage(t *testing.T) {
// There is a more substantial test of BuildPackage and the
// SSA program it builds in ../ssa/builder_test.go.
fset := token.NewFileSet()
f, err := parser.ParseFile(fset, "hello.go", hello, 0)
if err != nil {
t.Fatal(err)
}
pkg := types.NewPackage("hello", "")
ssapkg, _, err := ssautil.BuildPackage(new(types.Config), fset, pkg, []*ast.File{f}, 0)
if err != nil {
t.Fatal(err)
}
if pkg.Name() != "main" {
t.Errorf("pkg.Name() = %s, want main", pkg.Name())
}
if ssapkg.Func("main") == nil {
ssapkg.WriteTo(os.Stderr)
t.Errorf("ssapkg has no main function")
}
}
func TestBuildPackage_MissingImport(t *testing.T) {
fset := token.NewFileSet()
f, err := parser.ParseFile(fset, "bad.go", `package bad; import "missing"`, 0)
if err != nil {
t.Fatal(err)
}
pkg := types.NewPackage("bad", "")
ssapkg, _, err := ssautil.BuildPackage(new(types.Config), fset, pkg, []*ast.File{f}, 0)
if err == nil || ssapkg != nil {
t.Fatal("BuildPackage succeeded unexpectedly")
}
}

View File

@ -1,236 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package ssautil
// This file implements discovery of switch and type-switch constructs
// from low-level control flow.
//
// Many techniques exist for compiling a high-level switch with
// constant cases to efficient machine code. The optimal choice will
// depend on the data type, the specific case values, the code in the
// body of each case, and the hardware.
// Some examples:
// - a lookup table (for a switch that maps constants to constants)
// - a computed goto
// - a binary tree
// - a perfect hash
// - a two-level switch (to partition constant strings by their first byte).
import (
"bytes"
"fmt"
"go/token"
"golang.org/x/tools/go/ssa"
"golang.org/x/tools/go/types"
)
// A ConstCase represents a single constant comparison.
// It is part of a Switch.
type ConstCase struct {
Block *ssa.BasicBlock // block performing the comparison
Body *ssa.BasicBlock // body of the case
Value *ssa.Const // case comparand
}
// A TypeCase represents a single type assertion.
// It is part of a Switch.
type TypeCase struct {
Block *ssa.BasicBlock // block performing the type assert
Body *ssa.BasicBlock // body of the case
Type types.Type // case type
Binding ssa.Value // value bound by this case
}
// A Switch is a logical high-level control flow operation
// (a multiway branch) discovered by analysis of a CFG containing
// only if/else chains. It is not part of the ssa.Instruction set.
//
// One of ConstCases and TypeCases has length >= 2;
// the other is nil.
//
// In a value switch, the list of cases may contain duplicate constants.
// A type switch may contain duplicate types, or types assignable
// to an interface type also in the list.
// TODO(adonovan): eliminate such duplicates.
//
type Switch struct {
Start *ssa.BasicBlock // block containing start of if/else chain
X ssa.Value // the switch operand
ConstCases []ConstCase // ordered list of constant comparisons
TypeCases []TypeCase // ordered list of type assertions
Default *ssa.BasicBlock // successor if all comparisons fail
}
func (sw *Switch) String() string {
// We represent each block by the String() of its
// first Instruction, e.g. "print(42:int)".
var buf bytes.Buffer
if sw.ConstCases != nil {
fmt.Fprintf(&buf, "switch %s {\n", sw.X.Name())
for _, c := range sw.ConstCases {
fmt.Fprintf(&buf, "case %s: %s\n", c.Value, c.Body.Instrs[0])
}
} else {
fmt.Fprintf(&buf, "switch %s.(type) {\n", sw.X.Name())
for _, c := range sw.TypeCases {
fmt.Fprintf(&buf, "case %s %s: %s\n",
c.Binding.Name(), c.Type, c.Body.Instrs[0])
}
}
if sw.Default != nil {
fmt.Fprintf(&buf, "default: %s\n", sw.Default.Instrs[0])
}
fmt.Fprintf(&buf, "}")
return buf.String()
}
// Switches examines the control-flow graph of fn and returns the
// set of inferred value and type switches. A value switch tests an
// ssa.Value for equality against two or more compile-time constant
// values. Switches involving link-time constants (addresses) are
// ignored. A type switch type-asserts an ssa.Value against two or
// more types.
//
// The switches are returned in dominance order.
//
// The resulting switches do not necessarily correspond to uses of the
// 'switch' keyword in the source: for example, a single source-level
// switch statement with non-constant cases may result in zero, one or
// many Switches, one per plural sequence of constant cases.
// Switches may even be inferred from if/else- or goto-based control flow.
// (In general, the control flow constructs of the source program
// cannot be faithfully reproduced from the SSA representation.)
//
func Switches(fn *ssa.Function) []Switch {
// Traverse the CFG in dominance order, so we don't
// enter an if/else-chain in the middle.
var switches []Switch
seen := make(map[*ssa.BasicBlock]bool) // TODO(adonovan): opt: use ssa.blockSet
for _, b := range fn.DomPreorder() {
if x, k := isComparisonBlock(b); x != nil {
// Block b starts a switch.
sw := Switch{Start: b, X: x}
valueSwitch(&sw, k, seen)
if len(sw.ConstCases) > 1 {
switches = append(switches, sw)
}
}
if y, x, T := isTypeAssertBlock(b); y != nil {
// Block b starts a type switch.
sw := Switch{Start: b, X: x}
typeSwitch(&sw, y, T, seen)
if len(sw.TypeCases) > 1 {
switches = append(switches, sw)
}
}
}
return switches
}
func valueSwitch(sw *Switch, k *ssa.Const, seen map[*ssa.BasicBlock]bool) {
b := sw.Start
x := sw.X
for x == sw.X {
if seen[b] {
break
}
seen[b] = true
sw.ConstCases = append(sw.ConstCases, ConstCase{
Block: b,
Body: b.Succs[0],
Value: k,
})
b = b.Succs[1]
if len(b.Instrs) > 2 {
// Block b contains not just 'if x == k',
// so it may have side effects that
// make it unsafe to elide.
break
}
if len(b.Preds) != 1 {
// Block b has multiple predecessors,
// so it cannot be treated as a case.
break
}
x, k = isComparisonBlock(b)
}
sw.Default = b
}
func typeSwitch(sw *Switch, y ssa.Value, T types.Type, seen map[*ssa.BasicBlock]bool) {
b := sw.Start
x := sw.X
for x == sw.X {
if seen[b] {
break
}
seen[b] = true
sw.TypeCases = append(sw.TypeCases, TypeCase{
Block: b,
Body: b.Succs[0],
Type: T,
Binding: y,
})
b = b.Succs[1]
if len(b.Instrs) > 4 {
// Block b contains not just
// {TypeAssert; Extract #0; Extract #1; If}
// so it may have side effects that
// make it unsafe to elide.
break
}
if len(b.Preds) != 1 {
// Block b has multiple predecessors,
// so it cannot be treated as a case.
break
}
y, x, T = isTypeAssertBlock(b)
}
sw.Default = b
}
// isComparisonBlock returns the operands (v, k) if a block ends with
// a comparison v==k, where k is a compile-time constant.
//
func isComparisonBlock(b *ssa.BasicBlock) (v ssa.Value, k *ssa.Const) {
if n := len(b.Instrs); n >= 2 {
if i, ok := b.Instrs[n-1].(*ssa.If); ok {
if binop, ok := i.Cond.(*ssa.BinOp); ok && binop.Block() == b && binop.Op == token.EQL {
if k, ok := binop.Y.(*ssa.Const); ok {
return binop.X, k
}
if k, ok := binop.X.(*ssa.Const); ok {
return binop.Y, k
}
}
}
}
return
}
// isTypeAssertBlock returns the operands (y, x, T) if a block ends with
// a type assertion "if y, ok := x.(T); ok {".
//
func isTypeAssertBlock(b *ssa.BasicBlock) (y, x ssa.Value, T types.Type) {
if n := len(b.Instrs); n >= 4 {
if i, ok := b.Instrs[n-1].(*ssa.If); ok {
if ext1, ok := i.Cond.(*ssa.Extract); ok && ext1.Block() == b && ext1.Index == 1 {
if ta, ok := ext1.Tuple.(*ssa.TypeAssert); ok && ta.Block() == b {
// hack: relies upon instruction ordering.
if ext0, ok := b.Instrs[n-3].(*ssa.Extract); ok {
return ext0, ta.X, ta.AssertedType
}
}
}
}
}
return
}

View File

@ -1,622 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
// Package analysis performs type and pointer analysis
// and generates mark-up for the Go source view.
//
// The Run method populates a Result object by running type and
// (optionally) pointer analysis. The Result object is thread-safe
// and at all times may be accessed by a serving thread, even as it is
// progressively populated as analysis facts are derived.
//
// The Result is a mapping from each godoc file URL
// (e.g. /src/fmt/print.go) to information about that file. The
// information is a list of HTML markup links and a JSON array of
// structured data values. Some of the links call client-side
// JavaScript functions that index this array.
//
// The analysis computes mark-up for the following relations:
//
// IMPORTS: for each ast.ImportSpec, the package that it denotes.
//
// RESOLUTION: for each ast.Ident, its kind and type, and the location
// of its definition.
//
// METHOD SETS, IMPLEMENTS: for each ast.Ident defining a named type,
// its method-set, the set of interfaces it implements or is
// implemented by, and its size/align values.
//
// CALLERS, CALLEES: for each function declaration ('func' token), its
// callers, and for each call-site ('(' token), its callees.
//
// CALLGRAPH: the package docs include an interactive viewer for the
// intra-package call graph of "fmt".
//
// CHANNEL PEERS: for each channel operation make/<-/close, the set of
// other channel ops that alias the same channel(s).
//
// ERRORS: for each locus of a frontend (scanner/parser/type) error, the
// location is highlighted in red and hover text provides the compiler
// error message.
//
package analysis // import "golang.org/x/tools/godoc/analysis"
import (
"fmt"
"go/build"
"go/scanner"
"go/token"
"html"
"io"
"log"
"os"
"path/filepath"
"runtime"
"sort"
"strings"
"sync"
"golang.org/x/tools/go/exact"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/pointer"
"golang.org/x/tools/go/ssa"
"golang.org/x/tools/go/ssa/ssautil"
"golang.org/x/tools/go/types"
)
// -- links ------------------------------------------------------------
// A Link is an HTML decoration of the bytes [Start, End) of a file.
// Write is called before/after those bytes to emit the mark-up.
type Link interface {
Start() int
End() int
Write(w io.Writer, _ int, start bool) // the godoc.LinkWriter signature
}
// An <a> element.
type aLink struct {
start, end int // =godoc.Segment
title string // hover text
onclick string // JS code (NB: trusted)
href string // URL (NB: trusted)
}
func (a aLink) Start() int { return a.start }
func (a aLink) End() int { return a.end }
func (a aLink) Write(w io.Writer, _ int, start bool) {
if start {
fmt.Fprintf(w, `<a title='%s'`, html.EscapeString(a.title))
if a.onclick != "" {
fmt.Fprintf(w, ` onclick='%s'`, html.EscapeString(a.onclick))
}
if a.href != "" {
// TODO(adonovan): I think that in principle, a.href must first be
// url.QueryEscape'd, but if I do that, a leading slash becomes "%2F",
// which causes the browser to treat the path as relative, not absolute.
// WTF?
fmt.Fprintf(w, ` href='%s'`, html.EscapeString(a.href))
}
fmt.Fprintf(w, ">")
} else {
fmt.Fprintf(w, "</a>")
}
}
// An <a class='error'> element.
type errorLink struct {
start int
msg string
}
func (e errorLink) Start() int { return e.start }
func (e errorLink) End() int { return e.start + 1 }
func (e errorLink) Write(w io.Writer, _ int, start bool) {
// <span> causes havoc, not sure why, so use <a>.
if start {
fmt.Fprintf(w, `<a class='error' title='%s'>`, html.EscapeString(e.msg))
} else {
fmt.Fprintf(w, "</a>")
}
}
// -- fileInfo ---------------------------------------------------------
// FileInfo holds analysis information for the source file view.
// Clients must not mutate it.
type FileInfo struct {
Data []interface{} // JSON serializable values
Links []Link // HTML link markup
}
// A fileInfo is the server's store of hyperlinks and JSON data for a
// particular file.
type fileInfo struct {
mu sync.Mutex
data []interface{} // JSON objects
links []Link
sorted bool
hasErrors bool // TODO(adonovan): surface this in the UI
}
// addLink adds a link to the Go source file fi.
func (fi *fileInfo) addLink(link Link) {
fi.mu.Lock()
fi.links = append(fi.links, link)
fi.sorted = false
if _, ok := link.(errorLink); ok {
fi.hasErrors = true
}
fi.mu.Unlock()
}
// addData adds the structured value x to the JSON data for the Go
// source file fi. Its index is returned.
func (fi *fileInfo) addData(x interface{}) int {
fi.mu.Lock()
index := len(fi.data)
fi.data = append(fi.data, x)
fi.mu.Unlock()
return index
}
// get returns the file info in external form.
// Callers must not mutate its fields.
func (fi *fileInfo) get() FileInfo {
var r FileInfo
// Copy slices, to avoid races.
fi.mu.Lock()
r.Data = append(r.Data, fi.data...)
if !fi.sorted {
sort.Sort(linksByStart(fi.links))
fi.sorted = true
}
r.Links = append(r.Links, fi.links...)
fi.mu.Unlock()
return r
}
// PackageInfo holds analysis information for the package view.
// Clients must not mutate it.
type PackageInfo struct {
CallGraph []*PCGNodeJSON
CallGraphIndex map[string]int
Types []*TypeInfoJSON
}
type pkgInfo struct {
mu sync.Mutex
callGraph []*PCGNodeJSON
callGraphIndex map[string]int // keys are (*ssa.Function).RelString()
types []*TypeInfoJSON // type info for exported types
}
func (pi *pkgInfo) setCallGraph(callGraph []*PCGNodeJSON, callGraphIndex map[string]int) {
pi.mu.Lock()
pi.callGraph = callGraph
pi.callGraphIndex = callGraphIndex
pi.mu.Unlock()
}
func (pi *pkgInfo) addType(t *TypeInfoJSON) {
pi.mu.Lock()
pi.types = append(pi.types, t)
pi.mu.Unlock()
}
// get returns the package info in external form.
// Callers must not mutate its fields.
func (pi *pkgInfo) get() PackageInfo {
var r PackageInfo
// Copy slices, to avoid races.
pi.mu.Lock()
r.CallGraph = append(r.CallGraph, pi.callGraph...)
r.CallGraphIndex = pi.callGraphIndex
r.Types = append(r.Types, pi.types...)
pi.mu.Unlock()
return r
}
// -- Result -----------------------------------------------------------
// Result contains the results of analysis.
// The result contains a mapping from filenames to a set of HTML links
// and JavaScript data referenced by the links.
type Result struct {
mu sync.Mutex // guards maps (but not their contents)
status string // global analysis status
fileInfos map[string]*fileInfo // keys are godoc file URLs
pkgInfos map[string]*pkgInfo // keys are import paths
}
// fileInfo returns the fileInfo for the specified godoc file URL,
// constructing it as needed. Thread-safe.
func (res *Result) fileInfo(url string) *fileInfo {
res.mu.Lock()
fi, ok := res.fileInfos[url]
if !ok {
if res.fileInfos == nil {
res.fileInfos = make(map[string]*fileInfo)
}
fi = new(fileInfo)
res.fileInfos[url] = fi
}
res.mu.Unlock()
return fi
}
// Status returns a human-readable description of the current analysis status.
func (res *Result) Status() string {
res.mu.Lock()
defer res.mu.Unlock()
return res.status
}
func (res *Result) setStatusf(format string, args ...interface{}) {
res.mu.Lock()
res.status = fmt.Sprintf(format, args...)
log.Printf(format, args...)
res.mu.Unlock()
}
// FileInfo returns new slices containing opaque JSON values and the
// HTML link markup for the specified godoc file URL. Thread-safe.
// Callers must not mutate the elements.
// It returns "zero" if no data is available.
//
func (res *Result) FileInfo(url string) (fi FileInfo) {
return res.fileInfo(url).get()
}
// pkgInfo returns the pkgInfo for the specified import path,
// constructing it as needed. Thread-safe.
func (res *Result) pkgInfo(importPath string) *pkgInfo {
res.mu.Lock()
pi, ok := res.pkgInfos[importPath]
if !ok {
if res.pkgInfos == nil {
res.pkgInfos = make(map[string]*pkgInfo)
}
pi = new(pkgInfo)
res.pkgInfos[importPath] = pi
}
res.mu.Unlock()
return pi
}
// PackageInfo returns new slices of JSON values for the callgraph and
// type info for the specified package. Thread-safe.
// Callers must not mutate its fields.
// PackageInfo returns "zero" if no data is available.
//
func (res *Result) PackageInfo(importPath string) PackageInfo {
return res.pkgInfo(importPath).get()
}
// -- analysis ---------------------------------------------------------
type analysis struct {
result *Result
prog *ssa.Program
ops []chanOp // all channel ops in program
allNamed []*types.Named // all named types in the program
ptaConfig pointer.Config
path2url map[string]string // maps openable path to godoc file URL (/src/fmt/print.go)
pcgs map[*ssa.Package]*packageCallGraph
}
// fileAndOffset returns the file and offset for a given pos.
func (a *analysis) fileAndOffset(pos token.Pos) (fi *fileInfo, offset int) {
return a.fileAndOffsetPosn(a.prog.Fset.Position(pos))
}
// fileAndOffsetPosn returns the file and offset for a given position.
func (a *analysis) fileAndOffsetPosn(posn token.Position) (fi *fileInfo, offset int) {
url := a.path2url[posn.Filename]
return a.result.fileInfo(url), posn.Offset
}
// posURL returns the URL of the source extent [pos, pos+len).
func (a *analysis) posURL(pos token.Pos, len int) string {
if pos == token.NoPos {
return ""
}
posn := a.prog.Fset.Position(pos)
url := a.path2url[posn.Filename]
return fmt.Sprintf("%s?s=%d:%d#L%d",
url, posn.Offset, posn.Offset+len, posn.Line)
}
// ----------------------------------------------------------------------
// Run runs program analysis and computes the resulting markup,
// populating *result in a thread-safe manner, first with type
// information then later with pointer analysis information if
// enabled by the pta flag.
//
func Run(pta bool, result *Result) {
conf := loader.Config{
AllowErrors: true,
}
// Silence the default error handler.
// Don't print all errors; we'll report just
// one per errant package later.
conf.TypeChecker.Error = func(e error) {}
var roots, args []string // roots[i] ends with os.PathSeparator
// Enumerate packages in $GOROOT.
root := filepath.Join(runtime.GOROOT(), "src") + string(os.PathSeparator)
roots = append(roots, root)
args = allPackages(root)
log.Printf("GOROOT=%s: %s\n", root, args)
// Enumerate packages in $GOPATH.
for i, dir := range filepath.SplitList(build.Default.GOPATH) {
root := filepath.Join(dir, "src") + string(os.PathSeparator)
roots = append(roots, root)
pkgs := allPackages(root)
log.Printf("GOPATH[%d]=%s: %s\n", i, root, pkgs)
args = append(args, pkgs...)
}
// Uncomment to make startup quicker during debugging.
//args = []string{"golang.org/x/tools/cmd/godoc"}
//args = []string{"fmt"}
if _, err := conf.FromArgs(args, true); err != nil {
// TODO(adonovan): degrade gracefully, not fail totally.
// (The crippling case is a parse error in an external test file.)
result.setStatusf("Analysis failed: %s.", err) // import error
return
}
result.setStatusf("Loading and type-checking packages...")
iprog, err := conf.Load()
if iprog != nil {
// Report only the first error of each package.
for _, info := range iprog.AllPackages {
for _, err := range info.Errors {
fmt.Fprintln(os.Stderr, err)
break
}
}
log.Printf("Loaded %d packages.", len(iprog.AllPackages))
}
if err != nil {
result.setStatusf("Loading failed: %s.\n", err)
return
}
// Create SSA-form program representation.
// Only the transitively error-free packages are used.
prog := ssautil.CreateProgram(iprog, ssa.GlobalDebug)
// Compute the set of main packages, including testmain.
allPackages := prog.AllPackages()
var mainPkgs []*ssa.Package
if testmain := prog.CreateTestMainPackage(allPackages...); testmain != nil {
mainPkgs = append(mainPkgs, testmain)
if p := testmain.Const("packages"); p != nil {
log.Printf("Tested packages: %v", exact.StringVal(p.Value.Value))
}
}
for _, pkg := range allPackages {
if pkg.Pkg.Name() == "main" && pkg.Func("main") != nil {
mainPkgs = append(mainPkgs, pkg)
}
}
log.Print("Transitively error-free main packages: ", mainPkgs)
// Build SSA code for bodies of all functions in the whole program.
result.setStatusf("Constructing SSA form...")
prog.Build()
log.Print("SSA construction complete")
a := analysis{
result: result,
prog: prog,
pcgs: make(map[*ssa.Package]*packageCallGraph),
}
// Build a mapping from openable filenames to godoc file URLs,
// i.e. "/src/" plus path relative to GOROOT/src or GOPATH[i]/src.
a.path2url = make(map[string]string)
for _, info := range iprog.AllPackages {
nextfile:
for _, f := range info.Files {
if f.Pos() == 0 {
continue // e.g. files generated by cgo
}
abs := iprog.Fset.File(f.Pos()).Name()
// Find the root to which this file belongs.
for _, root := range roots {
rel := strings.TrimPrefix(abs, root)
if len(rel) < len(abs) {
a.path2url[abs] = "/src/" + filepath.ToSlash(rel)
continue nextfile
}
}
log.Printf("Can't locate file %s (package %q) beneath any root",
abs, info.Pkg.Path())
}
}
// Add links for scanner, parser, type-checker errors.
// TODO(adonovan): fix: these links can overlap with
// identifier markup, causing the renderer to emit some
// characters twice.
errors := make(map[token.Position][]string)
for _, info := range iprog.AllPackages {
for _, err := range info.Errors {
switch err := err.(type) {
case types.Error:
posn := a.prog.Fset.Position(err.Pos)
errors[posn] = append(errors[posn], err.Msg)
case scanner.ErrorList:
for _, e := range err {
errors[e.Pos] = append(errors[e.Pos], e.Msg)
}
default:
log.Printf("Package %q has error (%T) without position: %v\n",
info.Pkg.Path(), err, err)
}
}
}
for posn, errs := range errors {
fi, offset := a.fileAndOffsetPosn(posn)
fi.addLink(errorLink{
start: offset,
msg: strings.Join(errs, "\n"),
})
}
// ---------- type-based analyses ----------
// Compute the all-pairs IMPLEMENTS relation.
// Collect all named types, even local types
// (which can have methods via promotion)
// and the built-in "error".
errorType := types.Universe.Lookup("error").Type().(*types.Named)
a.allNamed = append(a.allNamed, errorType)
for _, info := range iprog.AllPackages {
for _, obj := range info.Defs {
if obj, ok := obj.(*types.TypeName); ok {
a.allNamed = append(a.allNamed, obj.Type().(*types.Named))
}
}
}
log.Print("Computing implements relation...")
facts := computeImplements(&a.prog.MethodSets, a.allNamed)
// Add the type-based analysis results.
log.Print("Extracting type info...")
for _, info := range iprog.AllPackages {
a.doTypeInfo(info, facts)
}
a.visitInstrs(pta)
result.setStatusf("Type analysis complete.")
if pta {
a.pointer(mainPkgs)
}
}
// visitInstrs visits all SSA instructions in the program.
func (a *analysis) visitInstrs(pta bool) {
log.Print("Visit instructions...")
for fn := range ssautil.AllFunctions(a.prog) {
for _, b := range fn.Blocks {
for _, instr := range b.Instrs {
// CALLEES (static)
// (Dynamic calls require pointer analysis.)
//
// We use the SSA representation to find the static callee,
// since in many cases it does better than the
// types.Info.{Refs,Selection} information. For example:
//
// defer func(){}() // static call to anon function
// f := func(){}; f() // static call to anon function
// f := fmt.Println; f() // static call to named function
//
// The downside is that we get no static callee information
// for packages that (transitively) contain errors.
if site, ok := instr.(ssa.CallInstruction); ok {
if callee := site.Common().StaticCallee(); callee != nil {
// TODO(adonovan): callgraph: elide wrappers.
// (Do static calls ever go to wrappers?)
if site.Common().Pos() != token.NoPos {
a.addCallees(site, []*ssa.Function{callee})
}
}
}
if !pta {
continue
}
// CHANNEL PEERS
// Collect send/receive/close instructions in the whole ssa.Program.
for _, op := range chanOps(instr) {
a.ops = append(a.ops, op)
a.ptaConfig.AddQuery(op.ch) // add channel ssa.Value to PTA query
}
}
}
}
log.Print("Visit instructions complete")
}
// pointer runs the pointer analysis.
func (a *analysis) pointer(mainPkgs []*ssa.Package) {
// Run the pointer analysis and build the complete callgraph.
a.ptaConfig.Mains = mainPkgs
a.ptaConfig.BuildCallGraph = true
a.ptaConfig.Reflection = false // (for now)
a.result.setStatusf("Pointer analysis running...")
ptares, err := pointer.Analyze(&a.ptaConfig)
if err != nil {
// If this happens, it indicates a bug.
a.result.setStatusf("Pointer analysis failed: %s.", err)
return
}
log.Print("Pointer analysis complete.")
// Add the results of pointer analysis.
a.result.setStatusf("Computing channel peers...")
a.doChannelPeers(ptares.Queries)
a.result.setStatusf("Computing dynamic call graph edges...")
a.doCallgraph(ptares.CallGraph)
a.result.setStatusf("Analysis complete.")
}
type linksByStart []Link
func (a linksByStart) Less(i, j int) bool { return a[i].Start() < a[j].Start() }
func (a linksByStart) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a linksByStart) Len() int { return len(a) }
// allPackages returns a new sorted slice of all packages beneath the
// specified package root directory, e.g. $GOROOT/src or $GOPATH/src.
// Derived from from go/ssa/stdlib_test.go
// root must end with os.PathSeparator.
//
// TODO(adonovan): use buildutil.AllPackages when the tree thaws.
func allPackages(root string) []string {
var pkgs []string
filepath.Walk(root, func(path string, info os.FileInfo, err error) error {
if info == nil {
return nil // non-existent root directory?
}
if !info.IsDir() {
return nil // not a directory
}
// Prune the search if we encounter any of these names:
base := filepath.Base(path)
if base == "testdata" || strings.HasPrefix(base, ".") {
return filepath.SkipDir
}
pkg := filepath.ToSlash(strings.TrimPrefix(path, root))
switch pkg {
case "builtin":
return filepath.SkipDir
case "":
return nil // ignore root of tree
}
pkgs = append(pkgs, pkg)
return nil
})
return pkgs
}

