1
0
mirror of https://github.com/golang/go synced 2024-11-23 17:30:02 -07:00

cmd/go: add internal/note, internal/sumweb, internal/tlog from golang.org/x/exp/sumdb

Copied and updated import paths.
Eventually we will probably publish
these packages somewhere in golang.org/x
(as non-internal packages) and then we will
be able to vendor them properly.
For now, copy.

sumweb.globsMatchPath moved to str.GlobsMatchPath.

Change-Id: I4585e6dc5daa423e4ca9669195d41e58e7c8c275
Reviewed-on: https://go-review.googlesource.com/c/go/+/173950
Reviewed-by: Jay Conrod <jayconrod@google.com>
This commit is contained in:
Russ Cox 2019-04-25 20:48:08 -04:00
parent 3cafbeab2a
commit 511484afa2
17 changed files with 4654 additions and 0 deletions

View File

@ -0,0 +1,128 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package note_test
import (
"fmt"
"io"
"os"
"cmd/go/internal/note"
)
func ExampleSign() {
skey := "PRIVATE+KEY+PeterNeumann+c74f20a3+AYEKFALVFGyNhPJEMzD1QIDr+Y7hfZx09iUvxdXHKDFz"
text := "If you think cryptography is the answer to your problem,\n" +
"then you don't know what your problem is.\n"
signer, err := note.NewSigner(skey)
if err != nil {
fmt.Println(err)
return
}
msg, err := note.Sign(&note.Note{Text: text}, signer)
if err != nil {
fmt.Println(err)
return
}
os.Stdout.Write(msg)
// Output:
// If you think cryptography is the answer to your problem,
// then you don't know what your problem is.
//
// — PeterNeumann x08go/ZJkuBS9UG/SffcvIAQxVBtiFupLLr8pAcElZInNIuGUgYN1FFYC2pZSNXgKvqfqdngotpRZb6KE6RyyBwJnAM=
}
func ExampleOpen() {
vkey := "PeterNeumann+c74f20a3+ARpc2QcUPDhMQegwxbzhKqiBfsVkmqq/LDE4izWy10TW"
msg := []byte("If you think cryptography is the answer to your problem,\n" +
"then you don't know what your problem is.\n" +
"\n" +
"— PeterNeumann x08go/ZJkuBS9UG/SffcvIAQxVBtiFupLLr8pAcElZInNIuGUgYN1FFYC2pZSNXgKvqfqdngotpRZb6KE6RyyBwJnAM=\n")
verifier, err := note.NewVerifier(vkey)
if err != nil {
fmt.Println(err)
return
}
verifiers := note.VerifierList(verifier)
n, err := note.Open(msg, verifiers)
if err != nil {
fmt.Println(err)
return
}
fmt.Printf("%s (%08x):\n%s", n.Sigs[0].Name, n.Sigs[0].Hash, n.Text)
// Output:
// PeterNeumann (c74f20a3):
// If you think cryptography is the answer to your problem,
// then you don't know what your problem is.
}
var rand = struct {
Reader io.Reader
}{
zeroReader{},
}
type zeroReader struct{}
func (zeroReader) Read(buf []byte) (int, error) {
for i := range buf {
buf[i] = 0
}
return len(buf), nil
}
func ExampleSign_add_signatures() {
vkey := "PeterNeumann+c74f20a3+ARpc2QcUPDhMQegwxbzhKqiBfsVkmqq/LDE4izWy10TW"
msg := []byte("If you think cryptography is the answer to your problem,\n" +
"then you don't know what your problem is.\n" +
"\n" +
"— PeterNeumann x08go/ZJkuBS9UG/SffcvIAQxVBtiFupLLr8pAcElZInNIuGUgYN1FFYC2pZSNXgKvqfqdngotpRZb6KE6RyyBwJnAM=\n")
verifier, err := note.NewVerifier(vkey)
if err != nil {
fmt.Println(err)
return
}
verifiers := note.VerifierList(verifier)
n, err := note.Open([]byte(msg), verifiers)
if err != nil {
fmt.Println(err)
return
}
skey, vkey, err := note.GenerateKey(rand.Reader, "EnochRoot")
if err != nil {
fmt.Println(err)
return
}
_ = vkey // give to verifiers
me, err := note.NewSigner(skey)
if err != nil {
fmt.Println(err)
return
}
msg, err = note.Sign(n, me)
if err != nil {
fmt.Println(err)
return
}
os.Stdout.Write(msg)
// Output:
// If you think cryptography is the answer to your problem,
// then you don't know what your problem is.
//
// — PeterNeumann x08go/ZJkuBS9UG/SffcvIAQxVBtiFupLLr8pAcElZInNIuGUgYN1FFYC2pZSNXgKvqfqdngotpRZb6KE6RyyBwJnAM=
// — EnochRoot rwz+eBzmZa0SO3NbfRGzPCpDckykFXSdeX+MNtCOXm2/5n2tiOHp+vAF1aGrQ5ovTG01oOTGwnWLox33WWd1RvMc+QQ=
}

View File

@ -0,0 +1,684 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package note defines the notes signed by the Go module database server.
//
// This package is part of a DRAFT of what the Go module database server will look like.
// Do not assume the details here are final!
//
// A note is text signed by one or more server keys.
// The text should be ignored unless the note is signed by
// a trusted server key and the signature has been verified
// using the server's public key.
//
// A server's public key is identified by a name, typically the "host[/path]"
// giving the base URL of the server's transparency log.
// The syntactic restrictions on a name are that it be non-empty,
// well-formed UTF-8 containing neither Unicode spaces nor plus (U+002B).
//
// A Go module database server signs texts using public key cryptography.
// A given server may have multiple public keys, each
// identified by the first 32 bits of the SHA-256 hash of
// the concatenation of the server name, a newline, and
// the encoded public key.
//
// Verifying Notes
//
// A Verifier allows verification of signatures by one server public key.
// It can report the name of the server and the uint32 hash of the key,
// and it can verify a purported signature by that key.
//
// The standard implementation of a Verifier is constructed
// by NewVerifier starting from a verifier key, which is a
// plain text string of the form "<name>+<hash>+<keydata>".
//
// A Verifiers allows looking up a Verifier by the combination
// of server name and key hash.
//
// The standard implementation of a Verifiers is constructed
// by VerifierList from a list of known verifiers.
//
// A Note represents a text with one or more signatures.
// An implementation can reject a note with too many signatures
// (for example, more than 100 signatures).
//
// A Signature represents a signature on a note, verified or not.
//
// The Open function takes as input a signed message
// and a set of known verifiers. It decodes and verifies
// the message signatures and returns a Note structure
// containing the message text and (verified or unverified) signatures.
//
// Signing Notes
//
// A Signer allows signing a text with a given key.
// It can report the name of the server and the hash of the key
// and can sign a raw text using that key.
//
// The standard implementation of a Signer is constructed
// by NewSigner starting from an encoded signer key, which is a
// plain text string of the form "PRIVATE+KEY+<name>+<hash>+<keydata>".
// Anyone with an encoded signer key can sign messages using that key,
// so it must be kept secret. The encoding begins with the literal text
// "PRIVATE+KEY" to avoid confusion with the public server key.
//
// The Sign function takes as input a Note and a list of Signers
// and returns an encoded, signed message.
//
// Signed Note Format
//
// A signed note consists of a text ending in newline (U+000A),
// followed by a blank line (only a newline),
// followed by one or more signature lines of this form:
// em dash (U+2014), space (U+0020),
// server name, space, base64-encoded signature, newline.
//
// Signed notes must be valid UTF-8 and must not contain any
// ASCII control characters (those below U+0020) other than newline.
//
// A signature is a base64 encoding of 4+n bytes.
//
// The first four bytes in the signature are the uint32 key hash
// stored in big-endian order, which is to say they are the first
// four bytes of the truncated SHA-256 used to derive the key hash
// in the first place.
//
// The remaining n bytes are the result of using the specified key
// to sign the note text (including the final newline but not the
// separating blank line).
//
// Generating Keys
//
// There is only one key type, Ed25519 with algorithm identifier 1.
// New key types may be introduced in the future as needed,
// although doing so will require deploying the new algorithms to all clients
// before starting to depend on them for signatures.
//
// The GenerateKey function generates and returns a new signer
// and corresponding verifier.
//
// Example
//
// Here is a well-formed signed note:
//
// If you think cryptography is the answer to your problem,