View File

@ -1,353 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package analysis
// This file computes the CALLERS and CALLEES relations from the call
// graph. CALLERS/CALLEES information is displayed in the lower pane
// when a "func" token or ast.CallExpr.Lparen is clicked, respectively.
import (
"fmt"
"go/ast"
"go/token"
"log"
"math/big"
"sort"
"golang.org/x/tools/go/callgraph"
"golang.org/x/tools/go/ssa"
"golang.org/x/tools/go/types"
)
// doCallgraph computes the CALLEES and CALLERS relations.
func (a *analysis) doCallgraph(cg *callgraph.Graph) {
log.Print("Deleting synthetic nodes...")
// TODO(adonovan): opt: DeleteSyntheticNodes is asymptotically
// inefficient and can be (unpredictably) slow.
cg.DeleteSyntheticNodes()
log.Print("Synthetic nodes deleted")
// Populate nodes of package call graphs (PCGs).
for _, n := range cg.Nodes {
a.pcgAddNode(n.Func)
}
// Within each PCG, sort funcs by name.
for _, pcg := range a.pcgs {
pcg.sortNodes()
}
calledFuncs := make(map[ssa.CallInstruction]map[*ssa.Function]bool)
callingSites := make(map[*ssa.Function]map[ssa.CallInstruction]bool)
for _, n := range cg.Nodes {
for _, e := range n.Out {
if e.Site == nil {
continue // a call from a synthetic node such as <root>
}
// Add (site pos, callee) to calledFuncs.
// (Dynamic calls only.)
callee := e.Callee.Func
a.pcgAddEdge(n.Func, callee)
if callee.Synthetic != "" {
continue // call of a package initializer
}
if e.Site.Common().StaticCallee() == nil {
// dynamic call
// (CALLEES information for static calls
// is computed using SSA information.)
lparen := e.Site.Common().Pos()
if lparen != token.NoPos {
fns := calledFuncs[e.Site]
if fns == nil {
fns = make(map[*ssa.Function]bool)
calledFuncs[e.Site] = fns
}
fns[callee] = true
}
}
// Add (callee, site) to callingSites.
fns := callingSites[callee]
if fns == nil {
fns = make(map[ssa.CallInstruction]bool)
callingSites[callee] = fns
}
fns[e.Site] = true
}
}
// CALLEES.
log.Print("Callees...")
for site, fns := range calledFuncs {
var funcs funcsByPos
for fn := range fns {
funcs = append(funcs, fn)
}
sort.Sort(funcs)
a.addCallees(site, funcs)
}
// CALLERS
log.Print("Callers...")
for callee, sites := range callingSites {
pos := funcToken(callee)
if pos == token.NoPos {
log.Printf("CALLERS: skipping %s: no pos", callee)
continue
}
var this *types.Package // for relativizing names
if callee.Pkg != nil {
this = callee.Pkg.Pkg
}
// Compute sites grouped by parent, with text and URLs.
sitesByParent := make(map[*ssa.Function]sitesByPos)
for site := range sites {
fn := site.Parent()
sitesByParent[fn] = append(sitesByParent[fn], site)
}
var funcs funcsByPos
for fn := range sitesByParent {
funcs = append(funcs, fn)
}
sort.Sort(funcs)
v := callersJSON{
Callee: callee.String(),
Callers: []callerJSON{}, // (JS wants non-nil)
}
for _, fn := range funcs {
caller := callerJSON{
Func: prettyFunc(this, fn),
Sites: []anchorJSON{}, // (JS wants non-nil)
}
sites := sitesByParent[fn]
sort.Sort(sites)
for _, site := range sites {
pos := site.Common().Pos()
if pos != token.NoPos {
caller.Sites = append(caller.Sites, anchorJSON{
Text: fmt.Sprintf("%d", a.prog.Fset.Position(pos).Line),
Href: a.posURL(pos, len("(")),
})
}
}
v.Callers = append(v.Callers, caller)
}
fi, offset := a.fileAndOffset(pos)
fi.addLink(aLink{
start: offset,
end: offset + len("func"),
title: fmt.Sprintf("%d callers", len(sites)),
onclick: fmt.Sprintf("onClickCallers(%d)", fi.addData(v)),
})
}
// PACKAGE CALLGRAPH
log.Print("Package call graph...")
for pkg, pcg := range a.pcgs {
// Maps (*ssa.Function).RelString() to index in JSON CALLGRAPH array.
index := make(map[string]int)
// Treat exported functions (and exported methods of
// exported named types) as roots even if they aren't
// actually called from outside the package.
for i, n := range pcg.nodes {
if i == 0 || n.fn.Object() == nil || !n.fn.Object().Exported() {
continue
}
recv := n.fn.Signature.Recv()
if recv == nil || deref(recv.Type()).(*types.Named).Obj().Exported() {
roots := &pcg.nodes[0].edges
roots.SetBit(roots, i, 1)
}
index[n.fn.RelString(pkg.Pkg)] = i
}
json := a.pcgJSON(pcg)
// TODO(adonovan): pkg.Path() is not unique!
// It is possible to declare a non-test package called x_test.
a.result.pkgInfo(pkg.Pkg.Path()).setCallGraph(json, index)
}
}
// addCallees adds client data and links for the facts that site calls fns.
func (a *analysis) addCallees(site ssa.CallInstruction, fns []*ssa.Function) {
v := calleesJSON{
Descr: site.Common().Description(),
Callees: []anchorJSON{}, // (JS wants non-nil)
}
var this *types.Package // for relativizing names
if p := site.Parent().Package(); p != nil {
this = p.Pkg
}
for _, fn := range fns {
v.Callees = append(v.Callees, anchorJSON{
Text: prettyFunc(this, fn),
Href: a.posURL(funcToken(fn), len("func")),
})
}
fi, offset := a.fileAndOffset(site.Common().Pos())
fi.addLink(aLink{
start: offset,
end: offset + len("("),
title: fmt.Sprintf("%d callees", len(v.Callees)),
onclick: fmt.Sprintf("onClickCallees(%d)", fi.addData(v)),
})
}
// -- utilities --------------------------------------------------------
// stable order within packages but undefined across packages.
type funcsByPos []*ssa.Function
func (a funcsByPos) Less(i, j int) bool { return a[i].Pos() < a[j].Pos() }
func (a funcsByPos) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a funcsByPos) Len() int { return len(a) }
type sitesByPos []ssa.CallInstruction
func (a sitesByPos) Less(i, j int) bool { return a[i].Common().Pos() < a[j].Common().Pos() }
func (a sitesByPos) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a sitesByPos) Len() int { return len(a) }
func funcToken(fn *ssa.Function) token.Pos {
switch syntax := fn.Syntax().(type) {
case *ast.FuncLit:
return syntax.Type.Func
case *ast.FuncDecl:
return syntax.Type.Func
}
return token.NoPos
}
// prettyFunc pretty-prints fn for the user interface.
// TODO(adonovan): return HTML so we have more markup freedom.
func prettyFunc(this *types.Package, fn *ssa.Function) string {
if fn.Parent() != nil {
return fmt.Sprintf("%s in %s",
types.TypeString(fn.Signature, types.RelativeTo(this)),
prettyFunc(this, fn.Parent()))
}
if fn.Synthetic != "" && fn.Name() == "init" {
// (This is the actual initializer, not a declared 'func init').
if fn.Pkg.Pkg == this {
return "package initializer"
}
return fmt.Sprintf("%q package initializer", fn.Pkg.Pkg.Path())
}
return fn.RelString(this)
}
// -- intra-package callgraph ------------------------------------------
// pcgNode represents a node in the package call graph (PCG).
type pcgNode struct {
fn *ssa.Function
pretty string // cache of prettyFunc(fn)
edges big.Int // set of callee func indices
}
// A packageCallGraph represents the intra-package edges of the global call graph.
// The zeroth node indicates "all external functions".
type packageCallGraph struct {
nodeIndex map[*ssa.Function]int // maps func to node index (a small int)
nodes []*pcgNode // maps node index to node
}
// sortNodes populates pcg.nodes in name order and updates the nodeIndex.
func (pcg *packageCallGraph) sortNodes() {
nodes := make([]*pcgNode, 0, len(pcg.nodeIndex))
nodes = append(nodes, &pcgNode{fn: nil, pretty: "<external>"})
for fn := range pcg.nodeIndex {
nodes = append(nodes, &pcgNode{
fn: fn,
pretty: prettyFunc(fn.Pkg.Pkg, fn),
})
}
sort.Sort(pcgNodesByPretty(nodes[1:]))
for i, n := range nodes {
pcg.nodeIndex[n.fn] = i
}
pcg.nodes = nodes
}
func (pcg *packageCallGraph) addEdge(caller, callee *ssa.Function) {
var callerIndex int
if caller.Pkg == callee.Pkg {
// intra-package edge
callerIndex = pcg.nodeIndex[caller]
if callerIndex < 1 {
panic(caller)
}
}
edges := &pcg.nodes[callerIndex].edges
edges.SetBit(edges, pcg.nodeIndex[callee], 1)
}
func (a *analysis) pcgAddNode(fn *ssa.Function) {
if fn.Pkg == nil {
return
}
pcg, ok := a.pcgs[fn.Pkg]
if !ok {
pcg = &packageCallGraph{nodeIndex: make(map[*ssa.Function]int)}
a.pcgs[fn.Pkg] = pcg
}
pcg.nodeIndex[fn] = -1
}
func (a *analysis) pcgAddEdge(caller, callee *ssa.Function) {
if callee.Pkg != nil {
a.pcgs[callee.Pkg].addEdge(caller, callee)
}
}
// pcgJSON returns a new slice of callgraph JSON values.
func (a *analysis) pcgJSON(pcg *packageCallGraph) []*PCGNodeJSON {
var nodes []*PCGNodeJSON
for _, n := range pcg.nodes {
// TODO(adonovan): why is there no good way to iterate
// over the set bits of a big.Int?
var callees []int
nbits := n.edges.BitLen()
for j := 0; j < nbits; j++ {
if n.edges.Bit(j) == 1 {
callees = append(callees, j)
}
}
var pos token.Pos
if n.fn != nil {
pos = funcToken(n.fn)
}
nodes = append(nodes, &PCGNodeJSON{
Func: anchorJSON{
Text: n.pretty,
Href: a.posURL(pos, len("func")),
},
Callees: callees,
})
}
return nodes
}
type pcgNodesByPretty []*pcgNode
func (a pcgNodesByPretty) Less(i, j int) bool { return a[i].pretty < a[j].pretty }
func (a pcgNodesByPretty) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a pcgNodesByPretty) Len() int { return len(a) }

View File

@ -1,197 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package analysis
// This file computes the "implements" relation over all pairs of
// named types in the program. (The mark-up is done by typeinfo.go.)
// TODO(adonovan): do we want to report implements(C, I) where C and I
// belong to different packages and at least one is not exported?
import (
"sort"
"golang.org/x/tools/go/types"
"golang.org/x/tools/go/types/typeutil"
)
// computeImplements computes the "implements" relation over all pairs
// of named types in allNamed.
func computeImplements(cache *typeutil.MethodSetCache, allNamed []*types.Named) map[*types.Named]implementsFacts {
// Information about a single type's method set.
type msetInfo struct {
typ types.Type
mset *types.MethodSet
mask1, mask2 uint64
}
initMsetInfo := func(info *msetInfo, typ types.Type) {
info.typ = typ
info.mset = cache.MethodSet(typ)
for i := 0; i < info.mset.Len(); i++ {
name := info.mset.At(i).Obj().Name()
info.mask1 |= 1 << methodBit(name[0])
info.mask2 |= 1 << methodBit(name[len(name)-1])
}
}
// satisfies(T, U) reports whether type T satisfies type U.
// U must be an interface.
//
// Since there are thousands of types (and thus millions of
// pairs of types) and types.Assignable(T, U) is relatively
// expensive, we compute assignability directly from the
// method sets. (At least one of T and U must be an
// interface.)
//
// We use a trick (thanks gri!) related to a Bloom filter to
// quickly reject most tests, which are false. For each
// method set, we precompute a mask, a set of bits, one per
// distinct initial byte of each method name. Thus the mask
// for io.ReadWriter would be {'R','W'}. AssignableTo(T, U)
// cannot be true unless mask(T)&mask(U)==mask(U).
//
// As with a Bloom filter, we can improve precision by testing
// additional hashes, e.g. using the last letter of each
// method name, so long as the subset mask property holds.
//
// When analyzing the standard library, there are about 1e6
// calls to satisfies(), of which 0.6% return true. With a
// 1-hash filter, 95% of calls avoid the expensive check; with
// a 2-hash filter, this grows to 98.2%.
satisfies := func(T, U *msetInfo) bool {
return T.mask1&U.mask1 == U.mask1 &&
T.mask2&U.mask2 == U.mask2 &&
containsAllIdsOf(T.mset, U.mset)
}
// Information about a named type N, and perhaps also *N.
type namedInfo struct {
isInterface bool
base msetInfo // N
ptr msetInfo // *N, iff N !isInterface
}
var infos []namedInfo
// Precompute the method sets and their masks.
for _, N := range allNamed {
var info namedInfo
initMsetInfo(&info.base, N)
_, info.isInterface = N.Underlying().(*types.Interface)
if !info.isInterface {
initMsetInfo(&info.ptr, types.NewPointer(N))
}
if info.base.mask1|info.ptr.mask1 == 0 {
continue // neither N nor *N has methods
}
infos = append(infos, info)
}
facts := make(map[*types.Named]implementsFacts)
// Test all pairs of distinct named types (T, U).
// TODO(adonovan): opt: compute (U, T) at the same time.
for t := range infos {
T := &infos[t]
var to, from, fromPtr []types.Type
for u := range infos {
if t == u {
continue
}
U := &infos[u]
switch {
case T.isInterface && U.isInterface:
if satisfies(&U.base, &T.base) {
to = append(to, U.base.typ)
}
if satisfies(&T.base, &U.base) {
from = append(from, U.base.typ)
}
case T.isInterface: // U concrete
if satisfies(&U.base, &T.base) {
to = append(to, U.base.typ)
} else if satisfies(&U.ptr, &T.base) {
to = append(to, U.ptr.typ)
}
case U.isInterface: // T concrete
if satisfies(&T.base, &U.base) {
from = append(from, U.base.typ)
} else if satisfies(&T.ptr, &U.base) {
fromPtr = append(fromPtr, U.base.typ)
}
}
}
// Sort types (arbitrarily) to avoid nondeterminism.
sort.Sort(typesByString(to))
sort.Sort(typesByString(from))
sort.Sort(typesByString(fromPtr))
facts[T.base.typ.(*types.Named)] = implementsFacts{to, from, fromPtr}
}
return facts
}
type implementsFacts struct {
to []types.Type // named or ptr-to-named types assignable to interface T
from []types.Type // named interfaces assignable from T
fromPtr []types.Type // named interfaces assignable only from *T
}
type typesByString []types.Type
func (p typesByString) Len() int { return len(p) }
func (p typesByString) Less(i, j int) bool { return p[i].String() < p[j].String() }
func (p typesByString) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// methodBit returns the index of x in [a-zA-Z], or 52 if not found.
func methodBit(x byte) uint64 {
switch {
case 'a' <= x && x <= 'z':
return uint64(x - 'a')
case 'A' <= x && x <= 'Z':
return uint64(26 + x - 'A')
}
return 52 // all other bytes
}
// containsAllIdsOf reports whether the method identifiers of T are a
// superset of those in U. If U belongs to an interface type, the
// result is equal to types.Assignable(T, U), but is cheaper to compute.
//
// TODO(gri): make this a method of *types.MethodSet.
//
func containsAllIdsOf(T, U *types.MethodSet) bool {
t, tlen := 0, T.Len()
u, ulen := 0, U.Len()
for t < tlen && u < ulen {
tMeth := T.At(t).Obj()
uMeth := U.At(u).Obj()
tId := tMeth.Id()
uId := uMeth.Id()
if tId > uId {
// U has a method T lacks: fail.
return false
}
if tId < uId {
// T has a method U lacks: ignore it.
t++
continue
}
// U and T both have a method of this Id. Check types.
if !types.Identical(tMeth.Type(), uMeth.Type()) {
return false // type mismatch
}
u++
t++
}
return u == ulen
}

View File

@ -1,156 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package analysis
// This file computes the channel "peers" relation over all pairs of
// channel operations in the program. The peers are displayed in the
// lower pane when a channel operation (make, <-, close) is clicked.
// TODO(adonovan): handle calls to reflect.{Select,Recv,Send,Close} too,
// then enable reflection in PTA.
import (
"fmt"
"go/token"
"golang.org/x/tools/go/pointer"
"golang.org/x/tools/go/ssa"
"golang.org/x/tools/go/types"
)
func (a *analysis) doChannelPeers(ptsets map[ssa.Value]pointer.Pointer) {
addSendRecv := func(j *commJSON, op chanOp) {
j.Ops = append(j.Ops, commOpJSON{
Op: anchorJSON{
Text: op.mode,
Href: a.posURL(op.pos, op.len),
},
Fn: prettyFunc(nil, op.fn),
})
}
// Build an undirected bipartite multigraph (binary relation)
// of MakeChan ops and send/recv/close ops.
//
// TODO(adonovan): opt: use channel element types to partition
// the O(n^2) problem into subproblems.
aliasedOps := make(map[*ssa.MakeChan][]chanOp)
opToMakes := make(map[chanOp][]*ssa.MakeChan)
for _, op := range a.ops {
// Combine the PT sets from all contexts.
var makes []*ssa.MakeChan // aliased ops
ptr, ok := ptsets[op.ch]
if !ok {
continue // e.g. channel op in dead code
}
for _, label := range ptr.PointsTo().Labels() {
makechan, ok := label.Value().(*ssa.MakeChan)
if !ok {
continue // skip intrinsically-created channels for now
}
if makechan.Pos() == token.NoPos {
continue // not possible?
}
makes = append(makes, makechan)
aliasedOps[makechan] = append(aliasedOps[makechan], op)
}
opToMakes[op] = makes
}
// Now that complete relation is built, build links for ops.
for _, op := range a.ops {
v := commJSON{
Ops: []commOpJSON{}, // (JS wants non-nil)
}
ops := make(map[chanOp]bool)
for _, makechan := range opToMakes[op] {
v.Ops = append(v.Ops, commOpJSON{
Op: anchorJSON{
Text: "made",
Href: a.posURL(makechan.Pos()-token.Pos(len("make")),
len("make")),
},
Fn: makechan.Parent().RelString(op.fn.Package().Pkg),
})
for _, op := range aliasedOps[makechan] {
ops[op] = true
}
}
for op := range ops {
addSendRecv(&v, op)
}
// Add links for each aliased op.
fi, offset := a.fileAndOffset(op.pos)
fi.addLink(aLink{
start: offset,
end: offset + op.len,
title: "show channel ops",
onclick: fmt.Sprintf("onClickComm(%d)", fi.addData(v)),
})
}
// Add links for makechan ops themselves.
for makechan, ops := range aliasedOps {
v := commJSON{
Ops: []commOpJSON{}, // (JS wants non-nil)
}
for _, op := range ops {
addSendRecv(&v, op)
}
fi, offset := a.fileAndOffset(makechan.Pos())
fi.addLink(aLink{
start: offset - len("make"),
end: offset,
title: "show channel ops",
onclick: fmt.Sprintf("onClickComm(%d)", fi.addData(v)),
})
}
}
// -- utilities --------------------------------------------------------
// chanOp abstracts an ssa.Send, ssa.Unop(ARROW), close(), or a SelectState.
// Derived from oracle/peers.go.
type chanOp struct {
ch ssa.Value
mode string // sent|received|closed
pos token.Pos
len int
fn *ssa.Function
}
// chanOps returns a slice of all the channel operations in the instruction.
// Derived from oracle/peers.go.
func chanOps(instr ssa.Instruction) []chanOp {
fn := instr.Parent()
var ops []chanOp
switch instr := instr.(type) {
case *ssa.UnOp:
if instr.Op == token.ARROW {
// TODO(adonovan): don't assume <-ch; could be 'range ch'.
ops = append(ops, chanOp{instr.X, "received", instr.Pos(), len("<-"), fn})
}
case *ssa.Send:
ops = append(ops, chanOp{instr.Chan, "sent", instr.Pos(), len("<-"), fn})
case *ssa.Select:
for _, st := range instr.States {
mode := "received"
if st.Dir == types.SendOnly {
mode = "sent"
}
ops = append(ops, chanOp{st.Chan, mode, st.Pos, len("<-"), fn})
}
case ssa.CallInstruction:
call := instr.Common()
if blt, ok := call.Value.(*ssa.Builtin); ok && blt.Name() == "close" {
pos := instr.Common().Pos()
ops = append(ops, chanOp{call.Args[0], "closed", pos - token.Pos(len("close")), len("close("), fn})
}
}
return ops
}

View File

@ -1,234 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package analysis
// This file computes the markup for information from go/types:
// IMPORTS, identifier RESOLUTION, METHOD SETS, size/alignment, and
// the IMPLEMENTS relation.
//
// IMPORTS links connect import specs to the documentation for the
// imported package.
//
// RESOLUTION links referring identifiers to their defining
// identifier, and adds tooltips for kind and type.
//
// METHOD SETS, size/alignment, and the IMPLEMENTS relation are
// displayed in the lower pane when a type's defining identifier is
// clicked.
import (
"fmt"
"reflect"
"strconv"
"strings"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/types"
"golang.org/x/tools/go/types/typeutil"
)
// TODO(adonovan): audit to make sure it's safe on ill-typed packages.
// TODO(adonovan): use same Sizes as loader.Config.
var sizes = types.StdSizes{8, 8}
func (a *analysis) doTypeInfo(info *loader.PackageInfo, implements map[*types.Named]implementsFacts) {
// We must not assume the corresponding SSA packages were
// created (i.e. were transitively error-free).
// IMPORTS
for _, f := range info.Files {
// Package decl.
fi, offset := a.fileAndOffset(f.Name.Pos())
fi.addLink(aLink{
start: offset,
end: offset + len(f.Name.Name),
title: "Package docs for " + info.Pkg.Path(),
// TODO(adonovan): fix: we're putting the untrusted Path()
// into a trusted field. What's the appropriate sanitizer?
href: "/pkg/" + info.Pkg.Path(),
})
// Import specs.
for _, imp := range f.Imports {
// Remove quotes.
L := int(imp.End()-imp.Path.Pos()) - len(`""`)
path, _ := strconv.Unquote(imp.Path.Value)
fi, offset := a.fileAndOffset(imp.Path.Pos())
fi.addLink(aLink{
start: offset + 1,
end: offset + 1 + L,
title: "Package docs for " + path,
// TODO(adonovan): fix: we're putting the untrusted path
// into a trusted field. What's the appropriate sanitizer?
href: "/pkg/" + path,
})
}
}
// RESOLUTION
qualifier := types.RelativeTo(info.Pkg)
for id, obj := range info.Uses {
// Position of the object definition.
pos := obj.Pos()
Len := len(obj.Name())
// Correct the position for non-renaming import specs.
// import "sync/atomic"
// ^^^^^^^^^^^
if obj, ok := obj.(*types.PkgName); ok && id.Name == obj.Imported().Name() {
// Assume this is a non-renaming import.
// NB: not true for degenerate renamings: `import foo "foo"`.
pos++
Len = len(obj.Imported().Path())
}
if obj.Pkg() == nil {
continue // don't mark up built-ins.
}
fi, offset := a.fileAndOffset(id.NamePos)
fi.addLink(aLink{
start: offset,
end: offset + len(id.Name),
title: types.ObjectString(obj, qualifier),
href: a.posURL(pos, Len),
})
}
// IMPLEMENTS & METHOD SETS
for _, obj := range info.Defs {
if obj, ok := obj.(*types.TypeName); ok {
a.namedType(obj, implements)
}
}
}
func (a *analysis) namedType(obj *types.TypeName, implements map[*types.Named]implementsFacts) {
qualifier := types.RelativeTo(obj.Pkg())
T := obj.Type().(*types.Named)
v := &TypeInfoJSON{
Name: obj.Name(),
Size: sizes.Sizeof(T),
Align: sizes.Alignof(T),
Methods: []anchorJSON{}, // (JS wants non-nil)
}
// addFact adds the fact "is implemented by T" (by) or
// "implements T" (!by) to group.
addFact := func(group *implGroupJSON, T types.Type, by bool) {
Tobj := deref(T).(*types.Named).Obj()
var byKind string
if by {
// Show underlying kind of implementing type,
// e.g. "slice", "array", "struct".
s := reflect.TypeOf(T.Underlying()).String()
byKind = strings.ToLower(strings.TrimPrefix(s, "*types."))
}
group.Facts = append(group.Facts, implFactJSON{
ByKind: byKind,
Other: anchorJSON{
Href: a.posURL(Tobj.Pos(), len(Tobj.Name())),
Text: types.TypeString(T, qualifier),
},
})
}
// IMPLEMENTS
if r, ok := implements[T]; ok {
if isInterface(T) {
// "T is implemented by <conc>" ...
// "T is implemented by <iface>"...
// "T implements <iface>"...
group := implGroupJSON{
Descr: types.TypeString(T, qualifier),
}
// Show concrete types first; use two passes.
for _, sub := range r.to {
if !isInterface(sub) {
addFact(&group, sub, true)
}
}
for _, sub := range r.to {
if isInterface(sub) {
addFact(&group, sub, true)
}
}
for _, super := range r.from {
addFact(&group, super, false)
}
v.ImplGroups = append(v.ImplGroups, group)
} else {
// T is concrete.
if r.from != nil {
// "T implements <iface>"...
group := implGroupJSON{
Descr: types.TypeString(T, qualifier),
}
for _, super := range r.from {
addFact(&group, super, false)
}
v.ImplGroups = append(v.ImplGroups, group)
}
if r.fromPtr != nil {
// "*C implements <iface>"...
group := implGroupJSON{
Descr: "*" + types.TypeString(T, qualifier),
}
for _, psuper := range r.fromPtr {
addFact(&group, psuper, false)
}
v.ImplGroups = append(v.ImplGroups, group)
}
}
}
// METHOD SETS
for _, sel := range typeutil.IntuitiveMethodSet(T, &a.prog.MethodSets) {
meth := sel.Obj().(*types.Func)
pos := meth.Pos() // may be 0 for error.Error
v.Methods = append(v.Methods, anchorJSON{
Href: a.posURL(pos, len(meth.Name())),
Text: types.SelectionString(sel, qualifier),
})
}
// Since there can be many specs per decl, we
// can't attach the link to the keyword 'type'
// (as we do with 'func'); we use the Ident.
fi, offset := a.fileAndOffset(obj.Pos())
fi.addLink(aLink{
start: offset,
end: offset + len(obj.Name()),
title: fmt.Sprintf("type info for %s", obj.Name()),
onclick: fmt.Sprintf("onClickTypeInfo(%d)", fi.addData(v)),
})
// Add info for exported package-level types to the package info.
if obj.Exported() && isPackageLevel(obj) {
// TODO(adonovan): Path is not unique!
// It is possible to declare a non-test package called x_test.
a.result.pkgInfo(obj.Pkg().Path()).addType(v)
}
}
// -- utilities --------------------------------------------------------
func isInterface(T types.Type) bool { return types.IsInterface(T) }
// deref returns a pointer's element type; otherwise it returns typ.
func deref(typ types.Type) types.Type {
if p, ok := typ.Underlying().(*types.Pointer); ok {
return p.Elem()
}
return typ
}
// isPackageLevel reports whether obj is a package-level object.
func isPackageLevel(obj types.Object) bool {
return obj.Pkg().Scope().Lookup(obj.Name()) == obj
}

View File

@ -1,260 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package oracle
import (
"fmt"
"go/ast"
"go/token"
"sort"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/pointer"
"golang.org/x/tools/go/ssa"
"golang.org/x/tools/go/ssa/ssautil"
"golang.org/x/tools/go/types"
"golang.org/x/tools/oracle/serial"
)
// Callees reports the possible callees of the function call site
// identified by the specified source location.
func callees(q *Query) error {
lconf := loader.Config{Build: q.Build}
if err := setPTAScope(&lconf, q.Scope); err != nil {
return err
}
// Load/parse/type-check the program.
lprog, err := lconf.Load()
if err != nil {
return err
}
q.Fset = lprog.Fset
qpos, err := parseQueryPos(lprog, q.Pos, true) // needs exact pos
if err != nil {
return err
}
// Determine the enclosing call for the specified position.
var e *ast.CallExpr
for _, n := range qpos.path {
if e, _ = n.(*ast.CallExpr); e != nil {
break
}
}
if e == nil {
return fmt.Errorf("there is no function call here")
}
// TODO(adonovan): issue an error if the call is "too far
// away" from the current selection, as this most likely is
// not what the user intended.
// Reject type conversions.
if qpos.info.Types[e.Fun].IsType() {
return fmt.Errorf("this is a type conversion, not a function call")
}
// Deal with obviously static calls before constructing SSA form.
// Some static calls may yet require SSA construction,
// e.g. f := func(){}; f().
switch funexpr := unparen(e.Fun).(type) {
case *ast.Ident:
switch obj := qpos.info.Uses[funexpr].(type) {
case *types.Builtin:
// Reject calls to built-ins.
return fmt.Errorf("this is a call to the built-in '%s' operator", obj.Name())
case *types.Func:
// This is a static function call
q.result = &calleesTypesResult{
site: e,
callee: obj,
}
return nil
}
case *ast.SelectorExpr:
sel := qpos.info.Selections[funexpr]
if sel == nil {
// qualified identifier.
// May refer to top level function variable
// or to top level function.
callee := qpos.info.Uses[funexpr.Sel]
if obj, ok := callee.(*types.Func); ok {
q.result = &calleesTypesResult{
site: e,
callee: obj,
}
return nil
}
} else if sel.Kind() == types.MethodVal {
// Inspect the receiver type of the selected method.
// If it is concrete, the call is statically dispatched.
// (Due to implicit field selections, it is not enough to look
// at sel.Recv(), the type of the actual receiver expression.)
method := sel.Obj().(*types.Func)
recvtype := method.Type().(*types.Signature).Recv().Type()
if !types.IsInterface(recvtype) {
// static method call
q.result = &calleesTypesResult{
site: e,
callee: method,
}
return nil
}
}
}
prog := ssautil.CreateProgram(lprog, ssa.GlobalDebug)
ptaConfig, err := setupPTA(prog, lprog, q.PTALog, q.Reflection)
if err != nil {
return err
}
pkg := prog.Package(qpos.info.Pkg)
if pkg == nil {
return fmt.Errorf("no SSA package")
}
// Defer SSA construction till after errors are reported.
prog.Build()
// Ascertain calling function and call site.
callerFn := ssa.EnclosingFunction(pkg, qpos.path)
if callerFn == nil {
return fmt.Errorf("no SSA function built for this location (dead code?)")
}
// Find the call site.
site, err := findCallSite(callerFn, e)
if err != nil {
return err
}
funcs, err := findCallees(ptaConfig, site)
if err != nil {
return err
}
q.result = &calleesSSAResult{
site: site,
funcs: funcs,
}
return nil
}
func findCallSite(fn *ssa.Function, call *ast.CallExpr) (ssa.CallInstruction, error) {
instr, _ := fn.ValueForExpr(call)
callInstr, _ := instr.(ssa.CallInstruction)
if instr == nil {
return nil, fmt.Errorf("this call site is unreachable in this analysis")
}
return callInstr, nil
}
func findCallees(conf *pointer.Config, site ssa.CallInstruction) ([]*ssa.Function, error) {
// Avoid running the pointer analysis for static calls.
if callee := site.Common().StaticCallee(); callee != nil {
switch callee.String() {
case "runtime.SetFinalizer", "(reflect.Value).Call":
// The PTA treats calls to these intrinsics as dynamic.
// TODO(adonovan): avoid reliance on PTA internals.
default:
return []*ssa.Function{callee}, nil // singleton
}
}
// Dynamic call: use pointer analysis.
conf.BuildCallGraph = true
cg := ptrAnalysis(conf).CallGraph
cg.DeleteSyntheticNodes()
// Find all call edges from the site.
n := cg.Nodes[site.Parent()]
if n == nil {
return nil, fmt.Errorf("this call site is unreachable in this analysis")
}
calleesMap := make(map[*ssa.Function]bool)
for _, edge := range n.Out {
if edge.Site == site {
calleesMap[edge.Callee.Func] = true
}
}
// De-duplicate and sort.
funcs := make([]*ssa.Function, 0, len(calleesMap))
for f := range calleesMap {
funcs = append(funcs, f)
}
sort.Sort(byFuncPos(funcs))
return funcs, nil
}
type calleesSSAResult struct {
site ssa.CallInstruction
funcs []*ssa.Function
}
type calleesTypesResult struct {
site *ast.CallExpr
callee *types.Func
}
func (r *calleesSSAResult) display(printf printfFunc) {
if len(r.funcs) == 0 {
// dynamic call on a provably nil func/interface
printf(r.site, "%s on nil value", r.site.Common().Description())
} else {
printf(r.site, "this %s dispatches to:", r.site.Common().Description())
for _, callee := range r.funcs {
printf(callee, "\t%s", callee)
}
}
}
func (r *calleesSSAResult) toSerial(res *serial.Result, fset *token.FileSet) {
j := &serial.Callees{
Pos: fset.Position(r.site.Pos()).String(),
Desc: r.site.Common().Description(),
}
for _, callee := range r.funcs {
j.Callees = append(j.Callees, &serial.CalleesItem{
Name: callee.String(),
Pos: fset.Position(callee.Pos()).String(),
})
}
res.Callees = j
}
func (r *calleesTypesResult) display(printf printfFunc) {
printf(r.site, "this static function call dispatches to:")
printf(r.callee, "\t%s", r.callee.FullName())
}
func (r *calleesTypesResult) toSerial(res *serial.Result, fset *token.FileSet) {
j := &serial.Callees{
Pos: fset.Position(r.site.Pos()).String(),
Desc: "static function call",
}
j.Callees = []*serial.CalleesItem{
&serial.CalleesItem{
Name: r.callee.FullName(),
Pos: fset.Position(r.callee.Pos()).String(),
},
}
res.Callees = j
}
// NB: byFuncPos is not deterministic across packages since it depends on load order.
// Use lessPos if the tests need it.
type byFuncPos []*ssa.Function
func (a byFuncPos) Len() int { return len(a) }
func (a byFuncPos) Less(i, j int) bool { return a[i].Pos() < a[j].Pos() }
func (a byFuncPos) Swap(i, j int) { a[i], a[j] = a[j], a[i] }

View File

@ -1,78 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package oracle
import (
"fmt"
"go/ast"
"go/token"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/types"
"golang.org/x/tools/oracle/serial"
)
// definition reports the location of the definition of an identifier.
//
// TODO(adonovan): opt: for intra-file references, the parser's
// resolution might be enough; we should start with that.
//
func definition(q *Query) error {
lconf := loader.Config{Build: q.Build}
allowErrors(&lconf)
if _, err := importQueryPackage(q.Pos, &lconf); err != nil {
return err
}
// Load/parse/type-check the program.
lprog, err := lconf.Load()
if err != nil {
return err
}
q.Fset = lprog.Fset
qpos, err := parseQueryPos(lprog, q.Pos, false)
if err != nil {
return err
}
id, _ := qpos.path[0].(*ast.Ident)
if id == nil {
return fmt.Errorf("no identifier here")
}
obj := qpos.info.ObjectOf(id)
if obj == nil {
// Happens for y in "switch y := x.(type)",
// and the package declaration,
// but I think that's all.
return fmt.Errorf("no object for identifier")
}
q.result = &definitionResult{qpos, obj}
return nil
}
type definitionResult struct {
qpos *queryPos
obj types.Object // object it denotes
}
func (r *definitionResult) display(printf printfFunc) {
printf(r.obj, "defined here as %s", r.qpos.objectString(r.obj))
}
func (r *definitionResult) toSerial(res *serial.Result, fset *token.FileSet) {
definition := &serial.Definition{
Desc: r.obj.String(),
}
if pos := r.obj.Pos(); pos != token.NoPos { // Package objects have no Pos()
definition.ObjPos = fset.Position(pos).String()
}
res.Definition = definition
}

View File

@ -1,786 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package oracle
import (
"bytes"
"fmt"
"go/ast"
"go/token"
"log"
"os"
"strings"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/go/exact"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/types"
"golang.org/x/tools/go/types/typeutil"
"golang.org/x/tools/oracle/serial"
)
// describe describes the syntax node denoted by the query position,
// including:
// - its syntactic category
// - the definition of its referent (for identifiers) [now redundant]
// - its type and method set (for an expression or type expression)
//
func describe(q *Query) error {
lconf := loader.Config{Build: q.Build}
allowErrors(&lconf)
if _, err := importQueryPackage(q.Pos, &lconf); err != nil {
return err
}
// Load/parse/type-check the program.
lprog, err := lconf.Load()
if err != nil {
return err
}
q.Fset = lprog.Fset
qpos, err := parseQueryPos(lprog, q.Pos, true) // (need exact pos)
if err != nil {
return err
}
if false { // debugging
fprintf(os.Stderr, lprog.Fset, qpos.path[0], "you selected: %s %s",
astutil.NodeDescription(qpos.path[0]), pathToString(qpos.path))
}
path, action := findInterestingNode(qpos.info, qpos.path)
switch action {
case actionExpr:
q.result, err = describeValue(qpos, path)
case actionType:
q.result, err = describeType(qpos, path)
case actionPackage:
q.result, err = describePackage(qpos, path)
case actionStmt:
q.result, err = describeStmt(qpos, path)
case actionUnknown:
q.result = &describeUnknownResult{path[0]}
default:
panic(action) // unreachable
}
return err
}
type describeUnknownResult struct {
node ast.Node
}
func (r *describeUnknownResult) display(printf printfFunc) {
// Nothing much to say about misc syntax.
printf(r.node, "%s", astutil.NodeDescription(r.node))
}
func (r *describeUnknownResult) toSerial(res *serial.Result, fset *token.FileSet) {
res.Describe = &serial.Describe{
Desc: astutil.NodeDescription(r.node),
Pos: fset.Position(r.node.Pos()).String(),
}
}
type action int
const (
actionUnknown action = iota // None of the below
actionExpr // FuncDecl, true Expr or Ident(types.{Const,Var})
actionType // type Expr or Ident(types.TypeName).
actionStmt // Stmt or Ident(types.Label)
actionPackage // Ident(types.Package) or ImportSpec
)
// findInterestingNode classifies the syntax node denoted by path as one of:
// - an expression, part of an expression or a reference to a constant
// or variable;
// - a type, part of a type, or a reference to a named type;
// - a statement, part of a statement, or a label referring to a statement;
// - part of a package declaration or import spec.
// - none of the above.
// and returns the most "interesting" associated node, which may be
// the same node, an ancestor or a descendent.
//
func findInterestingNode(pkginfo *loader.PackageInfo, path []ast.Node) ([]ast.Node, action) {
// TODO(adonovan): integrate with go/types/stdlib_test.go and
// apply this to every AST node we can find to make sure it
// doesn't crash.
// TODO(adonovan): audit for ParenExpr safety, esp. since we
// traverse up and down.
// TODO(adonovan): if the users selects the "." in
// "fmt.Fprintf()", they'll get an ambiguous selection error;
// we won't even reach here. Can we do better?
// TODO(adonovan): describing a field within 'type T struct {...}'
// describes the (anonymous) struct type and concludes "no methods".
// We should ascend to the enclosing type decl, if any.
for len(path) > 0 {
switch n := path[0].(type) {
case *ast.GenDecl:
if len(n.Specs) == 1 {
// Descend to sole {Import,Type,Value}Spec child.
path = append([]ast.Node{n.Specs[0]}, path...)
continue
}
return path, actionUnknown // uninteresting
case *ast.FuncDecl:
// Descend to function name.
path = append([]ast.Node{n.Name}, path...)
continue
case *ast.ImportSpec:
return path, actionPackage
case *ast.ValueSpec:
if len(n.Names) == 1 {
// Descend to sole Ident child.
path = append([]ast.Node{n.Names[0]}, path...)
continue
}
return path, actionUnknown // uninteresting
case *ast.TypeSpec:
// Descend to type name.
path = append([]ast.Node{n.Name}, path...)
continue
case ast.Stmt:
return path, actionStmt
case *ast.ArrayType,
*ast.StructType,
*ast.FuncType,
*ast.InterfaceType,
*ast.MapType,
*ast.ChanType:
return path, actionType
case *ast.Comment, *ast.CommentGroup, *ast.File, *ast.KeyValueExpr, *ast.CommClause:
return path, actionUnknown // uninteresting
case *ast.Ellipsis:
// Continue to enclosing node.
// e.g. [...]T in ArrayType
// f(x...) in CallExpr
// f(x...T) in FuncType
case *ast.Field:
// TODO(adonovan): this needs more thought,
// since fields can be so many things.
if len(n.Names) == 1 {
// Descend to sole Ident child.
path = append([]ast.Node{n.Names[0]}, path...)
continue
}
// Zero names (e.g. anon field in struct)
// or multiple field or param names:
// continue to enclosing field list.
case *ast.FieldList:
// Continue to enclosing node:
// {Struct,Func,Interface}Type or FuncDecl.
case *ast.BasicLit:
if _, ok := path[1].(*ast.ImportSpec); ok {
return path[1:], actionPackage
}
return path, actionExpr
case *ast.SelectorExpr:
// TODO(adonovan): use Selections info directly.
if pkginfo.Uses[n.Sel] == nil {
// TODO(adonovan): is this reachable?
return path, actionUnknown
}
// Descend to .Sel child.
path = append([]ast.Node{n.Sel}, path...)
continue
case *ast.Ident:
switch pkginfo.ObjectOf(n).(type) {
case *types.PkgName:
return path, actionPackage
case *types.Const:
return path, actionExpr
case *types.Label:
return path, actionStmt
case *types.TypeName:
return path, actionType
case *types.Var:
// For x in 'struct {x T}', return struct type, for now.
if _, ok := path[1].(*ast.Field); ok {
_ = path[2].(*ast.FieldList) // assertion
if _, ok := path[3].(*ast.StructType); ok {
return path[3:], actionType
}
}
return path, actionExpr
case *types.Func:
return path, actionExpr
case *types.Builtin:
// For reference to built-in function, return enclosing call.
path = path[1:] // ascend to enclosing function call
continue
case *types.Nil:
return path, actionExpr
}
// No object.
switch path[1].(type) {
case *ast.SelectorExpr:
// Return enclosing selector expression.
return path[1:], actionExpr
case *ast.Field:
// TODO(adonovan): test this.
// e.g. all f in:
// struct { f, g int }
// interface { f() }
// func (f T) method(f, g int) (f, g bool)
//
// switch path[3].(type) {
// case *ast.FuncDecl:
// case *ast.StructType:
// case *ast.InterfaceType:
// }
//
// return path[1:], actionExpr
//
// Unclear what to do with these.
// Struct.Fields -- field
// Interface.Methods -- field
// FuncType.{Params.Results} -- actionExpr
// FuncDecl.Recv -- actionExpr
case *ast.File:
// 'package foo'
return path, actionPackage
case *ast.ImportSpec:
// TODO(adonovan): fix: why no package object? go/types bug?
return path[1:], actionPackage
default:
// e.g. blank identifier
// or y in "switch y := x.(type)"
// or code in a _test.go file that's not part of the package.
log.Printf("unknown reference %s in %T\n", n, path[1])
return path, actionUnknown
}
case *ast.StarExpr:
if pkginfo.Types[n].IsType() {
return path, actionType
}
return path, actionExpr
case ast.Expr:
// All Expr but {BasicLit,Ident,StarExpr} are
// "true" expressions that evaluate to a value.
return path, actionExpr
}
// Ascend to parent.
path = path[1:]
}
return nil, actionUnknown // unreachable
}
func describeValue(qpos *queryPos, path []ast.Node) (*describeValueResult, error) {
var expr ast.Expr
var obj types.Object
switch n := path[0].(type) {
case *ast.ValueSpec:
// ambiguous ValueSpec containing multiple names
return nil, fmt.Errorf("multiple value specification")
case *ast.Ident:
obj = qpos.info.ObjectOf(n)
expr = n
case ast.Expr:
expr = n
default:
// TODO(adonovan): is this reachable?
return nil, fmt.Errorf("unexpected AST for expr: %T", n)
}
typ := qpos.info.TypeOf(expr)
constVal := qpos.info.Types[expr].Value
return &describeValueResult{
qpos: qpos,
expr: expr,
typ: typ,
constVal: constVal,
obj: obj,
}, nil
}
type describeValueResult struct {
qpos *queryPos
expr ast.Expr // query node
typ types.Type // type of expression
constVal exact.Value // value of expression, if constant
obj types.Object // var/func/const object, if expr was Ident
}
func (r *describeValueResult) display(printf printfFunc) {
var prefix, suffix string
if r.constVal != nil {
suffix = fmt.Sprintf(" of constant value %s", constValString(r.constVal))
}
switch obj := r.obj.(type) {
case *types.Func:
if recv := obj.Type().(*types.Signature).Recv(); recv != nil {
if _, ok := recv.Type().Underlying().(*types.Interface); ok {
prefix = "interface method "
} else {
prefix = "method "
}
}
}
// Describe the expression.
if r.obj != nil {
if r.obj.Pos() == r.expr.Pos() {
// defining ident
printf(r.expr, "definition of %s%s%s", prefix, r.qpos.objectString(r.obj), suffix)
} else {
// referring ident
printf(r.expr, "reference to %s%s%s", prefix, r.qpos.objectString(r.obj), suffix)
if def := r.obj.Pos(); def != token.NoPos {
printf(def, "defined here")
}
}
} else {
desc := astutil.NodeDescription(r.expr)
if suffix != "" {
// constant expression
printf(r.expr, "%s%s", desc, suffix)
} else {
// non-constant expression
printf(r.expr, "%s of type %s", desc, r.qpos.typeString(r.typ))
}
}
}
func (r *describeValueResult) toSerial(res *serial.Result, fset *token.FileSet) {
var value, objpos string
if r.constVal != nil {
value = r.constVal.String()
}
if r.obj != nil {
objpos = fset.Position(r.obj.Pos()).String()
}
res.Describe = &serial.Describe{
Desc: astutil.NodeDescription(r.expr),
Pos: fset.Position(r.expr.Pos()).String(),
Detail: "value",
Value: &serial.DescribeValue{
Type: r.qpos.typeString(r.typ),
Value: value,
ObjPos: objpos,
},
}
}
// ---- TYPE ------------------------------------------------------------
func describeType(qpos *queryPos, path []ast.Node) (*describeTypeResult, error) {
var description string
var t types.Type
switch n := path[0].(type) {
case *ast.Ident:
t = qpos.info.TypeOf(n)
switch t := t.(type) {
case *types.Basic:
description = "reference to built-in "
case *types.Named:
isDef := t.Obj().Pos() == n.Pos() // see caveats at isDef above
if isDef {
description = "definition of "
} else {
description = "reference to "
}
}
case ast.Expr:
t = qpos.info.TypeOf(n)
default:
// Unreachable?
return nil, fmt.Errorf("unexpected AST for type: %T", n)
}
description = description + "type " + qpos.typeString(t)
// Show sizes for structs and named types (it's fairly obvious for others).
switch t.(type) {
case *types.Named, *types.Struct:
szs := types.StdSizes{8, 8} // assume amd64
description = fmt.Sprintf("%s (size %d, align %d)", description,
szs.Sizeof(t), szs.Alignof(t))
}
return &describeTypeResult{
qpos: qpos,
node: path[0],
description: description,
typ: t,
methods: accessibleMethods(t, qpos.info.Pkg),
}, nil
}
type describeTypeResult struct {
qpos *queryPos
node ast.Node
description string
typ types.Type
methods []*types.Selection
}
func (r *describeTypeResult) display(printf printfFunc) {
printf(r.node, "%s", r.description)
// Show the underlying type for a reference to a named type.
if nt, ok := r.typ.(*types.Named); ok && r.node.Pos() != nt.Obj().Pos() {
printf(nt.Obj(), "defined as %s", r.qpos.typeString(nt.Underlying()))
}
// Print the method set, if the type kind is capable of bearing methods.
switch r.typ.(type) {
case *types.Interface, *types.Struct, *types.Named:
if len(r.methods) > 0 {
printf(r.node, "Method set:")
for _, meth := range r.methods {
// TODO(adonovan): print these relative
// to the owning package, not the
// query package.
printf(meth.Obj(), "\t%s", r.qpos.selectionString(meth))
}
} else {
printf(r.node, "No methods.")
}
}
}
func (r *describeTypeResult) toSerial(res *serial.Result, fset *token.FileSet) {
var namePos, nameDef string
if nt, ok := r.typ.(*types.Named); ok {
namePos = fset.Position(nt.Obj().Pos()).String()
nameDef = nt.Underlying().String()
}
res.Describe = &serial.Describe{
Desc: r.description,
Pos: fset.Position(r.node.Pos()).String(),
Detail: "type",
Type: &serial.DescribeType{
Type: r.qpos.typeString(r.typ),
NamePos: namePos,
NameDef: nameDef,
Methods: methodsToSerial(r.qpos.info.Pkg, r.methods, fset),
},
}
}
// ---- PACKAGE ------------------------------------------------------------
func describePackage(qpos *queryPos, path []ast.Node) (*describePackageResult, error) {
var description string
var pkg *types.Package
switch n := path[0].(type) {
case *ast.ImportSpec:
var obj types.Object
if n.Name != nil {
obj = qpos.info.Defs[n.Name]
} else {
obj = qpos.info.Implicits[n]
}
pkgname, _ := obj.(*types.PkgName)
if pkgname == nil {
return nil, fmt.Errorf("can't import package %s", n.Path.Value)
}
pkg = pkgname.Imported()
description = fmt.Sprintf("import of package %q", pkg.Path())
case *ast.Ident:
if _, isDef := path[1].(*ast.File); isDef {
// e.g. package id
pkg = qpos.info.Pkg
description = fmt.Sprintf("definition of package %q", pkg.Path())
} else {
// e.g. import id "..."
// or id.F()
pkg = qpos.info.ObjectOf(n).(*types.PkgName).Imported()
description = fmt.Sprintf("reference to package %q", pkg.Path())
}
default:
// Unreachable?
return nil, fmt.Errorf("unexpected AST for package: %T", n)
}
var members []*describeMember
// NB: "unsafe" has no types.Package
if pkg != nil {
// Enumerate the accessible package members
// in lexicographic order.
for _, name := range pkg.Scope().Names() {
if pkg == qpos.info.Pkg || ast.IsExported(name) {
mem := pkg.Scope().Lookup(name)
var methods []*types.Selection
if mem, ok := mem.(*types.TypeName); ok {
methods = accessibleMethods(mem.Type(), qpos.info.Pkg)
}
members = append(members, &describeMember{
mem,
methods,
})
}
}
}
return &describePackageResult{qpos.fset, path[0], description, pkg, members}, nil
}
type describePackageResult struct {
fset *token.FileSet
node ast.Node
description string
pkg *types.Package
members []*describeMember // in lexicographic name order
}
type describeMember struct {
obj types.Object
methods []*types.Selection // in types.MethodSet order
}
func (r *describePackageResult) display(printf printfFunc) {
printf(r.node, "%s", r.description)
// Compute max width of name "column".
maxname := 0
for _, mem := range r.members {
if l := len(mem.obj.Name()); l > maxname {
maxname = l
}
}
for _, mem := range r.members {
printf(mem.obj, "\t%s", formatMember(mem.obj, maxname))
for _, meth := range mem.methods {
printf(meth.Obj(), "\t\t%s", types.SelectionString(meth, types.RelativeTo(r.pkg)))
}
}
}
func formatMember(obj types.Object, maxname int) string {
qualifier := types.RelativeTo(obj.Pkg())
var buf bytes.Buffer
fmt.Fprintf(&buf, "%-5s %-*s", tokenOf(obj), maxname, obj.Name())
switch obj := obj.(type) {
case *types.Const:
fmt.Fprintf(&buf, " %s = %s", types.TypeString(obj.Type(), qualifier), constValString(obj.Val()))
case *types.Func:
fmt.Fprintf(&buf, " %s", types.TypeString(obj.Type(), qualifier))
case *types.TypeName:
// Abbreviate long aggregate type names.
var abbrev string
switch t := obj.Type().Underlying().(type) {
case *types.Interface:
if t.NumMethods() > 1 {
abbrev = "interface{...}"
}
case *types.Struct:
if t.NumFields() > 1 {
abbrev = "struct{...}"
}
}
if abbrev == "" {
fmt.Fprintf(&buf, " %s", types.TypeString(obj.Type().Underlying(), qualifier))
} else {
fmt.Fprintf(&buf, " %s", abbrev)
}
case *types.Var:
fmt.Fprintf(&buf, " %s", types.TypeString(obj.Type(), qualifier))
}
return buf.String()
}
func (r *describePackageResult) toSerial(res *serial.Result, fset *token.FileSet) {
var members []*serial.DescribeMember
for _, mem := range r.members {
typ := mem.obj.Type()
var val string
switch mem := mem.obj.(type) {
case *types.Const:
val = constValString(mem.Val())
case *types.TypeName:
typ = typ.Underlying()
}
members = append(members, &serial.DescribeMember{
Name: mem.obj.Name(),
Type: typ.String(),
Value: val,
Pos: fset.Position(mem.obj.Pos()).String(),
Kind: tokenOf(mem.obj),
Methods: methodsToSerial(r.pkg, mem.methods, fset),
})
}
res.Describe = &serial.Describe{
Desc: r.description,
Pos: fset.Position(r.node.Pos()).String(),
Detail: "package",
Package: &serial.DescribePackage{
Path: r.pkg.Path(),
Members: members,
},
}
}
func tokenOf(o types.Object) string {
switch o.(type) {
case *types.Func:
return "func"
case *types.Var:
return "var"
case *types.TypeName:
return "type"
case *types.Const:
return "const"
case *types.PkgName:
return "package"
case *types.Builtin:
return "builtin" // e.g. when describing package "unsafe"
case *types.Nil:
return "nil"
case *types.Label:
return "label"
}
panic(o)
}
// ---- STATEMENT ------------------------------------------------------------
func describeStmt(qpos *queryPos, path []ast.Node) (*describeStmtResult, error) {
var description string
switch n := path[0].(type) {
case *ast.Ident:
if qpos.info.Defs[n] != nil {
description = "labelled statement"
} else {
description = "reference to labelled statement"
}
default:
// Nothing much to say about statements.
description = astutil.NodeDescription(n)
}
return &describeStmtResult{qpos.fset, path[0], description}, nil
}
type describeStmtResult struct {
fset *token.FileSet
node ast.Node
description string
}
func (r *describeStmtResult) display(printf printfFunc) {
printf(r.node, "%s", r.description)
}
func (r *describeStmtResult) toSerial(res *serial.Result, fset *token.FileSet) {
res.Describe = &serial.Describe{
Desc: r.description,
Pos: fset.Position(r.node.Pos()).String(),
Detail: "unknown",
}
}
// ------------------- Utilities -------------------
// pathToString returns a string containing the concrete types of the
// nodes in path.
func pathToString(path []ast.Node) string {
var buf bytes.Buffer
fmt.Fprint(&buf, "[")
for i, n := range path {
if i > 0 {
fmt.Fprint(&buf, " ")
}
fmt.Fprint(&buf, strings.TrimPrefix(fmt.Sprintf("%T", n), "*ast."))
}
fmt.Fprint(&buf, "]")
return buf.String()
}
func accessibleMethods(t types.Type, from *types.Package) []*types.Selection {
var methods []*types.Selection
for _, meth := range typeutil.IntuitiveMethodSet(t, nil) {
if isAccessibleFrom(meth.Obj(), from) {
methods = append(methods, meth)
}
}
return methods
}
func isAccessibleFrom(obj types.Object, pkg *types.Package) bool {
return ast.IsExported(obj.Name()) || obj.Pkg() == pkg
}
func methodsToSerial(this *types.Package, methods []*types.Selection, fset *token.FileSet) []serial.DescribeMethod {
qualifier := types.RelativeTo(this)
var jmethods []serial.DescribeMethod
for _, meth := range methods {
var ser serial.DescribeMethod
if meth != nil { // may contain nils when called by implements (on a method)
ser = serial.DescribeMethod{
Name: types.SelectionString(meth, qualifier),
Pos: fset.Position(meth.Obj().Pos()).String(),
}
}
jmethods = append(jmethods, ser)
}
return jmethods
}
// constValString emulates Go 1.6's go/constant.ExactString well enough
// to make the tests pass. This is just a stopgap until we throw away
// all the *14.go files.
func constValString(v exact.Value) string {
if v.Kind() == exact.Float {
f, _ := exact.Float64Val(v)
return fmt.Sprintf("%g", f)
}
return v.String()
}

View File

@ -1,224 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package oracle
import (
"bytes"
"go/ast"
"go/printer"
"go/token"
"sort"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/types"
"golang.org/x/tools/oracle/serial"
)
// freevars displays the lexical (not package-level) free variables of
// the selection.
//
// It treats A.B.C as a separate variable from A to reveal the parts
// of an aggregate type that are actually needed.
// This aids refactoring.
//
// TODO(adonovan): optionally display the free references to
// file/package scope objects, and to objects from other packages.
// Depending on where the resulting function abstraction will go,
// these might be interesting. Perhaps group the results into three
// bands.
//
func freevars(q *Query) error {
lconf := loader.Config{Build: q.Build}
allowErrors(&lconf)
if _, err := importQueryPackage(q.Pos, &lconf); err != nil {
return err
}
// Load/parse/type-check the program.
lprog, err := lconf.Load()
if err != nil {
return err
}
q.Fset = lprog.Fset
qpos, err := parseQueryPos(lprog, q.Pos, false)
if err != nil {
return err
}
file := qpos.path[len(qpos.path)-1] // the enclosing file
fileScope := qpos.info.Scopes[file]
pkgScope := fileScope.Parent()
// The id and sel functions return non-nil if they denote an
// object o or selection o.x.y that is referenced by the
// selection but defined neither within the selection nor at
// file scope, i.e. it is in the lexical environment.
var id func(n *ast.Ident) types.Object
var sel func(n *ast.SelectorExpr) types.Object
sel = func(n *ast.SelectorExpr) types.Object {
switch x := unparen(n.X).(type) {
case *ast.SelectorExpr:
return sel(x)
case *ast.Ident:
return id(x)
}
return nil
}
id = func(n *ast.Ident) types.Object {
obj := qpos.info.Uses[n]
if obj == nil {
return nil // not a reference
}
if _, ok := obj.(*types.PkgName); ok {
return nil // imported package
}
if !(file.Pos() <= obj.Pos() && obj.Pos() <= file.End()) {
return nil // not defined in this file
}
scope := obj.Parent()
if scope == nil {
return nil // e.g. interface method, struct field
}
if scope == fileScope || scope == pkgScope {
return nil // defined at file or package scope
}
if qpos.start <= obj.Pos() && obj.Pos() <= qpos.end {
return nil // defined within selection => not free
}
return obj
}
// Maps each reference that is free in the selection
// to the object it refers to.
// The map de-duplicates repeated references.
refsMap := make(map[string]freevarsRef)
// Visit all the identifiers in the selected ASTs.
ast.Inspect(qpos.path[0], func(n ast.Node) bool {
if n == nil {
return true // popping DFS stack
}
// Is this node contained within the selection?
// (freevars permits inexact selections,
// like two stmts in a block.)
if qpos.start <= n.Pos() && n.End() <= qpos.end {
var obj types.Object
var prune bool
switch n := n.(type) {
case *ast.Ident:
obj = id(n)
case *ast.SelectorExpr:
obj = sel(n)
prune = true
}
if obj != nil {
var kind string
switch obj.(type) {
case *types.Var:
kind = "var"
case *types.Func:
kind = "func"
case *types.TypeName:
kind = "type"
case *types.Const:
kind = "const"
case *types.Label:
kind = "label"
default:
panic(obj)
}
typ := qpos.info.TypeOf(n.(ast.Expr))
ref := freevarsRef{kind, printNode(lprog.Fset, n), typ, obj}
refsMap[ref.ref] = ref
if prune {
return false // don't descend
}
}
}
return true // descend
})
refs := make([]freevarsRef, 0, len(refsMap))
for _, ref := range refsMap {
refs = append(refs, ref)
}
sort.Sort(byRef(refs))
q.result = &freevarsResult{
qpos: qpos,
refs: refs,
}
return nil
}
type freevarsResult struct {
qpos *queryPos
refs []freevarsRef
}
type freevarsRef struct {
kind string
ref string
typ types.Type
obj types.Object
}
func (r *freevarsResult) display(printf printfFunc) {
if len(r.refs) == 0 {
printf(r.qpos, "No free identifiers.")
} else {
printf(r.qpos, "Free identifiers:")
qualifier := types.RelativeTo(r.qpos.info.Pkg)
for _, ref := range r.refs {
// Avoid printing "type T T".
var typstr string
if ref.kind != "type" {
typstr = " " + types.TypeString(ref.typ, qualifier)
}
printf(ref.obj, "%s %s%s", ref.kind, ref.ref, typstr)
}
}
}
func (r *freevarsResult) toSerial(res *serial.Result, fset *token.FileSet) {
var refs []*serial.FreeVar
for _, ref := range r.refs {
refs = append(refs,
&serial.FreeVar{
Pos: fset.Position(ref.obj.Pos()).String(),
Kind: ref.kind,
Ref: ref.ref,
Type: ref.typ.String(),
})
}
res.Freevars = refs
}
// -------- utils --------
type byRef []freevarsRef
func (p byRef) Len() int { return len(p) }
func (p byRef) Less(i, j int) bool { return p[i].ref < p[j].ref }
func (p byRef) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// printNode returns the pretty-printed syntax of n.
func printNode(fset *token.FileSet, n ast.Node) string {
var buf bytes.Buffer
printer.Fprint(&buf, fset, n)
return buf.String()
}

View File

@ -1,354 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package oracle
import (
"fmt"
"go/ast"
"go/token"
"reflect"
"sort"
"strings"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/types"
"golang.org/x/tools/go/types/typeutil"
"golang.org/x/tools/oracle/serial"
"golang.org/x/tools/refactor/importgraph"
)
// Implements displays the "implements" relation as it pertains to the
// selected type.
// If the selection is a method, 'implements' displays
// the corresponding methods of the types that would have been reported
// by an implements query on the receiver type.
//
func implements(q *Query) error {
lconf := loader.Config{Build: q.Build}
allowErrors(&lconf)
qpkg, err := importQueryPackage(q.Pos, &lconf)
if err != nil {
return err
}
// Set the packages to search.
if len(q.Scope) > 0 {
// Inspect all packages in the analysis scope, if specified.
if err := setPTAScope(&lconf, q.Scope); err != nil {
return err
}
} else {
// Otherwise inspect the forward and reverse
// transitive closure of the selected package.
// (In theory even this is incomplete.)
_, rev, _ := importgraph.Build(q.Build)
for path := range rev.Search(qpkg) {
lconf.ImportWithTests(path)
}
// TODO(adonovan): for completeness, we should also
// type-check and inspect function bodies in all
// imported packages. This would be expensive, but we
// could optimize by skipping functions that do not
// contain type declarations. This would require
// changing the loader's TypeCheckFuncBodies hook to
// provide the []*ast.File.
}
// Load/parse/type-check the program.
lprog, err := lconf.Load()
if err != nil {
return err
}
q.Fset = lprog.Fset
qpos, err := parseQueryPos(lprog, q.Pos, false)
if err != nil {
return err
}
// Find the selected type.
path, action := findInterestingNode(qpos.info, qpos.path)
var method *types.Func
var T types.Type // selected type (receiver if method != nil)
switch action {
case actionExpr:
// method?
if id, ok := path[0].(*ast.Ident); ok {
if obj, ok := qpos.info.ObjectOf(id).(*types.Func); ok {
recv := obj.Type().(*types.Signature).Recv()
if recv == nil {
return fmt.Errorf("this function is not a method")
}
method = obj
T = recv.Type()
}
}
case actionType:
T = qpos.info.TypeOf(path[0].(ast.Expr))
}
if T == nil {
return fmt.Errorf("no type or method here")
}
// Find all named types, even local types (which can have
// methods via promotion) and the built-in "error".
var allNamed []types.Type
for _, info := range lprog.AllPackages {
for _, obj := range info.Defs {
if obj, ok := obj.(*types.TypeName); ok {
allNamed = append(allNamed, obj.Type())
}
}
}
allNamed = append(allNamed, types.Universe.Lookup("error").Type())
var msets typeutil.MethodSetCache
// Test each named type.
var to, from, fromPtr []types.Type
for _, U := range allNamed {
if isInterface(T) {
if msets.MethodSet(T).Len() == 0 {
continue // empty interface
}
if isInterface(U) {
if msets.MethodSet(U).Len() == 0 {
continue // empty interface
}
// T interface, U interface
if !types.Identical(T, U) {
if types.AssignableTo(U, T) {
to = append(to, U)
}
if types.AssignableTo(T, U) {
from = append(from, U)
}
}
} else {
// T interface, U concrete
if types.AssignableTo(U, T) {
to = append(to, U)
} else if pU := types.NewPointer(U); types.AssignableTo(pU, T) {
to = append(to, pU)
}
}
} else if isInterface(U) {
if msets.MethodSet(U).Len() == 0 {
continue // empty interface
}
// T concrete, U interface
if types.AssignableTo(T, U) {
from = append(from, U)
} else if pT := types.NewPointer(T); types.AssignableTo(pT, U) {
fromPtr = append(fromPtr, U)
}
}
}
var pos interface{} = qpos
if nt, ok := deref(T).(*types.Named); ok {
pos = nt.Obj()
}
// Sort types (arbitrarily) to ensure test determinism.
sort.Sort(typesByString(to))
sort.Sort(typesByString(from))
sort.Sort(typesByString(fromPtr))
var toMethod, fromMethod, fromPtrMethod []*types.Selection // contain nils
if method != nil {
for _, t := range to {
toMethod = append(toMethod,
types.NewMethodSet(t).Lookup(method.Pkg(), method.Name()))
}
for _, t := range from {
fromMethod = append(fromMethod,
types.NewMethodSet(t).Lookup(method.Pkg(), method.Name()))
}
for _, t := range fromPtr {
fromPtrMethod = append(fromPtrMethod,
types.NewMethodSet(t).Lookup(method.Pkg(), method.Name()))
}
}
q.result = &implementsResult{
qpos, T, pos, to, from, fromPtr, method, toMethod, fromMethod, fromPtrMethod,
}
return nil
}
type implementsResult struct {
qpos *queryPos
t types.Type // queried type (not necessarily named)
pos interface{} // pos of t (*types.Name or *QueryPos)
to []types.Type // named or ptr-to-named types assignable to interface T
from []types.Type // named interfaces assignable from T
fromPtr []types.Type // named interfaces assignable only from *T
// if a method was queried:
method *types.Func // queried method
toMethod []*types.Selection // method of type to[i], if any
fromMethod []*types.Selection // method of type from[i], if any
fromPtrMethod []*types.Selection // method of type fromPtrMethod[i], if any
}
func (r *implementsResult) display(printf printfFunc) {
relation := "is implemented by"
meth := func(sel *types.Selection) {
if sel != nil {
printf(sel.Obj(), "\t%s method (%s).%s",
relation, r.qpos.typeString(sel.Recv()), sel.Obj().Name())
}
}
if isInterface(r.t) {
if types.NewMethodSet(r.t).Len() == 0 { // TODO(adonovan): cache mset
printf(r.pos, "empty interface type %s", r.qpos.typeString(r.t))
return
}
if r.method == nil {
printf(r.pos, "interface type %s", r.qpos.typeString(r.t))
} else {
printf(r.method, "abstract method %s", r.qpos.objectString(r.method))
}
// Show concrete types (or methods) first; use two passes.
for i, sub := range r.to {
if !isInterface(sub) {
if r.method == nil {
printf(deref(sub).(*types.Named).Obj(), "\t%s %s type %s",
relation, typeKind(sub), r.qpos.typeString(sub))
} else {
meth(r.toMethod[i])
}
}
}
for i, sub := range r.to {
if isInterface(sub) {
if r.method == nil {
printf(sub.(*types.Named).Obj(), "\t%s %s type %s",
relation, typeKind(sub), r.qpos.typeString(sub))
} else {
meth(r.toMethod[i])
}
}
}
relation = "implements"
for i, super := range r.from {
if r.method == nil {
printf(super.(*types.Named).Obj(), "\t%s %s",
relation, r.qpos.typeString(super))
} else {
meth(r.fromMethod[i])
}
}
} else {
relation = "implements"
if r.from != nil {
if r.method == nil {
printf(r.pos, "%s type %s",
typeKind(r.t), r.qpos.typeString(r.t))
} else {
printf(r.method, "concrete method %s",
r.qpos.objectString(r.method))
}
for i, super := range r.from {
if r.method == nil {
printf(super.(*types.Named).Obj(), "\t%s %s",
relation, r.qpos.typeString(super))
} else {
meth(r.fromMethod[i])
}
}
}
if r.fromPtr != nil {
if r.method == nil {
printf(r.pos, "pointer type *%s", r.qpos.typeString(r.t))
} else {
// TODO(adonovan): de-dup (C).f and (*C).f implementing (I).f.
printf(r.method, "concrete method %s",
r.qpos.objectString(r.method))
}
for i, psuper := range r.fromPtr {
if r.method == nil {
printf(psuper.(*types.Named).Obj(), "\t%s %s",
relation, r.qpos.typeString(psuper))
} else {
meth(r.fromPtrMethod[i])
}
}
} else if r.from == nil {
printf(r.pos, "%s type %s implements only interface{}",
typeKind(r.t), r.qpos.typeString(r.t))
}
}
}
func (r *implementsResult) toSerial(res *serial.Result, fset *token.FileSet) {
res.Implements = &serial.Implements{
T: makeImplementsType(r.t, fset),
AssignableTo: makeImplementsTypes(r.to, fset),
AssignableFrom: makeImplementsTypes(r.from, fset),
AssignableFromPtr: makeImplementsTypes(r.fromPtr, fset),
AssignableToMethod: methodsToSerial(r.qpos.info.Pkg, r.toMethod, fset),
AssignableFromMethod: methodsToSerial(r.qpos.info.Pkg, r.fromMethod, fset),
AssignableFromPtrMethod: methodsToSerial(r.qpos.info.Pkg, r.fromPtrMethod, fset),
}
if r.method != nil {
res.Implements.Method = &serial.DescribeMethod{
Name: r.qpos.objectString(r.method),
Pos: fset.Position(r.method.Pos()).String(),
}
}
}
func makeImplementsTypes(tt []types.Type, fset *token.FileSet) []serial.ImplementsType {
var r []serial.ImplementsType
for _, t := range tt {
r = append(r, makeImplementsType(t, fset))
}
return r
}
func makeImplementsType(T types.Type, fset *token.FileSet) serial.ImplementsType {
var pos token.Pos
if nt, ok := deref(T).(*types.Named); ok { // implementsResult.t may be non-named
pos = nt.Obj().Pos()
}
return serial.ImplementsType{
Name: T.String(),
Pos: fset.Position(pos).String(),
Kind: typeKind(T),
}
}
// typeKind returns a string describing the underlying kind of type,
// e.g. "slice", "array", "struct".
func typeKind(T types.Type) string {
s := reflect.TypeOf(T.Underlying()).String()
return strings.ToLower(strings.TrimPrefix(s, "*types."))
}
func isInterface(T types.Type) bool { return types.IsInterface(T) }
type typesByString []types.Type
func (p typesByString) Len() int { return len(p) }
func (p typesByString) Less(i, j int) bool { return p[i].String() < p[j].String() }
func (p typesByString) Swap(i, j int) { p[i], p[j] = p[j], p[i] }

View File

@ -1,367 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
// Package oracle contains the implementation of the oracle tool whose
// command-line is provided by golang.org/x/tools/cmd/oracle.
//
// http://golang.org/s/oracle-design
// http://golang.org/s/oracle-user-manual
//
package oracle // import "golang.org/x/tools/oracle"
// This file defines oracle.Query, the entry point for the oracle tool.
// The actual executable is defined in cmd/oracle.
// TODO(adonovan): new queries
// - show all statements that may update the selected lvalue
// (local, global, field, etc).
// - show all places where an object of type T is created
// (&T{}, var t T, new(T), new(struct{array [3]T}), etc.
import (
"fmt"
"go/ast"
"go/build"
"go/parser"
"go/token"
"io"
"path/filepath"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/pointer"
"golang.org/x/tools/go/ssa"
"golang.org/x/tools/go/types"
"golang.org/x/tools/oracle/serial"
)
type printfFunc func(pos interface{}, format string, args ...interface{})
// queryResult is the interface of each query-specific result type.
type queryResult interface {
toSerial(res *serial.Result, fset *token.FileSet)
display(printf printfFunc)
}
// A QueryPos represents the position provided as input to a query:
// a textual extent in the program's source code, the AST node it
// corresponds to, and the package to which it belongs.
// Instances are created by parseQueryPos.
type queryPos struct {
fset *token.FileSet
start, end token.Pos // source extent of query
path []ast.Node // AST path from query node to root of ast.File
exact bool // 2nd result of PathEnclosingInterval
info *loader.PackageInfo // type info for the queried package (nil for fastQueryPos)
}
// TypeString prints type T relative to the query position.
func (qpos *queryPos) typeString(T types.Type) string {
return types.TypeString(T, types.RelativeTo(qpos.info.Pkg))
}
// ObjectString prints object obj relative to the query position.
func (qpos *queryPos) objectString(obj types.Object) string {
return types.ObjectString(obj, types.RelativeTo(qpos.info.Pkg))
}
// SelectionString prints selection sel relative to the query position.
func (qpos *queryPos) selectionString(sel *types.Selection) string {
return types.SelectionString(sel, types.RelativeTo(qpos.info.Pkg))
}
// A Query specifies a single oracle query.
type Query struct {
Mode string // query mode ("callers", etc)
Pos string // query position
Build *build.Context // package loading configuration
// pointer analysis options
Scope []string // main packages in (*loader.Config).FromArgs syntax
PTALog io.Writer // (optional) pointer-analysis log file
Reflection bool // model reflection soundly (currently slow).
// Populated during Run()
Fset *token.FileSet
result queryResult
}
// Serial returns an instance of serial.Result, which implements the
// {xml,json}.Marshaler interfaces so that query results can be
// serialized as JSON or XML.
//
func (q *Query) Serial() *serial.Result {
resj := &serial.Result{Mode: q.Mode}
q.result.toSerial(resj, q.Fset)
return resj
}
// WriteTo writes the oracle query result res to out in a compiler diagnostic format.
func (q *Query) WriteTo(out io.Writer) {
printf := func(pos interface{}, format string, args ...interface{}) {
fprintf(out, q.Fset, pos, format, args...)
}
q.result.display(printf)
}
// Run runs an oracle query and populates its Fset and Result.
func Run(q *Query) error {
switch q.Mode {
case "callees":
return callees(q)
case "callers":
return callers(q)
case "callstack":
return callstack(q)
case "peers":
return peers(q)
case "pointsto":
return pointsto(q)
case "whicherrs":
return whicherrs(q)
case "definition":
return definition(q)
case "describe":
return describe(q)
case "freevars":
return freevars(q)
case "implements":
return implements(q)
case "referrers":
return referrers(q)
case "what":
return what(q)
default:
return fmt.Errorf("invalid mode: %q", q.Mode)
}
}
func setPTAScope(lconf *loader.Config, scope []string) error {
if len(scope) == 0 {
return fmt.Errorf("no packages specified for pointer analysis scope")
}
// Determine initial packages for PTA.
args, err := lconf.FromArgs(scope, true)
if err != nil {
return err
}
if len(args) > 0 {
return fmt.Errorf("surplus arguments: %q", args)
}
return nil
}
// Create a pointer.Config whose scope is the initial packages of lprog
// and their dependencies.
func setupPTA(prog *ssa.Program, lprog *loader.Program, ptaLog io.Writer, reflection bool) (*pointer.Config, error) {
// TODO(adonovan): the body of this function is essentially
// duplicated in all go/pointer clients. Refactor.
// For each initial package (specified on the command line),
// if it has a main function, analyze that,
// otherwise analyze its tests, if any.
var testPkgs, mains []*ssa.Package
for _, info := range lprog.InitialPackages() {
initialPkg := prog.Package(info.Pkg)
// Add package to the pointer analysis scope.
if initialPkg.Func("main") != nil {
mains = append(mains, initialPkg)
} else {
testPkgs = append(testPkgs, initialPkg)
}
}
if testPkgs != nil {
if p := prog.CreateTestMainPackage(testPkgs...); p != nil {
mains = append(mains, p)
}
}
if mains == nil {
return nil, fmt.Errorf("analysis scope has no main and no tests")
}
return &pointer.Config{
Log: ptaLog,
Reflection: reflection,
Mains: mains,
}, nil
}
// importQueryPackage finds the package P containing the
// query position and tells conf to import it.
// It returns the package's path.
func importQueryPackage(pos string, conf *loader.Config) (string, error) {
fqpos, err := fastQueryPos(pos)
if err != nil {
return "", err // bad query
}
filename := fqpos.fset.File(fqpos.start).Name()
// This will not work for ad-hoc packages
// such as $GOROOT/src/net/http/triv.go.
// TODO(adonovan): ensure we report a clear error.
_, importPath, err := guessImportPath(filename, conf.Build)
if err != nil {
return "", err // can't find GOPATH dir
}
if importPath == "" {
return "", fmt.Errorf("can't guess import path from %s", filename)
}
// Check that it's possible to load the queried package.
// (e.g. oracle tests contain different 'package' decls in same dir.)
// Keep consistent with logic in loader/util.go!
cfg2 := *conf.Build
cfg2.CgoEnabled = false
bp, err := cfg2.Import(importPath, "", 0)
if err != nil {
return "", err // no files for package
}
switch pkgContainsFile(bp, filename) {
case 'T':
conf.ImportWithTests(importPath)
case 'X':
conf.ImportWithTests(importPath)
importPath += "_test" // for TypeCheckFuncBodies
case 'G':
conf.Import(importPath)
default:
return "", fmt.Errorf("package %q doesn't contain file %s",
importPath, filename)
}
conf.TypeCheckFuncBodies = func(p string) bool { return p == importPath }
return importPath, nil
}
// pkgContainsFile reports whether file was among the packages Go
// files, Test files, eXternal test files, or not found.
func pkgContainsFile(bp *build.Package, filename string) byte {
for i, files := range [][]string{bp.GoFiles, bp.TestGoFiles, bp.XTestGoFiles} {
for _, file := range files {
if sameFile(filepath.Join(bp.Dir, file), filename) {
return "GTX"[i]
}
}
}
return 0 // not found
}
// ParseQueryPos parses the source query position pos and returns the
// AST node of the loaded program lprog that it identifies.
// If needExact, it must identify a single AST subtree;
// this is appropriate for queries that allow fairly arbitrary syntax,
// e.g. "describe".
//
func parseQueryPos(lprog *loader.Program, posFlag string, needExact bool) (*queryPos, error) {
filename, startOffset, endOffset, err := parsePosFlag(posFlag)
if err != nil {
return nil, err
}
start, end, err := findQueryPos(lprog.Fset, filename, startOffset, endOffset)
if err != nil {
return nil, err
}
info, path, exact := lprog.PathEnclosingInterval(start, end)
if path == nil {
return nil, fmt.Errorf("no syntax here")
}
if needExact && !exact {
return nil, fmt.Errorf("ambiguous selection within %s", astutil.NodeDescription(path[0]))
}
return &queryPos{lprog.Fset, start, end, path, exact, info}, nil
}
// ---------- Utilities ----------
// allowErrors causes type errors to be silently ignored.
// (Not suitable if SSA construction follows.)
func allowErrors(lconf *loader.Config) {
ctxt := *lconf.Build // copy
ctxt.CgoEnabled = false
lconf.Build = &ctxt
lconf.AllowErrors = true
// AllErrors makes the parser always return an AST instead of
// bailing out after 10 errors and returning an empty ast.File.
lconf.ParserMode = parser.AllErrors
lconf.TypeChecker.Error = func(err error) {}
}
// ptrAnalysis runs the pointer analysis and returns its result.
func ptrAnalysis(conf *pointer.Config) *pointer.Result {
result, err := pointer.Analyze(conf)
if err != nil {
panic(err) // pointer analysis internal error
}
return result
}
func unparen(e ast.Expr) ast.Expr { return astutil.Unparen(e) }
// deref returns a pointer's element type; otherwise it returns typ.
func deref(typ types.Type) types.Type {
if p, ok := typ.Underlying().(*types.Pointer); ok {
return p.Elem()
}
return typ
}
// fprintf prints to w a message of the form "location: message\n"
// where location is derived from pos.
//
// pos must be one of:
// - a token.Pos, denoting a position
// - an ast.Node, denoting an interval
// - anything with a Pos() method:
// ssa.Member, ssa.Value, ssa.Instruction, types.Object, pointer.Label, etc.
// - a QueryPos, denoting the extent of the user's query.
// - nil, meaning no position at all.
//
// The output format is is compatible with the 'gnu'
// compilation-error-regexp in Emacs' compilation mode.
// TODO(adonovan): support other editors.
//
func fprintf(w io.Writer, fset *token.FileSet, pos interface{}, format string, args ...interface{}) {
var start, end token.Pos
switch pos := pos.(type) {
case ast.Node:
start = pos.Pos()
end = pos.End()
case token.Pos:
start = pos
end = start
case interface {
Pos() token.Pos
}:
start = pos.Pos()
end = start
case *queryPos:
start = pos.start
end = pos.end
case nil:
// no-op
default:
panic(fmt.Sprintf("invalid pos: %T", pos))
}
if sp := fset.Position(start); start == end {
// (prints "-: " for token.NoPos)
fmt.Fprintf(w, "%s: ", sp)
} else {
ep := fset.Position(end)
// The -1 below is a concession to Emacs's broken use of
// inclusive (not half-open) intervals.
// Other editors may not want it.
// TODO(adonovan): add an -editor=vim|emacs|acme|auto
// flag; auto uses EMACS=t / VIM=... / etc env vars.
fmt.Fprintf(w, "%s:%d.%d-%d.%d: ",
sp.Filename, sp.Line, sp.Column, ep.Line, ep.Column-1)
}
fmt.Fprintf(w, format, args...)
io.WriteString(w, "\n")
}

View File

@ -1,254 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package oracle
import (
"fmt"
"go/ast"
"go/token"
"sort"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/ssa"
"golang.org/x/tools/go/ssa/ssautil"
"golang.org/x/tools/go/types"
"golang.org/x/tools/oracle/serial"
)
// peers enumerates, for a given channel send (or receive) operation,
// the set of possible receives (or sends) that correspond to it.
//
// TODO(adonovan): support reflect.{Select,Recv,Send,Close}.
// TODO(adonovan): permit the user to query based on a MakeChan (not send/recv),
// or the implicit receive in "for v := range ch".
func peers(q *Query) error {
lconf := loader.Config{Build: q.Build}
if err := setPTAScope(&lconf, q.Scope); err != nil {
return err
}
// Load/parse/type-check the program.
lprog, err := lconf.Load()
if err != nil {
return err
}
q.Fset = lprog.Fset
qpos, err := parseQueryPos(lprog, q.Pos, false)
if err != nil {
return err
}
prog := ssautil.CreateProgram(lprog, ssa.GlobalDebug)
ptaConfig, err := setupPTA(prog, lprog, q.PTALog, q.Reflection)
if err != nil {
return err
}
opPos := findOp(qpos)
if opPos == token.NoPos {
return fmt.Errorf("there is no channel operation here")
}
// Defer SSA construction till after errors are reported.
prog.Build()
var queryOp chanOp // the originating send or receive operation
var ops []chanOp // all sends/receives of opposite direction
// Look at all channel operations in the whole ssa.Program.
// Build a list of those of same type as the query.
allFuncs := ssautil.AllFunctions(prog)
for fn := range allFuncs {
for _, b := range fn.Blocks {
for _, instr := range b.Instrs {
for _, op := range chanOps(instr) {
ops = append(ops, op)
if op.pos == opPos {
queryOp = op // we found the query op
}
}
}
}
}
if queryOp.ch == nil {
return fmt.Errorf("ssa.Instruction for send/receive not found")
}
// Discard operations of wrong channel element type.
// Build set of channel ssa.Values as query to pointer analysis.
// We compare channels by element types, not channel types, to
// ignore both directionality and type names.
queryType := queryOp.ch.Type()
queryElemType := queryType.Underlying().(*types.Chan).Elem()
ptaConfig.AddQuery(queryOp.ch)
i := 0
for _, op := range ops {
if types.Identical(op.ch.Type().Underlying().(*types.Chan).Elem(), queryElemType) {
ptaConfig.AddQuery(op.ch)
ops[i] = op
i++
}
}
ops = ops[:i]
// Run the pointer analysis.
ptares := ptrAnalysis(ptaConfig)
// Find the points-to set.
queryChanPtr := ptares.Queries[queryOp.ch]
// Ascertain which make(chan) labels the query's channel can alias.
var makes []token.Pos
for _, label := range queryChanPtr.PointsTo().Labels() {
makes = append(makes, label.Pos())
}
sort.Sort(byPos(makes))
// Ascertain which channel operations can alias the same make(chan) labels.
var sends, receives, closes []token.Pos
for _, op := range ops {
if ptr, ok := ptares.Queries[op.ch]; ok && ptr.MayAlias(queryChanPtr) {
switch op.dir {
case types.SendOnly:
sends = append(sends, op.pos)
case types.RecvOnly:
receives = append(receives, op.pos)
case types.SendRecv:
closes = append(closes, op.pos)
}
}
}
sort.Sort(byPos(sends))
sort.Sort(byPos(receives))
sort.Sort(byPos(closes))
q.result = &peersResult{
queryPos: opPos,
queryType: queryType,
makes: makes,
sends: sends,
receives: receives,
closes: closes,
}
return nil
}
// findOp returns the position of the enclosing send/receive/close op.
// For send and receive operations, this is the position of the <- token;
// for close operations, it's the Lparen of the function call.
//
// TODO(adonovan): handle implicit receive operations from 'for...range chan' statements.
func findOp(qpos *queryPos) token.Pos {
for _, n := range qpos.path {
switch n := n.(type) {
case *ast.UnaryExpr:
if n.Op == token.ARROW {
return n.OpPos
}
case *ast.SendStmt:
return n.Arrow
case *ast.CallExpr:
// close function call can only exist as a direct identifier
if close, ok := unparen(n.Fun).(*ast.Ident); ok {
if b, ok := qpos.info.Info.Uses[close].(*types.Builtin); ok && b.Name() == "close" {
return n.Lparen
}
}
}
}
return token.NoPos
}
// chanOp abstracts an ssa.Send, ssa.Unop(ARROW), or a SelectState.
type chanOp struct {
ch ssa.Value
dir types.ChanDir // SendOnly=send, RecvOnly=recv, SendRecv=close
pos token.Pos
}
// chanOps returns a slice of all the channel operations in the instruction.
func chanOps(instr ssa.Instruction) []chanOp {
// TODO(adonovan): handle calls to reflect.{Select,Recv,Send,Close} too.
var ops []chanOp
switch instr := instr.(type) {
case *ssa.UnOp:
if instr.Op == token.ARROW {
ops = append(ops, chanOp{instr.X, types.RecvOnly, instr.Pos()})
}
case *ssa.Send:
ops = append(ops, chanOp{instr.Chan, types.SendOnly, instr.Pos()})
case *ssa.Select:
for _, st := range instr.States {
ops = append(ops, chanOp{st.Chan, st.Dir, st.Pos})
}
case ssa.CallInstruction:
cc := instr.Common()
if b, ok := cc.Value.(*ssa.Builtin); ok && b.Name() == "close" {
ops = append(ops, chanOp{cc.Args[0], types.SendRecv, cc.Pos()})
}
}
return ops
}
type peersResult struct {
queryPos token.Pos // of queried channel op
queryType types.Type // type of queried channel
makes, sends, receives, closes []token.Pos // positions of aliased makechan/send/receive/close instrs
}
func (r *peersResult) display(printf printfFunc) {
if len(r.makes) == 0 {
printf(r.queryPos, "This channel can't point to anything.")
return
}
printf(r.queryPos, "This channel of type %s may be:", r.queryType)
for _, alloc := range r.makes {
printf(alloc, "\tallocated here")
}
for _, send := range r.sends {
printf(send, "\tsent to, here")
}
for _, receive := range r.receives {
printf(receive, "\treceived from, here")
}
for _, clos := range r.closes {
printf(clos, "\tclosed, here")
}
}
func (r *peersResult) toSerial(res *serial.Result, fset *token.FileSet) {
peers := &serial.Peers{
Pos: fset.Position(r.queryPos).String(),
Type: r.queryType.String(),
}
for _, alloc := range r.makes {
peers.Allocs = append(peers.Allocs, fset.Position(alloc).String())
}
for _, send := range r.sends {
peers.Sends = append(peers.Sends, fset.Position(send).String())
}
for _, receive := range r.receives {
peers.Receives = append(peers.Receives, fset.Position(receive).String())
}
for _, clos := range r.closes {
peers.Closes = append(peers.Closes, fset.Position(clos).String())
}
res.Peers = peers
}
// -------- utils --------
// NB: byPos is not deterministic across packages since it depends on load order.
// Use lessPos if the tests need it.
type byPos []token.Pos
func (p byPos) Len() int { return len(p) }
func (p byPos) Less(i, j int) bool { return p[i] < p[j] }
func (p byPos) Swap(i, j int) { p[i], p[j] = p[j], p[i] }

View File

@ -1,293 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package oracle
import (
"fmt"
"go/ast"
"go/token"
"sort"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/pointer"
"golang.org/x/tools/go/ssa"
"golang.org/x/tools/go/ssa/ssautil"
"golang.org/x/tools/go/types"
"golang.org/x/tools/oracle/serial"
)
// pointsto runs the pointer analysis on the selected expression,
// and reports its points-to set (for a pointer-like expression)
// or its dynamic types (for an interface, reflect.Value, or
// reflect.Type expression) and their points-to sets.
//
// All printed sets are sorted to ensure determinism.
//
func pointsto(q *Query) error {
lconf := loader.Config{Build: q.Build}
if err := setPTAScope(&lconf, q.Scope); err != nil {
return err
}
// Load/parse/type-check the program.
lprog, err := lconf.Load()
if err != nil {
return err
}
q.Fset = lprog.Fset
qpos, err := parseQueryPos(lprog, q.Pos, true) // needs exact pos
if err != nil {
return err
}
prog := ssautil.CreateProgram(lprog, ssa.GlobalDebug)
ptaConfig, err := setupPTA(prog, lprog, q.PTALog, q.Reflection)
if err != nil {
return err
}
path, action := findInterestingNode(qpos.info, qpos.path)
if action != actionExpr {
return fmt.Errorf("pointer analysis wants an expression; got %s",
astutil.NodeDescription(qpos.path[0]))
}
var expr ast.Expr
var obj types.Object
switch n := path[0].(type) {
case *ast.ValueSpec:
// ambiguous ValueSpec containing multiple names
return fmt.Errorf("multiple value specification")
case *ast.Ident:
obj = qpos.info.ObjectOf(n)
expr = n
case ast.Expr:
expr = n
default:
// TODO(adonovan): is this reachable?
return fmt.Errorf("unexpected AST for expr: %T", n)
}
// Reject non-pointerlike types (includes all constants---except nil).
// TODO(adonovan): reject nil too.
typ := qpos.info.TypeOf(expr)
if !pointer.CanPoint(typ) {
return fmt.Errorf("pointer analysis wants an expression of reference type; got %s", typ)
}
// Determine the ssa.Value for the expression.
var value ssa.Value
var isAddr bool
if obj != nil {
// def/ref of func/var object
value, isAddr, err = ssaValueForIdent(prog, qpos.info, obj, path)
} else {
value, isAddr, err = ssaValueForExpr(prog, qpos.info, path)
}
if err != nil {
return err // e.g. trivially dead code
}
// Defer SSA construction till after errors are reported.
prog.Build()
// Run the pointer analysis.
ptrs, err := runPTA(ptaConfig, value, isAddr)
if err != nil {
return err // e.g. analytically unreachable
}
q.result = &pointstoResult{
qpos: qpos,
typ: typ,
ptrs: ptrs,
}
return nil
}
// ssaValueForIdent returns the ssa.Value for the ast.Ident whose path
// to the root of the AST is path. isAddr reports whether the
// ssa.Value is the address denoted by the ast.Ident, not its value.
//
func ssaValueForIdent(prog *ssa.Program, qinfo *loader.PackageInfo, obj types.Object, path []ast.Node) (value ssa.Value, isAddr bool, err error) {
switch obj := obj.(type) {
case *types.Var:
pkg := prog.Package(qinfo.Pkg)
pkg.Build()
if v, addr := prog.VarValue(obj, pkg, path); v != nil {
return v, addr, nil
}
return nil, false, fmt.Errorf("can't locate SSA Value for var %s", obj.Name())
case *types.Func:
fn := prog.FuncValue(obj)
if fn == nil {
return nil, false, fmt.Errorf("%s is an interface method", obj)
}
// TODO(adonovan): there's no point running PTA on a *Func ident.
// Eliminate this feature.
return fn, false, nil
}
panic(obj)
}
// ssaValueForExpr returns the ssa.Value of the non-ast.Ident
// expression whose path to the root of the AST is path.
//
func ssaValueForExpr(prog *ssa.Program, qinfo *loader.PackageInfo, path []ast.Node) (value ssa.Value, isAddr bool, err error) {
pkg := prog.Package(qinfo.Pkg)
pkg.SetDebugMode(true)
pkg.Build()
fn := ssa.EnclosingFunction(pkg, path)
if fn == nil {
return nil, false, fmt.Errorf("no SSA function built for this location (dead code?)")
}
if v, addr := fn.ValueForExpr(path[0].(ast.Expr)); v != nil {
return v, addr, nil
}
return nil, false, fmt.Errorf("can't locate SSA Value for expression in %s", fn)
}
// runPTA runs the pointer analysis of the selected SSA value or address.
func runPTA(conf *pointer.Config, v ssa.Value, isAddr bool) (ptrs []pointerResult, err error) {
T := v.Type()
if isAddr {
conf.AddIndirectQuery(v)
T = deref(T)
} else {
conf.AddQuery(v)
}
ptares := ptrAnalysis(conf)
var ptr pointer.Pointer
if isAddr {
ptr = ptares.IndirectQueries[v]
} else {
ptr = ptares.Queries[v]
}
if ptr == (pointer.Pointer{}) {
return nil, fmt.Errorf("pointer analysis did not find expression (dead code?)")
}
pts := ptr.PointsTo()
if pointer.CanHaveDynamicTypes(T) {
// Show concrete types for interface/reflect.Value expression.
if concs := pts.DynamicTypes(); concs.Len() > 0 {
concs.Iterate(func(conc types.Type, pta interface{}) {
labels := pta.(pointer.PointsToSet).Labels()
sort.Sort(byPosAndString(labels)) // to ensure determinism
ptrs = append(ptrs, pointerResult{conc, labels})
})
}
} else {
// Show labels for other expressions.
labels := pts.Labels()
sort.Sort(byPosAndString(labels)) // to ensure determinism
ptrs = append(ptrs, pointerResult{T, labels})
}
sort.Sort(byTypeString(ptrs)) // to ensure determinism
return ptrs, nil
}
type pointerResult struct {
typ types.Type // type of the pointer (always concrete)
labels []*pointer.Label // set of labels
}
type pointstoResult struct {
qpos *queryPos
typ types.Type // type of expression
ptrs []pointerResult // pointer info (typ is concrete => len==1)
}
func (r *pointstoResult) display(printf printfFunc) {
if pointer.CanHaveDynamicTypes(r.typ) {
// Show concrete types for interface, reflect.Type or
// reflect.Value expression.
if len(r.ptrs) > 0 {
printf(r.qpos, "this %s may contain these dynamic types:", r.qpos.typeString(r.typ))
for _, ptr := range r.ptrs {
var obj types.Object
if nt, ok := deref(ptr.typ).(*types.Named); ok {
obj = nt.Obj()
}
if len(ptr.labels) > 0 {
printf(obj, "\t%s, may point to:", r.qpos.typeString(ptr.typ))
printLabels(printf, ptr.labels, "\t\t")
} else {
printf(obj, "\t%s", r.qpos.typeString(ptr.typ))
}
}
} else {
printf(r.qpos, "this %s cannot contain any dynamic types.", r.typ)
}
} else {
// Show labels for other expressions.
if ptr := r.ptrs[0]; len(ptr.labels) > 0 {
printf(r.qpos, "this %s may point to these objects:",
r.qpos.typeString(r.typ))
printLabels(printf, ptr.labels, "\t")
} else {
printf(r.qpos, "this %s may not point to anything.",
r.qpos.typeString(r.typ))
}
}
}
func (r *pointstoResult) toSerial(res *serial.Result, fset *token.FileSet) {
var pts []serial.PointsTo
for _, ptr := range r.ptrs {
var namePos string
if nt, ok := deref(ptr.typ).(*types.Named); ok {
namePos = fset.Position(nt.Obj().Pos()).String()
}
var labels []serial.PointsToLabel
for _, l := range ptr.labels {
labels = append(labels, serial.PointsToLabel{
Pos: fset.Position(l.Pos()).String(),
Desc: l.String(),
})
}
pts = append(pts, serial.PointsTo{
Type: r.qpos.typeString(ptr.typ),
NamePos: namePos,
Labels: labels,
})
}
res.PointsTo = pts
}
type byTypeString []pointerResult
func (a byTypeString) Len() int { return len(a) }
func (a byTypeString) Less(i, j int) bool { return a[i].typ.String() < a[j].typ.String() }
func (a byTypeString) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
type byPosAndString []*pointer.Label
func (a byPosAndString) Len() int { return len(a) }
func (a byPosAndString) Less(i, j int) bool {
cmp := a[i].Pos() - a[j].Pos()
return cmp < 0 || (cmp == 0 && a[i].String() < a[j].String())
}
func (a byPosAndString) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func printLabels(printf printfFunc, labels []*pointer.Label, prefix string) {
// TODO(adonovan): due to context-sensitivity, many of these
// labels may differ only by context, which isn't apparent.
for _, label := range labels {
printf(label, "%s%s", prefix, label)
}
}

View File

@ -1,243 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package oracle
import (
"bytes"
"fmt"
"go/ast"
"go/token"
"io/ioutil"
"sort"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/types"
"golang.org/x/tools/oracle/serial"
"golang.org/x/tools/refactor/importgraph"
)
// Referrers reports all identifiers that resolve to the same object
// as the queried identifier, within any package in the analysis scope.
func referrers(q *Query) error {
lconf := loader.Config{Build: q.Build}
allowErrors(&lconf)
if _, err := importQueryPackage(q.Pos, &lconf); err != nil {
return err
}
var id *ast.Ident
var obj types.Object
var lprog *loader.Program
var pass2 bool
var qpos *queryPos
for {
// Load/parse/type-check the program.
var err error
lprog, err = lconf.Load()
if err != nil {
return err
}
q.Fset = lprog.Fset
qpos, err = parseQueryPos(lprog, q.Pos, false)
if err != nil {
return err
}
id, _ = qpos.path[0].(*ast.Ident)
if id == nil {
return fmt.Errorf("no identifier here")
}
obj = qpos.info.ObjectOf(id)
if obj == nil {
// Happens for y in "switch y := x.(type)",
// the package declaration,
// and unresolved identifiers.
if _, ok := qpos.path[1].(*ast.File); ok { // package decl?
pkg := qpos.info.Pkg
obj = types.NewPkgName(id.Pos(), pkg, pkg.Name(), pkg)
} else {
return fmt.Errorf("no object for identifier: %T", qpos.path[1])
}
}
if pass2 {
break
}
// If the identifier is exported, we must load all packages that
// depend transitively upon the package that defines it.
// Treat PkgNames as exported, even though they're lowercase.
if _, isPkg := obj.(*types.PkgName); !(isPkg || obj.Exported()) {
break // not exported
}
// Scan the workspace and build the import graph.
// Ignore broken packages.
_, rev, _ := importgraph.Build(q.Build)
// Re-load the larger program.
// Create a new file set so that ...
// External test packages are never imported,
// so they will never appear in the graph.
// (We must reset the Config here, not just reset the Fset field.)
lconf = loader.Config{
Fset: token.NewFileSet(),
Build: q.Build,
}
allowErrors(&lconf)
for path := range rev.Search(obj.Pkg().Path()) {
lconf.ImportWithTests(path)
}
pass2 = true
}
// Iterate over all go/types' Uses facts for the entire program.
var refs []*ast.Ident
for _, info := range lprog.AllPackages {
for id2, obj2 := range info.Uses {
if sameObj(obj, obj2) {
refs = append(refs, id2)
}
}
}
sort.Sort(byNamePos{q.Fset, refs})
q.result = &referrersResult{
qpos: qpos,
query: id,
obj: obj,
refs: refs,
}
return nil
}
// same reports whether x and y are identical, or both are PkgNames
// that import the same Package.
//
func sameObj(x, y types.Object) bool {
if x == y {
return true
}
if x, ok := x.(*types.PkgName); ok {
if y, ok := y.(*types.PkgName); ok {
return x.Imported() == y.Imported()
}
}
return false
}
// -------- utils --------
// An deterministic ordering for token.Pos that doesn't
// depend on the order in which packages were loaded.
func lessPos(fset *token.FileSet, x, y token.Pos) bool {
fx := fset.File(x)
fy := fset.File(y)
if fx != fy {
return fx.Name() < fy.Name()
}
return x < y
}
type byNamePos struct {
fset *token.FileSet
ids []*ast.Ident
}
func (p byNamePos) Len() int { return len(p.ids) }
func (p byNamePos) Swap(i, j int) { p.ids[i], p.ids[j] = p.ids[j], p.ids[i] }
func (p byNamePos) Less(i, j int) bool {
return lessPos(p.fset, p.ids[i].NamePos, p.ids[j].NamePos)
}
type referrersResult struct {
qpos *queryPos
query *ast.Ident // identifier of query
obj types.Object // object it denotes
refs []*ast.Ident // set of all other references to it
}
func (r *referrersResult) display(printf printfFunc) {
printf(r.obj, "%d references to %s", len(r.refs), r.qpos.objectString(r.obj))
// Show referring lines, like grep.
type fileinfo struct {
refs []*ast.Ident
linenums []int // line number of refs[i]
data chan interface{} // file contents or error
}
var fileinfos []*fileinfo
fileinfosByName := make(map[string]*fileinfo)
// First pass: start the file reads concurrently.
sema := make(chan struct{}, 20) // counting semaphore to limit I/O concurrency
for _, ref := range r.refs {
posn := r.qpos.fset.Position(ref.Pos())
fi := fileinfosByName[posn.Filename]
if fi == nil {
fi = &fileinfo{data: make(chan interface{})}
fileinfosByName[posn.Filename] = fi
fileinfos = append(fileinfos, fi)
// First request for this file:
// start asynchronous read.
go func() {
sema <- struct{}{} // acquire token
content, err := ioutil.ReadFile(posn.Filename)
<-sema // release token
if err != nil {
fi.data <- err
} else {
fi.data <- content
}
}()
}
fi.refs = append(fi.refs, ref)
fi.linenums = append(fi.linenums, posn.Line)
}
// Second pass: print refs in original order.
// One line may have several refs at different columns.
for _, fi := range fileinfos {
v := <-fi.data // wait for I/O completion
// Print one item for all refs in a file that could not
// be loaded (perhaps due to //line directives).
if err, ok := v.(error); ok {
var suffix string
if more := len(fi.refs) - 1; more > 0 {
suffix = fmt.Sprintf(" (+ %d more refs in this file)", more)
}
printf(fi.refs[0], "%v%s", err, suffix)
continue
}
lines := bytes.Split(v.([]byte), []byte("\n"))
for i, ref := range fi.refs {
printf(ref, "%s", lines[fi.linenums[i]-1])
}
}
}
// TODO(adonovan): encode extent, not just Pos info, in Serial form.
func (r *referrersResult) toSerial(res *serial.Result, fset *token.FileSet) {
referrers := &serial.Referrers{
Pos: fset.Position(r.query.Pos()).String(),
Desc: r.obj.String(),
}
if pos := r.obj.Pos(); pos != token.NoPos { // Package objects have no Pos()
referrers.ObjPos = fset.Position(pos).String()
}
for _, ref := range r.refs {
referrers.Refs = append(referrers.Refs, fset.Position(ref.NamePos).String())
}
res.Referrers = referrers
}

View File

@ -1,328 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package oracle
import (
"fmt"
"go/ast"
"go/token"
"sort"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/ssa"
"golang.org/x/tools/go/ssa/ssautil"
"golang.org/x/tools/go/types"
"golang.org/x/tools/oracle/serial"
)
var builtinErrorType = types.Universe.Lookup("error").Type()
// whicherrs takes an position to an error and tries to find all types, constants
// and global value which a given error can point to and which can be checked from the
// scope where the error lives.
// In short, it returns a list of things that can be checked against in order to handle
// an error properly.
//
// TODO(dmorsing): figure out if fields in errors like *os.PathError.Err
// can be queried recursively somehow.
func whicherrs(q *Query) error {
lconf := loader.Config{Build: q.Build}
if err := setPTAScope(&lconf, q.Scope); err != nil {
return err
}
// Load/parse/type-check the program.
lprog, err := lconf.Load()
if err != nil {
return err
}
q.Fset = lprog.Fset
qpos, err := parseQueryPos(lprog, q.Pos, true) // needs exact pos
if err != nil {
return err
}
prog := ssautil.CreateProgram(lprog, ssa.GlobalDebug)
ptaConfig, err := setupPTA(prog, lprog, q.PTALog, q.Reflection)
if err != nil {
return err
}
path, action := findInterestingNode(qpos.info, qpos.path)
if action != actionExpr {
return fmt.Errorf("whicherrs wants an expression; got %s",
astutil.NodeDescription(qpos.path[0]))
}
var expr ast.Expr
var obj types.Object
switch n := path[0].(type) {
case *ast.ValueSpec:
// ambiguous ValueSpec containing multiple names
return fmt.Errorf("multiple value specification")
case *ast.Ident:
obj = qpos.info.ObjectOf(n)
expr = n
case ast.Expr:
expr = n
default:
return fmt.Errorf("unexpected AST for expr: %T", n)
}
typ := qpos.info.TypeOf(expr)
if !types.Identical(typ, builtinErrorType) {
return fmt.Errorf("selection is not an expression of type 'error'")
}
// Determine the ssa.Value for the expression.
var value ssa.Value
if obj != nil {
// def/ref of func/var object
value, _, err = ssaValueForIdent(prog, qpos.info, obj, path)
} else {
value, _, err = ssaValueForExpr(prog, qpos.info, path)
}
if err != nil {
return err // e.g. trivially dead code
}
// Defer SSA construction till after errors are reported.
prog.Build()
globals := findVisibleErrs(prog, qpos)
constants := findVisibleConsts(prog, qpos)
res := &whicherrsResult{
qpos: qpos,
errpos: expr.Pos(),
}
// TODO(adonovan): the following code is heavily duplicated
// w.r.t. "pointsto". Refactor?
// Find the instruction which initialized the
// global error. If more than one instruction has stored to the global
// remove the global from the set of values that we want to query.
allFuncs := ssautil.AllFunctions(prog)
for fn := range allFuncs {
for _, b := range fn.Blocks {
for _, instr := range b.Instrs {
store, ok := instr.(*ssa.Store)
if !ok {
continue
}
gval, ok := store.Addr.(*ssa.Global)
if !ok {
continue
}
gbl, ok := globals[gval]
if !ok {
continue
}
// we already found a store to this global
// The normal error define is just one store in the init
// so we just remove this global from the set we want to query
if gbl != nil {
delete(globals, gval)
}
globals[gval] = store.Val
}
}
}
ptaConfig.AddQuery(value)
for _, v := range globals {
ptaConfig.AddQuery(v)
}
ptares := ptrAnalysis(ptaConfig)
valueptr := ptares.Queries[value]
for g, v := range globals {
ptr, ok := ptares.Queries[v]
if !ok {
continue
}
if !ptr.MayAlias(valueptr) {
continue
}
res.globals = append(res.globals, g)
}
pts := valueptr.PointsTo()
dedup := make(map[*ssa.NamedConst]bool)
for _, label := range pts.Labels() {
// These values are either MakeInterfaces or reflect
// generated interfaces. For the purposes of this
// analysis, we don't care about reflect generated ones
makeiface, ok := label.Value().(*ssa.MakeInterface)
if !ok {
continue
}
constval, ok := makeiface.X.(*ssa.Const)
if !ok {
continue
}
c := constants[*constval]
if c != nil && !dedup[c] {
dedup[c] = true
res.consts = append(res.consts, c)
}
}
concs := pts.DynamicTypes()
concs.Iterate(func(conc types.Type, _ interface{}) {
// go/types is a bit annoying here.
// We want to find all the types that we can
// typeswitch or assert to. This means finding out
// if the type pointed to can be seen by us.
//
// For the purposes of this analysis, the type is always
// either a Named type or a pointer to one.
// There are cases where error can be implemented
// by unnamed types, but in that case, we can't assert to
// it, so we don't care about it for this analysis.
var name *types.TypeName
switch t := conc.(type) {
case *types.Pointer:
named, ok := t.Elem().(*types.Named)
if !ok {
return
}
name = named.Obj()
case *types.Named:
name = t.Obj()
default:
return
}
if !isAccessibleFrom(name, qpos.info.Pkg) {
return
}
res.types = append(res.types, &errorType{conc, name})
})
sort.Sort(membersByPosAndString(res.globals))
sort.Sort(membersByPosAndString(res.consts))
sort.Sort(sorterrorType(res.types))
q.result = res
return nil
}
// findVisibleErrs returns a mapping from each package-level variable of type "error" to nil.
func findVisibleErrs(prog *ssa.Program, qpos *queryPos) map[*ssa.Global]ssa.Value {
globals := make(map[*ssa.Global]ssa.Value)
for _, pkg := range prog.AllPackages() {
for _, mem := range pkg.Members {
gbl, ok := mem.(*ssa.Global)
if !ok {
continue
}
gbltype := gbl.Type()
// globals are always pointers
if !types.Identical(deref(gbltype), builtinErrorType) {
continue
}
if !isAccessibleFrom(gbl.Object(), qpos.info.Pkg) {
continue
}
globals[gbl] = nil
}
}
return globals
}
// findVisibleConsts returns a mapping from each package-level constant assignable to type "error", to nil.
func findVisibleConsts(prog *ssa.Program, qpos *queryPos) map[ssa.Const]*ssa.NamedConst {
constants := make(map[ssa.Const]*ssa.NamedConst)
for _, pkg := range prog.AllPackages() {
for _, mem := range pkg.Members {
obj, ok := mem.(*ssa.NamedConst)
if !ok {
continue
}
consttype := obj.Type()
if !types.AssignableTo(consttype, builtinErrorType) {
continue
}
if !isAccessibleFrom(obj.Object(), qpos.info.Pkg) {
continue
}
constants[*obj.Value] = obj
}
}
return constants
}
type membersByPosAndString []ssa.Member
func (a membersByPosAndString) Len() int { return len(a) }
func (a membersByPosAndString) Less(i, j int) bool {
cmp := a[i].Pos() - a[j].Pos()
return cmp < 0 || cmp == 0 && a[i].String() < a[j].String()
}
func (a membersByPosAndString) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
type sorterrorType []*errorType
func (a sorterrorType) Len() int { return len(a) }
func (a sorterrorType) Less(i, j int) bool {
cmp := a[i].obj.Pos() - a[j].obj.Pos()
return cmp < 0 || cmp == 0 && a[i].typ.String() < a[j].typ.String()
}
func (a sorterrorType) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
type errorType struct {
typ types.Type // concrete type N or *N that implements error
obj *types.TypeName // the named type N
}
type whicherrsResult struct {
qpos *queryPos
errpos token.Pos
globals []ssa.Member
consts []ssa.Member
types []*errorType
}
func (r *whicherrsResult) display(printf printfFunc) {
if len(r.globals) > 0 {
printf(r.qpos, "this error may point to these globals:")
for _, g := range r.globals {
printf(g.Pos(), "\t%s", g.RelString(r.qpos.info.Pkg))
}
}
if len(r.consts) > 0 {
printf(r.qpos, "this error may contain these constants:")
for _, c := range r.consts {
printf(c.Pos(), "\t%s", c.RelString(r.qpos.info.Pkg))
}
}
if len(r.types) > 0 {
printf(r.qpos, "this error may contain these dynamic types:")
for _, t := range r.types {
printf(t.obj.Pos(), "\t%s", r.qpos.typeString(t.typ))
}
}
}
func (r *whicherrsResult) toSerial(res *serial.Result, fset *token.FileSet) {
we := &serial.WhichErrs{}
we.ErrPos = fset.Position(r.errpos).String()
for _, g := range r.globals {
we.Globals = append(we.Globals, fset.Position(g.Pos()).String())
}
for _, c := range r.consts {
we.Constants = append(we.Constants, fset.Position(c.Pos()).String())
}
for _, t := range r.types {
var et serial.WhichErrsType
et.Type = r.qpos.typeString(t.typ)
et.Position = fset.Position(t.obj.Pos()).String()
we.Types = append(we.Types, et)
}
res.WhichErrs = we
}

View File

@ -1,860 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package rename
// This file defines the safety checks for each kind of renaming.
import (
"fmt"
"go/ast"
"go/token"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/types"
"golang.org/x/tools/refactor/satisfy"
)
// errorf reports an error (e.g. conflict) and prevents file modification.
func (r *renamer) errorf(pos token.Pos, format string, args ...interface{}) {
r.hadConflicts = true
reportError(r.iprog.Fset.Position(pos), fmt.Sprintf(format, args...))
}
// check performs safety checks of the renaming of the 'from' object to r.to.
func (r *renamer) check(from types.Object) {
if r.objsToUpdate[from] {
return
}
r.objsToUpdate[from] = true
// NB: order of conditions is important.
if from_, ok := from.(*types.PkgName); ok {
r.checkInFileBlock(from_)
} else if from_, ok := from.(*types.Label); ok {
r.checkLabel(from_)
} else if isPackageLevel(from) {
r.checkInPackageBlock(from)
} else if v, ok := from.(*types.Var); ok && v.IsField() {
r.checkStructField(v)
} else if f, ok := from.(*types.Func); ok && recv(f) != nil {
r.checkMethod(f)
} else if isLocal(from) {
r.checkInLocalScope(from)
} else {
r.errorf(from.Pos(), "unexpected %s object %q (please report a bug)\n",
objectKind(from), from)
}
}
// checkInFileBlock performs safety checks for renames of objects in the file block,
// i.e. imported package names.
func (r *renamer) checkInFileBlock(from *types.PkgName) {
// Check import name is not "init".
if r.to == "init" {
r.errorf(from.Pos(), "%q is not a valid imported package name", r.to)
}
// Check for conflicts between file and package block.
if prev := from.Pkg().Scope().Lookup(r.to); prev != nil {
r.errorf(from.Pos(), "renaming this %s %q to %q would conflict",
objectKind(from), from.Name(), r.to)
r.errorf(prev.Pos(), "\twith this package member %s",
objectKind(prev))
return // since checkInPackageBlock would report redundant errors
}
// Check for conflicts in lexical scope.
r.checkInLexicalScope(from, r.packages[from.Pkg()])
// Finally, modify ImportSpec syntax to add or remove the Name as needed.
info, path, _ := r.iprog.PathEnclosingInterval(from.Pos(), from.Pos())
if from.Imported().Name() == r.to {
// ImportSpec.Name not needed
path[1].(*ast.ImportSpec).Name = nil
} else {
// ImportSpec.Name needed
if spec := path[1].(*ast.ImportSpec); spec.Name == nil {
spec.Name = &ast.Ident{NamePos: spec.Path.Pos(), Name: r.to}
info.Defs[spec.Name] = from
}
}
}
// checkInPackageBlock performs safety checks for renames of
// func/var/const/type objects in the package block.
func (r *renamer) checkInPackageBlock(from types.Object) {
// Check that there are no references to the name from another
// package if the renaming would make it unexported.
if ast.IsExported(from.Name()) && !ast.IsExported(r.to) {
for pkg, info := range r.packages {
if pkg == from.Pkg() {
continue
}
if id := someUse(info, from); id != nil &&
!r.checkExport(id, pkg, from) {
break
}
}
}
info := r.packages[from.Pkg()]
// Check that in the package block, "init" is a function, and never referenced.
if r.to == "init" {
kind := objectKind(from)
if kind == "func" {
// Reject if intra-package references to it exist.
for id, obj := range info.Uses {
if obj == from {
r.errorf(from.Pos(),
"renaming this func %q to %q would make it a package initializer",
from.Name(), r.to)
r.errorf(id.Pos(), "\tbut references to it exist")
break
}
}
} else {
r.errorf(from.Pos(), "you cannot have a %s at package level named %q",
kind, r.to)
}
}
// Check for conflicts between package block and all file blocks.
for _, f := range info.Files {
fileScope := info.Info.Scopes[f]
b, prev := fileScope.LookupParent(r.to, token.NoPos)
if b == fileScope {
r.errorf(from.Pos(), "renaming this %s %q to %q would conflict",
objectKind(from), from.Name(), r.to)
r.errorf(prev.Pos(), "\twith this %s",
objectKind(prev))
return // since checkInPackageBlock would report redundant errors
}
}
// Check for conflicts in lexical scope.
if from.Exported() {
for _, info := range r.packages {
r.checkInLexicalScope(from, info)
}
} else {
r.checkInLexicalScope(from, info)
}
}
func (r *renamer) checkInLocalScope(from types.Object) {
info := r.packages[from.Pkg()]
// Is this object an implicit local var for a type switch?
// Each case has its own var, whose position is the decl of y,
// but Ident in that decl does not appear in the Uses map.
//
// switch y := x.(type) { // Defs[Ident(y)] is undefined
// case int: print(y) // Implicits[CaseClause(int)] = Var(y_int)
// case string: print(y) // Implicits[CaseClause(string)] = Var(y_string)
// }
//
var isCaseVar bool
for syntax, obj := range info.Implicits {
if _, ok := syntax.(*ast.CaseClause); ok && obj.Pos() == from.Pos() {
isCaseVar = true
r.check(obj)
}
}
r.checkInLexicalScope(from, info)
// Finally, if this was a type switch, change the variable y.
if isCaseVar {
_, path, _ := r.iprog.PathEnclosingInterval(from.Pos(), from.Pos())
path[0].(*ast.Ident).Name = r.to // path is [Ident AssignStmt TypeSwitchStmt...]
}
}
// checkInLexicalScope performs safety checks that a renaming does not
// change the lexical reference structure of the specified package.
//
// For objects in lexical scope, there are three kinds of conflicts:
// same-, sub-, and super-block conflicts. We will illustrate all three
// using this example:
//
// var x int
// var z int
//
// func f(y int) {
// print(x)
// print(y)
// }
//
// Renaming x to z encounters a SAME-BLOCK CONFLICT, because an object
// with the new name already exists, defined in the same lexical block
// as the old object.
//
// Renaming x to y encounters a SUB-BLOCK CONFLICT, because there exists
// a reference to x from within (what would become) a hole in its scope.
// The definition of y in an (inner) sub-block would cast a shadow in
// the scope of the renamed variable.
//
// Renaming y to x encounters a SUPER-BLOCK CONFLICT. This is the
// converse situation: there is an existing definition of the new name
// (x) in an (enclosing) super-block, and the renaming would create a
// hole in its scope, within which there exist references to it. The
// new name casts a shadow in scope of the existing definition of x in
// the super-block.
//
// Removing the old name (and all references to it) is always safe, and
// requires no checks.
//
func (r *renamer) checkInLexicalScope(from types.Object, info *loader.PackageInfo) {
b := from.Parent() // the block defining the 'from' object
if b != nil {
toBlock, to := b.LookupParent(r.to, from.Parent().End())
if toBlock == b {
// same-block conflict
r.errorf(from.Pos(), "renaming this %s %q to %q",
objectKind(from), from.Name(), r.to)
r.errorf(to.Pos(), "\tconflicts with %s in same block",
objectKind(to))
return
} else if toBlock != nil {
// Check for super-block conflict.
// The name r.to is defined in a superblock.
// Is that name referenced from within this block?
forEachLexicalRef(info, to, func(id *ast.Ident, block *types.Scope) bool {
_, obj := lexicalLookup(block, from.Name(), id.Pos())
if obj == from {
// super-block conflict
r.errorf(from.Pos(), "renaming this %s %q to %q",
objectKind(from), from.Name(), r.to)
r.errorf(id.Pos(), "\twould shadow this reference")
r.errorf(to.Pos(), "\tto the %s declared here",
objectKind(to))
return false // stop
}
return true
})
}
}
// Check for sub-block conflict.
// Is there an intervening definition of r.to between
// the block defining 'from' and some reference to it?
forEachLexicalRef(info, from, func(id *ast.Ident, block *types.Scope) bool {
// Find the block that defines the found reference.
// It may be an ancestor.
fromBlock, _ := lexicalLookup(block, from.Name(), id.Pos())
// See what r.to would resolve to in the same scope.
toBlock, to := lexicalLookup(block, r.to, id.Pos())
if to != nil {
// sub-block conflict
if deeper(toBlock, fromBlock) {
r.errorf(from.Pos(), "renaming this %s %q to %q",
objectKind(from), from.Name(), r.to)
r.errorf(id.Pos(), "\twould cause this reference to become shadowed")
r.errorf(to.Pos(), "\tby this intervening %s definition",
objectKind(to))
return false // stop
}
}
return true
})
// Renaming a type that is used as an embedded field
// requires renaming the field too. e.g.
// type T int // if we rename this to U..
// var s struct {T}
// print(s.T) // ...this must change too
if _, ok := from.(*types.TypeName); ok {
for id, obj := range info.Uses {
if obj == from {
if field := info.Defs[id]; field != nil {
r.check(field)
}
}
}
}
}
// lexicalLookup is like (*types.Scope).LookupParent but respects the
// environment visible at pos. It assumes the relative position
// information is correct with each file.
func lexicalLookup(block *types.Scope, name string, pos token.Pos) (*types.Scope, types.Object) {
for b := block; b != nil; b = b.Parent() {
obj := b.Lookup(name)
// The scope of a package-level object is the entire package,
// so ignore pos in that case.
// No analogous clause is needed for file-level objects
// since no reference can appear before an import decl.
if obj != nil && (b == obj.Pkg().Scope() || obj.Pos() < pos) {
return b, obj
}
}
return nil, nil
}
// deeper reports whether block x is lexically deeper than y.
func deeper(x, y *types.Scope) bool {
if x == y || x == nil {
return false
} else if y == nil {
return true
} else {
return deeper(x.Parent(), y.Parent())
}
}
// forEachLexicalRef calls fn(id, block) for each identifier id in package
// info that is a reference to obj in lexical scope. block is the
// lexical block enclosing the reference. If fn returns false the
// iteration is terminated and findLexicalRefs returns false.
func forEachLexicalRef(info *loader.PackageInfo, obj types.Object, fn func(id *ast.Ident, block *types.Scope) bool) bool {
ok := true
var stack []ast.Node
var visit func(n ast.Node) bool
visit = func(n ast.Node) bool {
if n == nil {
stack = stack[:len(stack)-1] // pop
return false
}
if !ok {
return false // bail out
}
stack = append(stack, n) // push
switch n := n.(type) {
case *ast.Ident:
if info.Uses[n] == obj {
block := enclosingBlock(&info.Info, stack)
if !fn(n, block) {
ok = false
}
}
return visit(nil) // pop stack
case *ast.SelectorExpr:
// don't visit n.Sel
ast.Inspect(n.X, visit)
return visit(nil) // pop stack, don't descend
case *ast.CompositeLit:
// Handle recursion ourselves for struct literals
// so we don't visit field identifiers.
tv := info.Types[n]
if _, ok := deref(tv.Type).Underlying().(*types.Struct); ok {
if n.Type != nil {
ast.Inspect(n.Type, visit)
}
for _, elt := range n.Elts {
if kv, ok := elt.(*ast.KeyValueExpr); ok {
ast.Inspect(kv.Value, visit)
} else {
ast.Inspect(elt, visit)
}
}
return visit(nil) // pop stack, don't descend
}
}
return true
}
for _, f := range info.Files {
ast.Inspect(f, visit)
if len(stack) != 0 {
panic(stack)
}
if !ok {
break
}
}
return ok
}
// enclosingBlock returns the innermost block enclosing the specified
// AST node, specified in the form of a path from the root of the file,
// [file...n].
func enclosingBlock(info *types.Info, stack []ast.Node) *types.Scope {
for i := range stack {
n := stack[len(stack)-1-i]
// For some reason, go/types always associates a
// function's scope with its FuncType.
// TODO(adonovan): feature or a bug?
switch f := n.(type) {
case *ast.FuncDecl:
n = f.Type
case *ast.FuncLit:
n = f.Type
}
if b := info.Scopes[n]; b != nil {
return b
}
}
panic("no Scope for *ast.File")
}
func (r *renamer) checkLabel(label *types.Label) {
// Check there are no identical labels in the function's label block.
// (Label blocks don't nest, so this is easy.)
if prev := label.Parent().Lookup(r.to); prev != nil {
r.errorf(label.Pos(), "renaming this label %q to %q", label.Name(), prev.Name())
r.errorf(prev.Pos(), "\twould conflict with this one")
}
}
// checkStructField checks that the field renaming will not cause
// conflicts at its declaration, or ambiguity or changes to any selection.
func (r *renamer) checkStructField(from *types.Var) {
// Check that the struct declaration is free of field conflicts,
// and field/method conflicts.
// go/types offers no easy way to get from a field (or interface
// method) to its declaring struct (or interface), so we must
// ascend the AST.
info, path, _ := r.iprog.PathEnclosingInterval(from.Pos(), from.Pos())
// path matches this pattern:
// [Ident SelectorExpr? StarExpr? Field FieldList StructType ParenExpr* ... File]
// Ascend to FieldList.
var i int
for {
if _, ok := path[i].(*ast.FieldList); ok {
break
}
i++
}
i++
tStruct := path[i].(*ast.StructType)
i++
// Ascend past parens (unlikely).
for {
_, ok := path[i].(*ast.ParenExpr)
if !ok {
break
}
i++
}
if spec, ok := path[i].(*ast.TypeSpec); ok {
// This struct is also a named type.
// We must check for direct (non-promoted) field/field
// and method/field conflicts.
named := info.Defs[spec.Name].Type()
prev, indices, _ := types.LookupFieldOrMethod(named, true, info.Pkg, r.to)
if len(indices) == 1 {
r.errorf(from.Pos(), "renaming this field %q to %q",
from.Name(), r.to)
r.errorf(prev.Pos(), "\twould conflict with this %s",
objectKind(prev))
return // skip checkSelections to avoid redundant errors
}
} else {
// This struct is not a named type.
// We need only check for direct (non-promoted) field/field conflicts.
T := info.Types[tStruct].Type.Underlying().(*types.Struct)
for i := 0; i < T.NumFields(); i++ {
if prev := T.Field(i); prev.Name() == r.to {
r.errorf(from.Pos(), "renaming this field %q to %q",
from.Name(), r.to)
r.errorf(prev.Pos(), "\twould conflict with this field")
return // skip checkSelections to avoid redundant errors
}
}
}
// Renaming an anonymous field requires renaming the type too. e.g.
// print(s.T) // if we rename T to U,
// type T int // this and
// var s struct {T} // this must change too.
if from.Anonymous() {
if named, ok := from.Type().(*types.Named); ok {
r.check(named.Obj())
} else if named, ok := deref(from.Type()).(*types.Named); ok {
r.check(named.Obj())
}
}
// Check integrity of existing (field and method) selections.
r.checkSelections(from)
}
// checkSelection checks that all uses and selections that resolve to
// the specified object would continue to do so after the renaming.
func (r *renamer) checkSelections(from types.Object) {
for pkg, info := range r.packages {
if id := someUse(info, from); id != nil {
if !r.checkExport(id, pkg, from) {
return
}
}
for syntax, sel := range info.Selections {
// There may be extant selections of only the old
// name or only the new name, so we must check both.
// (If neither, the renaming is sound.)
//
// In both cases, we wish to compare the lengths
// of the implicit field path (Selection.Index)
// to see if the renaming would change it.
//
// If a selection that resolves to 'from', when renamed,
// would yield a path of the same or shorter length,
// this indicates ambiguity or a changed referent,
// analogous to same- or sub-block lexical conflict.
//
// If a selection using the name 'to' would
// yield a path of the same or shorter length,
// this indicates ambiguity or shadowing,
// analogous to same- or super-block lexical conflict.
// TODO(adonovan): fix: derive from Types[syntax.X].Mode
// TODO(adonovan): test with pointer, value, addressable value.
isAddressable := true
if sel.Obj() == from {
if obj, indices, _ := types.LookupFieldOrMethod(sel.Recv(), isAddressable, from.Pkg(), r.to); obj != nil {
// Renaming this existing selection of
// 'from' may block access to an existing
// type member named 'to'.
delta := len(indices) - len(sel.Index())
if delta > 0 {
continue // no ambiguity
}
r.selectionConflict(from, delta, syntax, obj)
return
}
} else if sel.Obj().Name() == r.to {
if obj, indices, _ := types.LookupFieldOrMethod(sel.Recv(), isAddressable, from.Pkg(), from.Name()); obj == from {
// Renaming 'from' may cause this existing
// selection of the name 'to' to change
// its meaning.
delta := len(indices) - len(sel.Index())
if delta > 0 {
continue // no ambiguity
}
r.selectionConflict(from, -delta, syntax, sel.Obj())
return
}
}
}
}
}
func (r *renamer) selectionConflict(from types.Object, delta int, syntax *ast.SelectorExpr, obj types.Object) {
r.errorf(from.Pos(), "renaming this %s %q to %q",
objectKind(from), from.Name(), r.to)
switch {
case delta < 0:
// analogous to sub-block conflict
r.errorf(syntax.Sel.Pos(),
"\twould change the referent of this selection")
r.errorf(obj.Pos(), "\tof this %s", objectKind(obj))
case delta == 0:
// analogous to same-block conflict
r.errorf(syntax.Sel.Pos(),
"\twould make this reference ambiguous")
r.errorf(obj.Pos(), "\twith this %s", objectKind(obj))
case delta > 0:
// analogous to super-block conflict
r.errorf(syntax.Sel.Pos(),
"\twould shadow this selection")
r.errorf(obj.Pos(), "\tof the %s declared here",
objectKind(obj))
}
}
// checkMethod performs safety checks for renaming a method.
// There are three hazards:
// - declaration conflicts
// - selection ambiguity/changes
// - entailed renamings of assignable concrete/interface types.
// We reject renamings initiated at concrete methods if it would
// change the assignability relation. For renamings of abstract
// methods, we rename all methods transitively coupled to it via
// assignability.
func (r *renamer) checkMethod(from *types.Func) {
// e.g. error.Error
if from.Pkg() == nil {
r.errorf(from.Pos(), "you cannot rename built-in method %s", from)
return
}
// ASSIGNABILITY: We reject renamings of concrete methods that
// would break a 'satisfy' constraint; but renamings of abstract
// methods are allowed to proceed, and we rename affected
// concrete and abstract methods as necessary. It is the
// initial method that determines the policy.
// Check for conflict at point of declaration.
// Check to ensure preservation of assignability requirements.
R := recv(from).Type()
if isInterface(R) {
// Abstract method
// declaration
prev, _, _ := types.LookupFieldOrMethod(R, false, from.Pkg(), r.to)
if prev != nil {
r.errorf(from.Pos(), "renaming this interface method %q to %q",
from.Name(), r.to)
r.errorf(prev.Pos(), "\twould conflict with this method")
return
}
// Check all interfaces that embed this one for
// declaration conflicts too.
for _, info := range r.packages {
// Start with named interface types (better errors)
for _, obj := range info.Defs {
if obj, ok := obj.(*types.TypeName); ok && isInterface(obj.Type()) {
f, _, _ := types.LookupFieldOrMethod(
obj.Type(), false, from.Pkg(), from.Name())
if f == nil {
continue
}
t, _, _ := types.LookupFieldOrMethod(
obj.Type(), false, from.Pkg(), r.to)
if t == nil {
continue
}
r.errorf(from.Pos(), "renaming this interface method %q to %q",
from.Name(), r.to)
r.errorf(t.Pos(), "\twould conflict with this method")
r.errorf(obj.Pos(), "\tin named interface type %q", obj.Name())
}
}
// Now look at all literal interface types (includes named ones again).
for e, tv := range info.Types {
if e, ok := e.(*ast.InterfaceType); ok {
_ = e
_ = tv.Type.(*types.Interface)
// TODO(adonovan): implement same check as above.
}
}
}
// assignability
//
// Find the set of concrete or abstract methods directly
// coupled to abstract method 'from' by some
// satisfy.Constraint, and rename them too.
for key := range r.satisfy() {
// key = (lhs, rhs) where lhs is always an interface.
lsel := r.msets.MethodSet(key.LHS).Lookup(from.Pkg(), from.Name())
if lsel == nil {
continue
}
rmethods := r.msets.MethodSet(key.RHS)
rsel := rmethods.Lookup(from.Pkg(), from.Name())
if rsel == nil {
continue
}
// If both sides have a method of this name,
// and one of them is m, the other must be coupled.
var coupled *types.Func
switch from {
case lsel.Obj():
coupled = rsel.Obj().(*types.Func)
case rsel.Obj():
coupled = lsel.Obj().(*types.Func)
default:
continue
}
// We must treat concrete-to-interface
// constraints like an implicit selection C.f of
// each interface method I.f, and check that the
// renaming leaves the selection unchanged and
// unambiguous.
//
// Fun fact: the implicit selection of C.f
// type I interface{f()}
// type C struct{I}
// func (C) g()
// var _ I = C{} // here
// yields abstract method I.f. This can make error
// messages less than obvious.
//
if !isInterface(key.RHS) {
// The logic below was derived from checkSelections.
rtosel := rmethods.Lookup(from.Pkg(), r.to)
if rtosel != nil {
rto := rtosel.Obj().(*types.Func)
delta := len(rsel.Index()) - len(rtosel.Index())
if delta < 0 {
continue // no ambiguity
}
// TODO(adonovan): record the constraint's position.
keyPos := token.NoPos
r.errorf(from.Pos(), "renaming this method %q to %q",
from.Name(), r.to)
if delta == 0 {
// analogous to same-block conflict
r.errorf(keyPos, "\twould make the %s method of %s invoked via interface %s ambiguous",
r.to, key.RHS, key.LHS)
r.errorf(rto.Pos(), "\twith (%s).%s",
recv(rto).Type(), r.to)
} else {
// analogous to super-block conflict
r.errorf(keyPos, "\twould change the %s method of %s invoked via interface %s",
r.to, key.RHS, key.LHS)
r.errorf(coupled.Pos(), "\tfrom (%s).%s",
recv(coupled).Type(), r.to)
r.errorf(rto.Pos(), "\tto (%s).%s",
recv(rto).Type(), r.to)
}
return // one error is enough
}
}
if !r.changeMethods {
// This should be unreachable.
r.errorf(from.Pos(), "internal error: during renaming of abstract method %s", from)
r.errorf(coupled.Pos(), "\tchangedMethods=false, coupled method=%s", coupled)
r.errorf(from.Pos(), "\tPlease file a bug report")
return
}
// Rename the coupled method to preserve assignability.
r.check(coupled)
}
} else {
// Concrete method
// declaration
prev, indices, _ := types.LookupFieldOrMethod(R, true, from.Pkg(), r.to)
if prev != nil && len(indices) == 1 {
r.errorf(from.Pos(), "renaming this method %q to %q",
from.Name(), r.to)
r.errorf(prev.Pos(), "\twould conflict with this %s",
objectKind(prev))
return
}
// assignability
//
// Find the set of abstract methods coupled to concrete
// method 'from' by some satisfy.Constraint, and rename
// them too.
//
// Coupling may be indirect, e.g. I.f <-> C.f via type D.
//
// type I interface {f()}
// type C int
// type (C) f()
// type D struct{C}
// var _ I = D{}
//
for key := range r.satisfy() {
// key = (lhs, rhs) where lhs is always an interface.
if isInterface(key.RHS) {
continue
}
rsel := r.msets.MethodSet(key.RHS).Lookup(from.Pkg(), from.Name())
if rsel == nil || rsel.Obj() != from {
continue // rhs does not have the method
}
lsel := r.msets.MethodSet(key.LHS).Lookup(from.Pkg(), from.Name())
if lsel == nil {
continue
}
imeth := lsel.Obj().(*types.Func)
// imeth is the abstract method (e.g. I.f)
// and key.RHS is the concrete coupling type (e.g. D).
if !r.changeMethods {
r.errorf(from.Pos(), "renaming this method %q to %q",
from.Name(), r.to)
var pos token.Pos
var iface string
I := recv(imeth).Type()
if named, ok := I.(*types.Named); ok {
pos = named.Obj().Pos()
iface = "interface " + named.Obj().Name()
} else {
pos = from.Pos()
iface = I.String()
}
r.errorf(pos, "\twould make %s no longer assignable to %s",
key.RHS, iface)
r.errorf(imeth.Pos(), "\t(rename %s.%s if you intend to change both types)",
I, from.Name())
return // one error is enough
}
// Rename the coupled interface method to preserve assignability.
r.check(imeth)
}
}
// Check integrity of existing (field and method) selections.
// We skip this if there were errors above, to avoid redundant errors.
r.checkSelections(from)
}
func (r *renamer) checkExport(id *ast.Ident, pkg *types.Package, from types.Object) bool {
// Reject cross-package references if r.to is unexported.
// (Such references may be qualified identifiers or field/method
// selections.)
if !ast.IsExported(r.to) && pkg != from.Pkg() {
r.errorf(from.Pos(),
"renaming this %s %q to %q would make it unexported",
objectKind(from), from.Name(), r.to)
r.errorf(id.Pos(), "\tbreaking references from packages such as %q",
pkg.Path())
return false
}
return true
}
// satisfy returns the set of interface satisfaction constraints.
func (r *renamer) satisfy() map[satisfy.Constraint]bool {
if r.satisfyConstraints == nil {
// Compute on demand: it's expensive.
var f satisfy.Finder
for _, info := range r.packages {
f.Find(&info.Info, info.Files)
}
r.satisfyConstraints = f.Result
}
return r.satisfyConstraints
}
// -- helpers ----------------------------------------------------------
// recv returns the method's receiver.
func recv(meth *types.Func) *types.Var {
return meth.Type().(*types.Signature).Recv()
}
// someUse returns an arbitrary use of obj within info.
func someUse(info *loader.PackageInfo, obj types.Object) *ast.Ident {
for id, o := range info.Uses {
if o == obj {
return id
}
}
return nil
}
// -- Plundered from golang.org/x/tools/go/ssa -----------------
func isInterface(T types.Type) bool { return types.IsInterface(T) }
func deref(typ types.Type) types.Type {
if p, _ := typ.(*types.Pointer); p != nil {
return p.Elem()
}
return typ
}

View File

@ -1,510 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
// Package rename contains the implementation of the 'gorename' command
// whose main function is in golang.org/x/tools/cmd/gorename.
// See the Usage constant for the command documentation.
package rename // import "golang.org/x/tools/refactor/rename"
import (
"bytes"
"errors"
"fmt"
"go/ast"
"go/build"
"go/format"
"go/parser"
"go/token"
"io"
"io/ioutil"
"log"
"os"
"os/exec"
"path"
"sort"
"strconv"
"strings"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/types"
"golang.org/x/tools/go/types/typeutil"
"golang.org/x/tools/refactor/importgraph"
"golang.org/x/tools/refactor/satisfy"
)
const Usage = `gorename: precise type-safe renaming of identifiers in Go source code.
Usage:
gorename (-from <spec> | -offset <file>:#<byte-offset>) -to <name> [-force]
You must specify the object (named entity) to rename using the -offset
or -from flag. Exactly one must be specified.
Flags:
-offset specifies the filename and byte offset of an identifier to rename.
This form is intended for use by text editors.
-from specifies the object to rename using a query notation;
This form is intended for interactive use at the command line.
A legal -from query has one of the following forms:
"encoding/json".Decoder.Decode method of package-level named type
(*"encoding/json".Decoder).Decode ditto, alternative syntax
"encoding/json".Decoder.buf field of package-level named struct type
"encoding/json".HTMLEscape package member (const, func, var, type)
"encoding/json".Decoder.Decode::x local object x within a method
"encoding/json".HTMLEscape::x local object x within a function
"encoding/json"::x object x anywhere within a package
json.go::x object x within file json.go
Double-quotes must be escaped when writing a shell command.
Quotes may be omitted for single-segment import paths such as "fmt".
For methods, the parens and '*' on the receiver type are both
optional.
It is an error if one of the ::x queries matches multiple
objects.
-to the new name.
-force causes the renaming to proceed even if conflicts were reported.
The resulting program may be ill-formed, or experience a change
in behaviour.
WARNING: this flag may even cause the renaming tool to crash.
(In due course this bug will be fixed by moving certain
analyses into the type-checker.)
-d display diffs instead of rewriting files
-v enables verbose logging.
gorename automatically computes the set of packages that might be
affected. For a local renaming, this is just the package specified by
-from or -offset, but for a potentially exported name, gorename scans
the workspace ($GOROOT and $GOPATH).
gorename rejects renamings of concrete methods that would change the
assignability relation between types and interfaces. If the interface
change was intentional, initiate the renaming at the interface method.
gorename rejects any renaming that would create a conflict at the point
of declaration, or a reference conflict (ambiguity or shadowing), or
anything else that could cause the resulting program not to compile.
Examples:
$ gorename -offset file.go:#123 -to foo
Rename the object whose identifier is at byte offset 123 within file file.go.
$ gorename -from '"bytes".Buffer.Len' -to Size
Rename the "Len" method of the *bytes.Buffer type to "Size".
---- TODO ----
Correctness:
- handle dot imports correctly
- document limitations (reflection, 'implements' algorithm).
- sketch a proof of exhaustiveness.
Features:
- support running on packages specified as *.go files on the command line
- support running on programs containing errors (loader.Config.AllowErrors)
- allow users to specify a scope other than "global" (to avoid being
stuck by neglected packages in $GOPATH that don't build).
- support renaming the package clause (no object)
- support renaming an import path (no ident or object)
(requires filesystem + SCM updates).
- detect and reject edits to autogenerated files (cgo, protobufs)
and optionally $GOROOT packages.
- report all conflicts, or at least all qualitatively distinct ones.
Sometimes we stop to avoid redundancy, but
it may give a disproportionate sense of safety in -force mode.
- support renaming all instances of a pattern, e.g.
all receiver vars of a given type,
all local variables of a given type,
all PkgNames for a given package.
- emit JSON output for other editors and tools.
`
var (
// Force enables patching of the source files even if conflicts were reported.
// The resulting program may be ill-formed.
// It may even cause gorename to crash. TODO(adonovan): fix that.
Force bool
// Diff causes the tool to display diffs instead of rewriting files.
Diff bool
// DiffCmd specifies the diff command used by the -d feature.
// (The command must accept a -u flag and two filename arguments.)
DiffCmd = "diff"
// ConflictError is returned by Main when it aborts the renaming due to conflicts.
// (It is distinguished because the interesting errors are the conflicts themselves.)
ConflictError = errors.New("renaming aborted due to conflicts")
// Verbose enables extra logging.
Verbose bool
)
var stdout io.Writer = os.Stdout
type renamer struct {
iprog *loader.Program
objsToUpdate map[types.Object]bool
hadConflicts bool
to string
satisfyConstraints map[satisfy.Constraint]bool
packages map[*types.Package]*loader.PackageInfo // subset of iprog.AllPackages to inspect
msets typeutil.MethodSetCache
changeMethods bool
}
var reportError = func(posn token.Position, message string) {
fmt.Fprintf(os.Stderr, "%s: %s\n", posn, message)
}
// importName renames imports of the package with the given path in
// the given package. If fromName is not empty, only imports as
// fromName will be renamed. If the renaming would lead to a conflict,
// the file is left unchanged.
func importName(iprog *loader.Program, info *loader.PackageInfo, fromPath, fromName, to string) error {
for _, f := range info.Files {
var from types.Object
for _, imp := range f.Imports {
importPath, _ := strconv.Unquote(imp.Path.Value)
importName := path.Base(importPath)
if imp.Name != nil {
importName = imp.Name.Name
}
if importPath == fromPath && (fromName == "" || importName == fromName) {
from = info.Implicits[imp]
break
}
}
if from == nil {
continue
}
r := renamer{
iprog: iprog,
objsToUpdate: make(map[types.Object]bool),
to: to,
packages: map[*types.Package]*loader.PackageInfo{info.Pkg: info},
}
r.check(from)
if r.hadConflicts {
continue // ignore errors; leave the existing name
}
if err := r.update(); err != nil {
return err
}
}
return nil
}
func Main(ctxt *build.Context, offsetFlag, fromFlag, to string) error {
// -- Parse the -from or -offset specifier ----------------------------
if (offsetFlag == "") == (fromFlag == "") {
return fmt.Errorf("exactly one of the -from and -offset flags must be specified")
}
if !isValidIdentifier(to) {
return fmt.Errorf("-to %q: not a valid identifier", to)
}
if Diff {
defer func(saved func(string, []byte) error) { writeFile = saved }(writeFile)
writeFile = diff
}
var spec *spec
var err error
if fromFlag != "" {
spec, err = parseFromFlag(ctxt, fromFlag)
} else {
spec, err = parseOffsetFlag(ctxt, offsetFlag)
}
if err != nil {
return err
}
if spec.fromName == to {
return fmt.Errorf("the old and new names are the same: %s", to)
}
// -- Load the program consisting of the initial package -------------
iprog, err := loadProgram(ctxt, map[string]bool{spec.pkg: true})
if err != nil {
return err
}
fromObjects, err := findFromObjects(iprog, spec)
if err != nil {
return err
}
// -- Load a larger program, for global renamings ---------------------
if requiresGlobalRename(fromObjects, to) {
// For a local refactoring, we needn't load more
// packages, but if the renaming affects the package's
// API, we we must load all packages that depend on the
// package defining the object, plus their tests.
if Verbose {
log.Print("Potentially global renaming; scanning workspace...")
}
// Scan the workspace and build the import graph.
_, rev, errors := importgraph.Build(ctxt)
if len(errors) > 0 {
// With a large GOPATH tree, errors are inevitable.
// Report them but proceed.
fmt.Fprintf(os.Stderr, "While scanning Go workspace:\n")
for path, err := range errors {
fmt.Fprintf(os.Stderr, "Package %q: %s.\n", path, err)
}
}
// Enumerate the set of potentially affected packages.
affectedPackages := make(map[string]bool)
for _, obj := range fromObjects {
// External test packages are never imported,
// so they will never appear in the graph.
for path := range rev.Search(obj.Pkg().Path()) {
affectedPackages[path] = true
}
}
// TODO(adonovan): allow the user to specify the scope,
// or -ignore patterns? Computing the scope when we
// don't (yet) support inputs containing errors can make
// the tool rather brittle.
// Re-load the larger program.
iprog, err = loadProgram(ctxt, affectedPackages)
if err != nil {
return err
}
fromObjects, err = findFromObjects(iprog, spec)
if err != nil {
return err
}
}
// -- Do the renaming -------------------------------------------------
r := renamer{
iprog: iprog,
objsToUpdate: make(map[types.Object]bool),
to: to,
packages: make(map[*types.Package]*loader.PackageInfo),
}
// A renaming initiated at an interface method indicates the
// intention to rename abstract and concrete methods as needed
// to preserve assignability.
for _, obj := range fromObjects {
if obj, ok := obj.(*types.Func); ok {
recv := obj.Type().(*types.Signature).Recv()
if recv != nil && isInterface(recv.Type().Underlying()) {
r.changeMethods = true
break
}
}
}
// Only the initially imported packages (iprog.Imported) and
// their external tests (iprog.Created) should be inspected or
// modified, as only they have type-checked functions bodies.
// The rest are just dependencies, needed only for package-level
// type information.
for _, info := range iprog.Imported {
r.packages[info.Pkg] = info
}
for _, info := range iprog.Created { // (tests)
r.packages[info.Pkg] = info
}
for _, from := range fromObjects {
r.check(from)
}
if r.hadConflicts && !Force {
return ConflictError
}
return r.update()
}
// loadProgram loads the specified set of packages (plus their tests)
// and all their dependencies, from source, through the specified build
// context. Only packages in pkgs will have their functions bodies typechecked.
func loadProgram(ctxt *build.Context, pkgs map[string]bool) (*loader.Program, error) {
conf := loader.Config{
Build: ctxt,
ParserMode: parser.ParseComments,
// TODO(adonovan): enable this. Requires making a lot of code more robust!
AllowErrors: false,
}
// Optimization: don't type-check the bodies of functions in our
// dependencies, since we only need exported package members.
conf.TypeCheckFuncBodies = func(p string) bool {
return pkgs[p] || pkgs[strings.TrimSuffix(p, "_test")]
}
if Verbose {
var list []string
for pkg := range pkgs {
list = append(list, pkg)
}
sort.Strings(list)
for _, pkg := range list {
log.Printf("Loading package: %s", pkg)
}
}
for pkg := range pkgs {
conf.ImportWithTests(pkg)
}
return conf.Load()
}
// requiresGlobalRename reports whether this renaming could potentially
// affect other packages in the Go workspace.
func requiresGlobalRename(fromObjects []types.Object, to string) bool {
var tfm bool
for _, from := range fromObjects {
if from.Exported() {
return true
}
switch objectKind(from) {
case "type", "field", "method":
tfm = true
}
}
if ast.IsExported(to) && tfm {
// A global renaming may be necessary even if we're
// exporting a previous unexported name, since if it's
// the name of a type, field or method, this could
// change selections in other packages.
// (We include "type" in this list because a type
// used as an embedded struct field entails a field
// renaming.)
return true
}
return false
}
// update updates the input files.
func (r *renamer) update() error {
// We use token.File, not filename, since a file may appear to
// belong to multiple packages and be parsed more than once.
// token.File captures this distinction; filename does not.
var nidents int
var filesToUpdate = make(map[*token.File]bool)
for _, info := range r.packages {
// Mutate the ASTs and note the filenames.
for id, obj := range info.Defs {
if r.objsToUpdate[obj] {
nidents++
id.Name = r.to
filesToUpdate[r.iprog.Fset.File(id.Pos())] = true
}
}
for id, obj := range info.Uses {
if r.objsToUpdate[obj] {
nidents++
id.Name = r.to
filesToUpdate[r.iprog.Fset.File(id.Pos())] = true
}
}
}
// TODO(adonovan): don't rewrite cgo + generated files.
var nerrs, npkgs int
for _, info := range r.packages {
first := true
for _, f := range info.Files {
tokenFile := r.iprog.Fset.File(f.Pos())
if filesToUpdate[tokenFile] {
if first {
npkgs++
first = false
if Verbose {
log.Printf("Updating package %s", info.Pkg.Path())
}
}
filename := tokenFile.Name()
var buf bytes.Buffer
if err := format.Node(&buf, r.iprog.Fset, f); err != nil {
log.Printf("failed to pretty-print syntax tree: %v", err)
nerrs++
continue
}
if err := writeFile(filename, buf.Bytes()); err != nil {
log.Print(err)
nerrs++
}
}
}
}
if !Diff {
fmt.Printf("Renamed %d occurrence%s in %d file%s in %d package%s.\n",
nidents, plural(nidents),
len(filesToUpdate), plural(len(filesToUpdate)),
npkgs, plural(npkgs))
}
if nerrs > 0 {
return fmt.Errorf("failed to rewrite %d file%s", nerrs, plural(nerrs))
}
return nil
}
func plural(n int) string {
if n != 1 {
return "s"
}
return ""
}
// writeFile is a seam for testing and for the -d flag.
var writeFile = reallyWriteFile
func reallyWriteFile(filename string, content []byte) error {
return ioutil.WriteFile(filename, content, 0644)
}
func diff(filename string, content []byte) error {
renamed := fmt.Sprintf("%s.%d.renamed", filename, os.Getpid())
if err := ioutil.WriteFile(renamed, content, 0644); err != nil {
return err
}
defer os.Remove(renamed)
diff, err := exec.Command(DiffCmd, "-u", filename, renamed).CombinedOutput()
if len(diff) > 0 {
// diff exits with a non-zero status when the files don't match.
// Ignore that failure as long as we get output.
stdout.Write(diff)
return nil
}
if err != nil {
return fmt.Errorf("computing diff: %v", err)
}
return nil
}

View File

@ -1,568 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package rename
// This file contains logic related to specifying a renaming: parsing of
// the flags as a form of query, and finding the object(s) it denotes.
// See Usage for flag details.
import (
"bytes"
"fmt"
"go/ast"
"go/build"
"go/parser"
"go/token"
"log"
"os"
"path/filepath"
"strconv"
"strings"
"golang.org/x/tools/go/buildutil"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/types"
)
// A spec specifies an entity to rename.
//
// It is populated from an -offset flag or -from query;
// see Usage for the allowed -from query forms.
//
type spec struct {
// pkg is the package containing the position
// specified by the -from or -offset flag.
// If filename == "", our search for the 'from' entity
// is restricted to this package.
pkg string
// The original name of the entity being renamed.
// If the query had a ::from component, this is that;
// otherwise it's the last segment, e.g.
// (encoding/json.Decoder).from
// encoding/json.from
fromName string
// -- The remaining fields are private to this file. All are optional. --
// The query's ::x suffix, if any.
searchFor string
// e.g. "Decoder" in "(encoding/json.Decoder).fieldOrMethod"
// or "encoding/json.Decoder
pkgMember string
// e.g. fieldOrMethod in "(encoding/json.Decoder).fieldOrMethod"
typeMember string
// Restricts the query to this file.
// Implied by -from="file.go::x" and -offset flags.
filename string
// Byte offset of the 'from' identifier within the file named 'filename'.
// -offset mode only.
offset int
}
// parseFromFlag interprets the "-from" flag value as a renaming specification.
// See Usage in rename.go for valid formats.
func parseFromFlag(ctxt *build.Context, fromFlag string) (*spec, error) {
var spec spec
var main string // sans "::x" suffix
switch parts := strings.Split(fromFlag, "::"); len(parts) {
case 1:
main = parts[0]
case 2:
main = parts[0]
spec.searchFor = parts[1]
if parts[1] == "" {
// error
}
default:
return nil, fmt.Errorf("-from %q: invalid identifier specification (see -help for formats)", fromFlag)
}
if strings.HasSuffix(main, ".go") {
// main is "filename.go"
if spec.searchFor == "" {
return nil, fmt.Errorf("-from: filename %q must have a ::name suffix", main)
}
spec.filename = main
if !buildutil.FileExists(ctxt, spec.filename) {
return nil, fmt.Errorf("no such file: %s", spec.filename)
}
bp, err := buildutil.ContainingPackage(ctxt, wd, spec.filename)
if err != nil {
return nil, err
}
spec.pkg = bp.ImportPath
} else {
// main is one of:
// "importpath"
// "importpath".member
// (*"importpath".type).fieldormethod (parens and star optional)
if err := parseObjectSpec(&spec, main); err != nil {
return nil, err
}
}
if spec.searchFor != "" {
spec.fromName = spec.searchFor
}
cwd, err := os.Getwd()
if err != nil {
return nil, err
}
// Sanitize the package.
bp, err := ctxt.Import(spec.pkg, cwd, build.FindOnly)
if err != nil {
return nil, fmt.Errorf("can't find package %q", spec.pkg)
}
spec.pkg = bp.ImportPath
if !isValidIdentifier(spec.fromName) {
return nil, fmt.Errorf("-from: invalid identifier %q", spec.fromName)
}
if Verbose {
log.Printf("-from spec: %+v", spec)
}
return &spec, nil
}
// parseObjectSpec parses main as one of the non-filename forms of
// object specification.
func parseObjectSpec(spec *spec, main string) error {
// Parse main as a Go expression, albeit a strange one.
e, _ := parser.ParseExpr(main)
if pkg := parseImportPath(e); pkg != "" {
// e.g. bytes or "encoding/json": a package
spec.pkg = pkg
if spec.searchFor == "" {
return fmt.Errorf("-from %q: package import path %q must have a ::name suffix",
main, main)
}
return nil
}
if e, ok := e.(*ast.SelectorExpr); ok {
x := unparen(e.X)
// Strip off star constructor, if any.
if star, ok := x.(*ast.StarExpr); ok {
x = star.X
}
if pkg := parseImportPath(x); pkg != "" {
// package member e.g. "encoding/json".HTMLEscape
spec.pkg = pkg // e.g. "encoding/json"
spec.pkgMember = e.Sel.Name // e.g. "HTMLEscape"
spec.fromName = e.Sel.Name
return nil
}
if x, ok := x.(*ast.SelectorExpr); ok {
// field/method of type e.g. ("encoding/json".Decoder).Decode
y := unparen(x.X)
if pkg := parseImportPath(y); pkg != "" {
spec.pkg = pkg // e.g. "encoding/json"
spec.pkgMember = x.Sel.Name // e.g. "Decoder"
spec.typeMember = e.Sel.Name // e.g. "Decode"
spec.fromName = e.Sel.Name
return nil
}
}
}
return fmt.Errorf("-from %q: invalid expression", main)
}
// parseImportPath returns the import path of the package denoted by e.
// Any import path may be represented as a string literal;
// single-segment import paths (e.g. "bytes") may also be represented as
// ast.Ident. parseImportPath returns "" for all other expressions.
func parseImportPath(e ast.Expr) string {
switch e := e.(type) {
case *ast.Ident:
return e.Name // e.g. bytes
case *ast.BasicLit:
if e.Kind == token.STRING {
pkgname, _ := strconv.Unquote(e.Value)
return pkgname // e.g. "encoding/json"
}
}
return ""
}
// parseOffsetFlag interprets the "-offset" flag value as a renaming specification.
func parseOffsetFlag(ctxt *build.Context, offsetFlag string) (*spec, error) {
var spec spec
// Validate -offset, e.g. file.go:#123
parts := strings.Split(offsetFlag, ":#")
if len(parts) != 2 {
return nil, fmt.Errorf("-offset %q: invalid offset specification", offsetFlag)
}
spec.filename = parts[0]
if !buildutil.FileExists(ctxt, spec.filename) {
return nil, fmt.Errorf("no such file: %s", spec.filename)
}
bp, err := buildutil.ContainingPackage(ctxt, wd, spec.filename)
if err != nil {
return nil, err
}
spec.pkg = bp.ImportPath
for _, r := range parts[1] {
if !isDigit(r) {
return nil, fmt.Errorf("-offset %q: non-numeric offset", offsetFlag)
}
}
spec.offset, err = strconv.Atoi(parts[1])
if err != nil {
return nil, fmt.Errorf("-offset %q: non-numeric offset", offsetFlag)
}
// Parse the file and check there's an identifier at that offset.
fset := token.NewFileSet()
f, err := buildutil.ParseFile(fset, ctxt, nil, wd, spec.filename, parser.ParseComments)
if err != nil {
return nil, fmt.Errorf("-offset %q: cannot parse file: %s", offsetFlag, err)
}
id := identAtOffset(fset, f, spec.offset)
if id == nil {
return nil, fmt.Errorf("-offset %q: no identifier at this position", offsetFlag)
}
spec.fromName = id.Name
return &spec, nil
}
var wd = func() string {
wd, err := os.Getwd()
if err != nil {
panic("cannot get working directory: " + err.Error())
}
return wd
}()
// For source trees built with 'go build', the -from or -offset
// spec identifies exactly one initial 'from' object to rename ,
// but certain proprietary build systems allow a single file to
// appear in multiple packages (e.g. the test package contains a
// copy of its library), so there may be multiple objects for
// the same source entity.
func findFromObjects(iprog *loader.Program, spec *spec) ([]types.Object, error) {
if spec.filename != "" {
return findFromObjectsInFile(iprog, spec)
}
// Search for objects defined in specified package.
// TODO(adonovan): the iprog.ImportMap has an entry {"main": ...}
// for main packages, even though that's not an import path.
// Seems like a bug.
//
// pkg := iprog.ImportMap[spec.pkg]
// if pkg == nil {
// return fmt.Errorf("cannot find package %s", spec.pkg) // can't happen?
// }
// info := iprog.AllPackages[pkg]
// Workaround: lookup by value.
var info *loader.PackageInfo
var pkg *types.Package
for pkg, info = range iprog.AllPackages {
if pkg.Path() == spec.pkg {
break
}
}
if info == nil {
return nil, fmt.Errorf("package %q was not loaded", spec.pkg)
}
objects, err := findObjects(info, spec)
if err != nil {
return nil, err
}
if len(objects) > 1 {
// ambiguous "*" scope query
return nil, ambiguityError(iprog.Fset, objects)
}
return objects, nil
}
func findFromObjectsInFile(iprog *loader.Program, spec *spec) ([]types.Object, error) {
var fromObjects []types.Object
for _, info := range iprog.AllPackages {
// restrict to specified filename
// NB: under certain proprietary build systems, a given
// filename may appear in multiple packages.
for _, f := range info.Files {
thisFile := iprog.Fset.File(f.Pos())
if !sameFile(thisFile.Name(), spec.filename) {
continue
}
// This package contains the query file.
if spec.offset != 0 {
// Search for a specific ident by file/offset.
id := identAtOffset(iprog.Fset, f, spec.offset)
if id == nil {
// can't happen?
return nil, fmt.Errorf("identifier not found")
}
obj := info.Uses[id]
if obj == nil {
obj = info.Defs[id]
if obj == nil {
// Ident without Object.
// Package clause?
pos := thisFile.Pos(spec.offset)
_, path, _ := iprog.PathEnclosingInterval(pos, pos)
if len(path) == 2 { // [Ident File]
// TODO(adonovan): support this case.
return nil, fmt.Errorf("cannot rename %q: renaming package clauses is not yet supported",
path[1].(*ast.File).Name.Name)
}
// Implicit y in "switch y := x.(type) {"?
if obj := typeSwitchVar(&info.Info, path); obj != nil {
return []types.Object{obj}, nil
}
// Probably a type error.
return nil, fmt.Errorf("cannot find object for %q", id.Name)
}
}
if obj.Pkg() == nil {
return nil, fmt.Errorf("cannot rename predeclared identifiers (%s)", obj)
}
fromObjects = append(fromObjects, obj)
} else {
// do a package-wide query
objects, err := findObjects(info, spec)
if err != nil {
return nil, err
}
// filter results: only objects defined in thisFile
var filtered []types.Object
for _, obj := range objects {
if iprog.Fset.File(obj.Pos()) == thisFile {
filtered = append(filtered, obj)
}
}
if len(filtered) == 0 {
return nil, fmt.Errorf("no object %q declared in file %s",
spec.fromName, spec.filename)
} else if len(filtered) > 1 {
return nil, ambiguityError(iprog.Fset, filtered)
}
fromObjects = append(fromObjects, filtered[0])
}
break
}
}
if len(fromObjects) == 0 {
// can't happen?
return nil, fmt.Errorf("file %s was not part of the loaded program", spec.filename)
}
return fromObjects, nil
}
func typeSwitchVar(info *types.Info, path []ast.Node) types.Object {
if len(path) > 3 {
// [Ident AssignStmt TypeSwitchStmt...]
if sw, ok := path[2].(*ast.TypeSwitchStmt); ok {
// choose the first case.
if len(sw.Body.List) > 0 {
obj := info.Implicits[sw.Body.List[0].(*ast.CaseClause)]
if obj != nil {
return obj
}
}
}
}
return nil
}
// On success, findObjects returns the list of objects named
// spec.fromName matching the spec. On success, the result has exactly
// one element unless spec.searchFor!="", in which case it has at least one
// element.
//
func findObjects(info *loader.PackageInfo, spec *spec) ([]types.Object, error) {
if spec.pkgMember == "" {
if spec.searchFor == "" {
panic(spec)
}
objects := searchDefs(&info.Info, spec.searchFor)
if objects == nil {
return nil, fmt.Errorf("no object %q declared in package %q",
spec.searchFor, info.Pkg.Path())
}
return objects, nil
}
pkgMember := info.Pkg.Scope().Lookup(spec.pkgMember)
if pkgMember == nil {
return nil, fmt.Errorf("package %q has no member %q",
info.Pkg.Path(), spec.pkgMember)
}
var searchFunc *types.Func
if spec.typeMember == "" {
// package member
if spec.searchFor == "" {
return []types.Object{pkgMember}, nil
}
// Search within pkgMember, which must be a function.
searchFunc, _ = pkgMember.(*types.Func)
if searchFunc == nil {
return nil, fmt.Errorf("cannot search for %q within %s %q",
spec.searchFor, objectKind(pkgMember), pkgMember)
}
} else {
// field/method of type
// e.g. (encoding/json.Decoder).Decode
// or ::x within it.
tName, _ := pkgMember.(*types.TypeName)
if tName == nil {
return nil, fmt.Errorf("%s.%s is a %s, not a type",
info.Pkg.Path(), pkgMember.Name(), objectKind(pkgMember))
}
// search within named type.
obj, _, _ := types.LookupFieldOrMethod(tName.Type(), true, info.Pkg, spec.typeMember)
if obj == nil {
return nil, fmt.Errorf("cannot find field or method %q of %s %s.%s",
spec.typeMember, typeKind(tName.Type()), info.Pkg.Path(), tName.Name())
}
if spec.searchFor == "" {
// If it is an embedded field, return the type of the field.
if v, ok := obj.(*types.Var); ok && v.Anonymous() {
switch t := v.Type().(type) {
case *types.Pointer:
return []types.Object{t.Elem().(*types.Named).Obj()}, nil
case *types.Named:
return []types.Object{t.Obj()}, nil
}
}
return []types.Object{obj}, nil
}
searchFunc, _ = obj.(*types.Func)
if searchFunc == nil {
return nil, fmt.Errorf("cannot search for local name %q within %s (%s.%s).%s; need a function",
spec.searchFor, objectKind(obj), info.Pkg.Path(), tName.Name(),
obj.Name())
}
if isInterface(tName.Type()) {
return nil, fmt.Errorf("cannot search for local name %q within abstract method (%s.%s).%s",
spec.searchFor, info.Pkg.Path(), tName.Name(), searchFunc.Name())
}
}
// -- search within function or method --
decl := funcDecl(info, searchFunc)
if decl == nil {
return nil, fmt.Errorf("cannot find syntax for %s", searchFunc) // can't happen?
}
var objects []types.Object
for _, obj := range searchDefs(&info.Info, spec.searchFor) {
// We use positions, not scopes, to determine whether
// the obj is within searchFunc. This is clumsy, but the
// alternative, using the types.Scope tree, doesn't
// account for non-lexical objects like fields and
// interface methods.
if decl.Pos() <= obj.Pos() && obj.Pos() < decl.End() && obj != searchFunc {
objects = append(objects, obj)
}
}
if objects == nil {
return nil, fmt.Errorf("no local definition of %q within %s",
spec.searchFor, searchFunc)
}
return objects, nil
}
func funcDecl(info *loader.PackageInfo, fn *types.Func) *ast.FuncDecl {
for _, f := range info.Files {
for _, d := range f.Decls {
if d, ok := d.(*ast.FuncDecl); ok && info.Defs[d.Name] == fn {
return d
}
}
}
return nil
}
func searchDefs(info *types.Info, name string) []types.Object {
var objects []types.Object
for id, obj := range info.Defs {
if obj == nil {
// e.g. blank ident.
// TODO(adonovan): but also implicit y in
// switch y := x.(type)
// Needs some thought.
continue
}
if id.Name == name {
objects = append(objects, obj)
}
}
return objects
}
func identAtOffset(fset *token.FileSet, f *ast.File, offset int) *ast.Ident {
var found *ast.Ident
ast.Inspect(f, func(n ast.Node) bool {
if id, ok := n.(*ast.Ident); ok {
idpos := fset.Position(id.Pos()).Offset
if idpos <= offset && offset < idpos+len(id.Name) {
found = id
}
}
return found == nil // keep traversing only until found
})
return found
}
// ambiguityError returns an error describing an ambiguous "*" scope query.
func ambiguityError(fset *token.FileSet, objects []types.Object) error {
var buf bytes.Buffer
for i, obj := range objects {
if i > 0 {
buf.WriteString(", ")
}
posn := fset.Position(obj.Pos())
fmt.Fprintf(&buf, "%s at %s:%d",
objectKind(obj), filepath.Base(posn.Filename), posn.Column)
}
return fmt.Errorf("ambiguous specifier %s matches %s",
objects[0].Name(), buf.String())
}

View File

@ -1,106 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
package rename
import (
"go/ast"
"os"
"path/filepath"
"reflect"
"runtime"
"strings"
"unicode"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/go/types"
)
func objectKind(obj types.Object) string {
switch obj := obj.(type) {
case *types.PkgName:
return "imported package name"
case *types.TypeName:
return "type"
case *types.Var:
if obj.IsField() {
return "field"
}
case *types.Func:
if obj.Type().(*types.Signature).Recv() != nil {
return "method"
}
}
// label, func, var, const
return strings.ToLower(strings.TrimPrefix(reflect.TypeOf(obj).String(), "*types."))
}
func typeKind(T types.Type) string {
return strings.ToLower(strings.TrimPrefix(reflect.TypeOf(T.Underlying()).String(), "*types."))
}
// NB: for renamings, blank is not considered valid.
func isValidIdentifier(id string) bool {
if id == "" || id == "_" {
return false
}
for i, r := range id {
if !isLetter(r) && (i == 0 || !isDigit(r)) {
return false
}
}
return true
}
// isLocal reports whether obj is local to some function.
// Precondition: not a struct field or interface method.
func isLocal(obj types.Object) bool {
// [... 5=stmt 4=func 3=file 2=pkg 1=universe]
var depth int
for scope := obj.Parent(); scope != nil; scope = scope.Parent() {
depth++
}
return depth >= 4
}
func isPackageLevel(obj types.Object) bool {
return obj.Pkg().Scope().Lookup(obj.Name()) == obj
}
// -- Plundered from go/scanner: ---------------------------------------
func isLetter(ch rune) bool {
return 'a' <= ch && ch <= 'z' || 'A' <= ch && ch <= 'Z' || ch == '_' || ch >= 0x80 && unicode.IsLetter(ch)
}
func isDigit(ch rune) bool {
return '0' <= ch && ch <= '9' || ch >= 0x80 && unicode.IsDigit(ch)
}
// -- Plundered from golang.org/x/tools/oracle -----------------
// sameFile returns true if x and y have the same basename and denote
// the same file.
//
func sameFile(x, y string) bool {
if runtime.GOOS == "windows" {
x = filepath.ToSlash(x)
y = filepath.ToSlash(y)
}
if x == y {
return true
}
if filepath.Base(x) == filepath.Base(y) { // (optimisation)
if xi, err := os.Stat(x); err == nil {
if yi, err := os.Stat(y); err == nil {
return os.SameFile(xi, yi)
}
}
}
return false
}
func unparen(e ast.Expr) ast.Expr { return astutil.Unparen(e) }

View File

@ -1,707 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.5
// Package satisfy inspects the type-checked ASTs of Go packages and
// reports the set of discovered type constraints of the form (lhs, rhs
// Type) where lhs is a non-trivial interface, rhs satisfies this
// interface, and this fact is necessary for the package to be
// well-typed.
//
// THIS PACKAGE IS EXPERIMENTAL AND MAY CHANGE AT ANY TIME.
//
// It is provided only for the gorename tool. Ideally this
// functionality will become part of the type-checker in due course,
// since it is computing it anyway, and it is robust for ill-typed
// inputs, which this package is not.
//
package satisfy // import "golang.org/x/tools/refactor/satisfy"
// NOTES:
//
// We don't care about numeric conversions, so we don't descend into
// types or constant expressions. This is unsound because
// constant expressions can contain arbitrary statements, e.g.
// const x = len([1]func(){func() {
// ...
// }})
//
// TODO(adonovan): make this robust against ill-typed input.
// Or move it into the type-checker.
//
// Assignability conversions are possible in the following places:
// - in assignments y = x, y := x, var y = x.
// - from call argument types to formal parameter types
// - in append and delete calls
// - from return operands to result parameter types
// - in composite literal T{k:v}, from k and v to T's field/element/key type
// - in map[key] from key to the map's key type
// - in comparisons x==y and switch x { case y: }.
// - in explicit conversions T(x)
// - in sends ch <- x, from x to the channel element type
// - in type assertions x.(T) and switch x.(type) { case T: }
//
// The results of this pass provide information equivalent to the
// ssa.MakeInterface and ssa.ChangeInterface instructions.
import (
"fmt"
"go/ast"
"go/token"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/go/types"
"golang.org/x/tools/go/types/typeutil"
)
// A Constraint records the fact that the RHS type does and must
// satisify the LHS type, which is an interface.
// The names are suggestive of an assignment statement LHS = RHS.
type Constraint struct {
LHS, RHS types.Type
}
// A Finder inspects the type-checked ASTs of Go packages and
// accumulates the set of type constraints (x, y) such that x is
// assignable to y, y is an interface, and both x and y have methods.
//
// In other words, it returns the subset of the "implements" relation
// that is checked during compilation of a package. Refactoring tools
// will need to preserve at least this part of the relation to ensure
// continued compilation.
//
type Finder struct {
Result map[Constraint]bool
msetcache typeutil.MethodSetCache
// per-Find state
info *types.Info
sig *types.Signature
}
// Find inspects a single package, populating Result with its pairs of
// constrained types.
//
// The result is non-canonical and thus may contain duplicates (but this
// tends to preserves names of interface types better).
//
// The package must be free of type errors, and
// info.{Defs,Uses,Selections,Types} must have been populated by the
// type-checker.
//
func (f *Finder) Find(info *types.Info, files []*ast.File) {
if f.Result == nil {
f.Result = make(map[Constraint]bool)
}
f.info = info
for _, file := range files {
for _, d := range file.Decls {
switch d := d.(type) {
case *ast.GenDecl:
if d.Tok == token.VAR { // ignore consts
for _, spec := range d.Specs {
f.valueSpec(spec.(*ast.ValueSpec))
}
}
case *ast.FuncDecl:
if d.Body != nil {
f.sig = f.info.Defs[d.Name].Type().(*types.Signature)
f.stmt(d.Body)
f.sig = nil
}
}
}
}
f.info = nil
}
var (
tInvalid = types.Typ[types.Invalid]
tUntypedBool = types.Typ[types.UntypedBool]
tUntypedNil = types.Typ[types.UntypedNil]
)
// exprN visits an expression in a multi-value context.
func (f *Finder) exprN(e ast.Expr) types.Type {
typ := f.info.Types[e].Type.(*types.Tuple)
switch e := e.(type) {
case *ast.ParenExpr:
return f.exprN(e.X)
case *ast.CallExpr:
// x, err := f(args)
sig := f.expr(e.Fun).Underlying().(*types.Signature)
f.call(sig, e.Args)
case *ast.IndexExpr:
// y, ok := x[i]
x := f.expr(e.X)
f.assign(f.expr(e.Index), x.Underlying().(*types.Map).Key())
case *ast.TypeAssertExpr:
// y, ok := x.(T)
f.typeAssert(f.expr(e.X), typ.At(0).Type())
case *ast.UnaryExpr: // must be receive <-
// y, ok := <-x
f.expr(e.X)
default:
panic(e)
}
return typ
}
func (f *Finder) call(sig *types.Signature, args []ast.Expr) {
if len(args) == 0 {
return
}
// Ellipsis call? e.g. f(x, y, z...)
if _, ok := args[len(args)-1].(*ast.Ellipsis); ok {
for i, arg := range args {
// The final arg is a slice, and so is the final param.
f.assign(sig.Params().At(i).Type(), f.expr(arg))
}
return
}
var argtypes []types.Type
// Gather the effective actual parameter types.
if tuple, ok := f.info.Types[args[0]].Type.(*types.Tuple); ok {
// f(g()) call where g has multiple results?
f.expr(args[0])
// unpack the tuple
for i := 0; i < tuple.Len(); i++ {
argtypes = append(argtypes, tuple.At(i).Type())
}
} else {
for _, arg := range args {
argtypes = append(argtypes, f.expr(arg))
}
}
// Assign the actuals to the formals.
if !sig.Variadic() {
for i, argtype := range argtypes {
f.assign(sig.Params().At(i).Type(), argtype)
}
} else {
// The first n-1 parameters are assigned normally.
nnormals := sig.Params().Len() - 1
for i, argtype := range argtypes[:nnormals] {
f.assign(sig.Params().At(i).Type(), argtype)
}
// Remaining args are assigned to elements of varargs slice.
tElem := sig.Params().At(nnormals).Type().(*types.Slice).Elem()
for i := nnormals; i < len(argtypes); i++ {
f.assign(tElem, argtypes[i])
}
}
}
func (f *Finder) builtin(obj *types.Builtin, sig *types.Signature, args []ast.Expr, T types.Type) types.Type {
switch obj.Name() {
case "make", "new":
// skip the type operand
for _, arg := range args[1:] {
f.expr(arg)
}
case "append":
s := f.expr(args[0])
if _, ok := args[len(args)-1].(*ast.Ellipsis); ok && len(args) == 2 {
// append(x, y...) including append([]byte, "foo"...)
f.expr(args[1])
} else {
// append(x, y, z)
tElem := s.Underlying().(*types.Slice).Elem()
for _, arg := range args[1:] {
f.assign(tElem, f.expr(arg))
}
}
case "delete":
m := f.expr(args[0])
k := f.expr(args[1])
f.assign(m.Underlying().(*types.Map).Key(), k)
default:
// ordinary call
f.call(sig, args)
}
return T
}
func (f *Finder) extract(tuple types.Type, i int) types.Type {
if tuple, ok := tuple.(*types.Tuple); ok && i < tuple.Len() {
return tuple.At(i).Type()
}
return tInvalid
}
func (f *Finder) valueSpec(spec *ast.ValueSpec) {
var T types.Type
if spec.Type != nil {
T = f.info.Types[spec.Type].Type
}
switch len(spec.Values) {
case len(spec.Names): // e.g. var x, y = f(), g()
for _, value := range spec.Values {
v := f.expr(value)
if T != nil {
f.assign(T, v)
}
}
case 1: // e.g. var x, y = f()
tuple := f.exprN(spec.Values[0])
for i := range spec.Names {
if T != nil {
f.assign(T, f.extract(tuple, i))
}
}
}
}
// assign records pairs of distinct types that are related by
// assignability, where the left-hand side is an interface and both
// sides have methods.
//
// It should be called for all assignability checks, type assertions,
// explicit conversions and comparisons between two types, unless the
// types are uninteresting (e.g. lhs is a concrete type, or the empty
// interface; rhs has no methods).
//
func (f *Finder) assign(lhs, rhs types.Type) {
if types.Identical(lhs, rhs) {
return
}
if !isInterface(lhs) {
return
}
if f.msetcache.MethodSet(lhs).Len() == 0 {
return
}
if f.msetcache.MethodSet(rhs).Len() == 0 {
return
}
// record the pair
f.Result[Constraint{lhs, rhs}] = true
}
// typeAssert must be called for each type assertion x.(T) where x has
// interface type I.
func (f *Finder) typeAssert(I, T types.Type) {
// Type assertions are slightly subtle, because they are allowed
// to be "impossible", e.g.
//
// var x interface{f()}
// _ = x.(interface{f()int}) // legal
//
// (In hindsight, the language spec should probably not have
// allowed this, but it's too late to fix now.)
//
// This means that a type assert from I to T isn't exactly a
// constraint that T is assignable to I, but for a refactoring
// tool it is a conditional constraint that, if T is assignable
// to I before a refactoring, it should remain so after.
if types.AssignableTo(T, I) {
f.assign(I, T)
}
}
// compare must be called for each comparison x==y.
func (f *Finder) compare(x, y types.Type) {
if types.AssignableTo(x, y) {
f.assign(y, x)
} else if types.AssignableTo(y, x) {
f.assign(x, y)
}
}
// expr visits a true expression (not a type or defining ident)
// and returns its type.
func (f *Finder) expr(e ast.Expr) types.Type {
tv := f.info.Types[e]
if tv.Value != nil {
return tv.Type // prune the descent for constants
}
// tv.Type may be nil for an ast.Ident.
switch e := e.(type) {
case *ast.BadExpr, *ast.BasicLit:
// no-op
case *ast.Ident:
// (referring idents only)
if obj, ok := f.info.Uses[e]; ok {
return obj.Type()
}
if e.Name == "_" { // e.g. "for _ = range x"
return tInvalid
}
panic("undefined ident: " + e.Name)
case *ast.Ellipsis:
if e.Elt != nil {
f.expr(e.Elt)
}
case *ast.FuncLit:
saved := f.sig
f.sig = tv.Type.(*types.Signature)
f.stmt(e.Body)
f.sig = saved
case *ast.CompositeLit:
switch T := deref(tv.Type).Underlying().(type) {
case *types.Struct:
for i, elem := range e.Elts {
if kv, ok := elem.(*ast.KeyValueExpr); ok {
f.assign(f.info.Uses[kv.Key.(*ast.Ident)].Type(), f.expr(kv.Value))
} else {
f.assign(T.Field(i).Type(), f.expr(elem))
}
}
case *types.Map:
for _, elem := range e.Elts {
elem := elem.(*ast.KeyValueExpr)
f.assign(T.Key(), f.expr(elem.Key))
f.assign(T.Elem(), f.expr(elem.Value))
}
case *types.Array, *types.Slice:
tElem := T.(interface {
Elem() types.Type
}).Elem()
for _, elem := range e.Elts {
if kv, ok := elem.(*ast.KeyValueExpr); ok {
// ignore the key
f.assign(tElem, f.expr(kv.Value))
} else {
f.assign(tElem, f.expr(elem))
}
}
default:
panic("unexpected composite literal type: " + tv.Type.String())
}
case *ast.ParenExpr:
f.expr(e.X)
case *ast.SelectorExpr:
if _, ok := f.info.Selections[e]; ok {
f.expr(e.X) // selection
} else {
return f.info.Uses[e.Sel].Type() // qualified identifier
}
case *ast.IndexExpr:
x := f.expr(e.X)
i := f.expr(e.Index)
if ux, ok := x.Underlying().(*types.Map); ok {
f.assign(ux.Key(), i)
}
case *ast.SliceExpr:
f.expr(e.X)
if e.Low != nil {
f.expr(e.Low)
}
if e.High != nil {
f.expr(e.High)
}
if e.Max != nil {
f.expr(e.Max)
}
case *ast.TypeAssertExpr:
x := f.expr(e.X)
f.typeAssert(x, f.info.Types[e.Type].Type)
case *ast.CallExpr:
if tvFun := f.info.Types[e.Fun]; tvFun.IsType() {
// conversion
arg0 := f.expr(e.Args[0])
f.assign(tvFun.Type, arg0)
} else {
// function call
if id, ok := unparen(e.Fun).(*ast.Ident); ok {
if obj, ok := f.info.Uses[id].(*types.Builtin); ok {
sig := f.info.Types[id].Type.(*types.Signature)
return f.builtin(obj, sig, e.Args, tv.Type)
}
}
// ordinary call
f.call(f.expr(e.Fun).Underlying().(*types.Signature), e.Args)
}
case *ast.StarExpr:
f.expr(e.X)
case *ast.UnaryExpr:
f.expr(e.X)
case *ast.BinaryExpr:
x := f.expr(e.X)
y := f.expr(e.Y)
if e.Op == token.EQL || e.Op == token.NEQ {
f.compare(x, y)
}
case *ast.KeyValueExpr:
f.expr(e.Key)
f.expr(e.Value)
case *ast.ArrayType,
*ast.StructType,
*ast.FuncType,
*ast.InterfaceType,
*ast.MapType,
*ast.ChanType:
panic(e)
}
if tv.Type == nil {
panic(fmt.Sprintf("no type for %T", e))
}
return tv.Type
}
func (f *Finder) stmt(s ast.Stmt) {
switch s := s.(type) {
case *ast.BadStmt,
*ast.EmptyStmt,
*ast.BranchStmt:
// no-op
case *ast.DeclStmt:
d := s.Decl.(*ast.GenDecl)
if d.Tok == token.VAR { // ignore consts
for _, spec := range d.Specs {
f.valueSpec(spec.(*ast.ValueSpec))
}
}
case *ast.LabeledStmt:
f.stmt(s.Stmt)
case *ast.ExprStmt:
f.expr(s.X)
case *ast.SendStmt:
ch := f.expr(s.Chan)
val := f.expr(s.Value)
f.assign(ch.Underlying().(*types.Chan).Elem(), val)
case *ast.IncDecStmt:
f.expr(s.X)
case *ast.AssignStmt:
switch s.Tok {
case token.ASSIGN, token.DEFINE:
// y := x or y = x
var rhsTuple types.Type
if len(s.Lhs) != len(s.Rhs) {
rhsTuple = f.exprN(s.Rhs[0])
}
for i := range s.Lhs {
var lhs, rhs types.Type
if rhsTuple == nil {
rhs = f.expr(s.Rhs[i]) // 1:1 assignment
} else {
rhs = f.extract(rhsTuple, i) // n:1 assignment
}
if id, ok := s.Lhs[i].(*ast.Ident); ok {
if id.Name != "_" {
if obj, ok := f.info.Defs[id]; ok {
lhs = obj.Type() // definition
}
}
}
if lhs == nil {
lhs = f.expr(s.Lhs[i]) // assignment
}
f.assign(lhs, rhs)
}
default:
// y op= x
f.expr(s.Lhs[0])
f.expr(s.Rhs[0])
}
case *ast.GoStmt:
f.expr(s.Call)
case *ast.DeferStmt:
f.expr(s.Call)
case *ast.ReturnStmt:
formals := f.sig.Results()
switch len(s.Results) {
case formals.Len(): // 1:1
for i, result := range s.Results {
f.assign(formals.At(i).Type(), f.expr(result))
}
case 1: // n:1
tuple := f.exprN(s.Results[0])
for i := 0; i < formals.Len(); i++ {
f.assign(formals.At(i).Type(), f.extract(tuple, i))
}
}
case *ast.SelectStmt:
f.stmt(s.Body)
case *ast.BlockStmt:
for _, s := range s.List {
f.stmt(s)
}
case *ast.IfStmt:
if s.Init != nil {
f.stmt(s.Init)
}
f.expr(s.Cond)
f.stmt(s.Body)
if s.Else != nil {
f.stmt(s.Else)
}
case *ast.SwitchStmt:
if s.Init != nil {
f.stmt(s.Init)
}
var tag types.Type = tUntypedBool
if s.Tag != nil {
tag = f.expr(s.Tag)
}
for _, cc := range s.Body.List {
cc := cc.(*ast.CaseClause)
for _, cond := range cc.List {
f.compare(tag, f.info.Types[cond].Type)
}
for _, s := range cc.Body {
f.stmt(s)
}
}
case *ast.TypeSwitchStmt:
if s.Init != nil {
f.stmt(s.Init)
}
var I types.Type
switch ass := s.Assign.(type) {
case *ast.ExprStmt: // x.(type)
I = f.expr(unparen(ass.X).(*ast.TypeAssertExpr).X)
case *ast.AssignStmt: // y := x.(type)
I = f.expr(unparen(ass.Rhs[0]).(*ast.TypeAssertExpr).X)
}
for _, cc := range s.Body.List {
cc := cc.(*ast.CaseClause)
for _, cond := range cc.List {
tCase := f.info.Types[cond].Type
if tCase != tUntypedNil {
f.typeAssert(I, tCase)
}
}
for _, s := range cc.Body {
f.stmt(s)
}
}
case *ast.CommClause:
if s.Comm != nil {
f.stmt(s.Comm)
}
for _, s := range s.Body {
f.stmt(s)
}
case *ast.ForStmt:
if s.Init != nil {
f.stmt(s.Init)
}
if s.Cond != nil {
f.expr(s.Cond)
}
if s.Post != nil {
f.stmt(s.Post)
}
f.stmt(s.Body)
case *ast.RangeStmt:
x := f.expr(s.X)
// No conversions are involved when Tok==DEFINE.
if s.Tok == token.ASSIGN {
if s.Key != nil {
k := f.expr(s.Key)
var xelem types.Type
// keys of array, *array, slice, string aren't interesting
switch ux := x.Underlying().(type) {
case *types.Chan:
xelem = ux.Elem()
case *types.Map:
xelem = ux.Key()
}
if xelem != nil {
f.assign(xelem, k)
}
}
if s.Value != nil {
val := f.expr(s.Value)
var xelem types.Type
// values of strings aren't interesting
switch ux := x.Underlying().(type) {
case *types.Array:
xelem = ux.Elem()
case *types.Chan:
xelem = ux.Elem()
case *types.Map:
xelem = ux.Elem()
case *types.Pointer: // *array
xelem = deref(ux).(*types.Array).Elem()
case *types.Slice:
xelem = ux.Elem()
}
if xelem != nil {
f.assign(xelem, val)
}
}
}
f.stmt(s.Body)
default:
panic(s)
}
}
// -- Plundered from golang.org/x/tools/go/ssa -----------------
// deref returns a pointer's element type; otherwise it returns typ.
func deref(typ types.Type) types.Type {
if p, ok := typ.Underlying().(*types.Pointer); ok {
return p.Elem()
}
return typ
}
func unparen(e ast.Expr) ast.Expr { return astutil.Unparen(e) }
func isInterface(T types.Type) bool { return types.IsInterface(T) }