// then you don't know what your problem is.
//
// — PeterNeumann x08go/ZJkuBS9UG/SffcvIAQxVBtiFupLLr8pAcElZInNIuGUgYN1FFYC2pZSNXgKvqfqdngotpRZb6KE6RyyBwJnAM=
//
// It can be constructed and displayed using:
//
// skey := "PRIVATE+KEY+PeterNeumann+c74f20a3+AYEKFALVFGyNhPJEMzD1QIDr+Y7hfZx09iUvxdXHKDFz"
// text := "If you think cryptography is the answer to your problem,\n" +
// "then you don't know what your problem is.\n"
//
// signer, err := note.NewSigner(skey)
// if err != nil {
// log.Fatal(err)
// }
//
// msg, err := note.Sign(&note.Note{Text: text}, signer)
// if err != nil {
// log.Fatal(err)
// }
// os.Stdout.Write(msg)
//
// The note's text is two lines, including the final newline,
// and the text is purportedly signed by a server named
// "PeterNeumann". (Although server names are canonically
// base URLs, the only syntactic requirement is that they
// not contain spaces or newlines).
//
// If Open is given access to a Verifiers including the
// Verifier for this key, then it will succeed at verifiying
// the encoded message and returning the parsed Note:
//
// vkey := "PeterNeumann+c74f20a3+ARpc2QcUPDhMQegwxbzhKqiBfsVkmqq/LDE4izWy10TW"
// msg := []byte("If you think cryptography is the answer to your problem,\n" +
// "then you don't know what your problem is.\n" +
// "\n" +
// "— PeterNeumann x08go/ZJkuBS9UG/SffcvIAQxVBtiFupLLr8pAcElZInNIuGUgYN1FFYC2pZSNXgKvqfqdngotpRZb6KE6RyyBwJnAM=\n")
//
// verifier, err := note.NewVerifier(vkey)
// if err != nil {
// log.Fatal(err)
// }
// verifiers := note.VerifierList(verifier)
//
// n, err := note.Open([]byte(msg), verifiers)
// if err != nil {
// log.Fatal(err)
// }
// fmt.Printf("%s (%08x):\n%s", n.Sigs[0].Name, n.Sigs[0].Hash, n.Text)
//
// You can add your own signature to this message by re-signing the note:
//
// skey, vkey, err := note.GenerateKey(rand.Reader, "EnochRoot")
// if err != nil {
// log.Fatal(err)
// }
// _ = vkey // give to verifiers
//
// me, err := note.NewSigner(skey)
// if err != nil {
// log.Fatal(err)
// }
//
// msg, err := note.Sign(n, me)
// if err != nil {
// log.Fatal(err)
// }
// os.Stdout.Write(msg)
//
// This will print a doubly-signed message, like:
//
// If you think cryptography is the answer to your problem,
// then you don't know what your problem is.
//
// — PeterNeumann x08go/ZJkuBS9UG/SffcvIAQxVBtiFupLLr8pAcElZInNIuGUgYN1FFYC2pZSNXgKvqfqdngotpRZb6KE6RyyBwJnAM=
// — EnochRoot rwz+eBzmZa0SO3NbfRGzPCpDckykFXSdeX+MNtCOXm2/5n2tiOHp+vAF1aGrQ5ovTG01oOTGwnWLox33WWd1RvMc+QQ=
//
package note
import (
"bytes"
"crypto/sha256"
"encoding/base64"
"encoding/binary"
"errors"
"fmt"
"io"
"strconv"
"strings"
"unicode"
"unicode/utf8"
"golang.org/x/crypto/ed25519"
)
// A Verifier verifies messages signed with a specific key.
type Verifier interface {
// Name returns the server name associated with the key.
Name() string
// KeyHash returns the key hash.
KeyHash() uint32
// Verify reports whether sig is a valid signature of msg.
Verify(msg, sig []byte) bool
}
// A Signer signs messages using a specific key.
type Signer interface {
// Name returns the server name associated with the key.
Name() string
// KeyHash returns the key hash.
KeyHash() uint32
// Sign returns a signature for the given message.
Sign(msg []byte) ([]byte, error)
}
// keyHash computes the key hash for the given server name and encoded public key.
func keyHash(name string, key []byte) uint32 {
h := sha256.New()
h.Write([]byte(name))
h.Write([]byte("\n"))
h.Write(key)
sum := h.Sum(nil)
return binary.BigEndian.Uint32(sum)
}
var (
errVerifierID = errors.New("malformed verifier id")
errVerifierAlg = errors.New("unknown verifier algorithm")
errVerifierHash = errors.New("invalid verifier hash")
)
const (
algEd25519 = 1
)
// isValidName reports whether name is valid.
// It must be non-empty and not have any Unicode spaces or pluses.
func isValidName(name string) bool {
return name != "" && utf8.ValidString(name) && strings.IndexFunc(name, unicode.IsSpace) < 0 && !strings.Contains(name, "+")
}
// NewVerifier construct a new Verifier from an encoded verifier key.
func NewVerifier(vkey string) (Verifier, error) {
name, vkey := chop(vkey, "+")
hash16, key64 := chop(vkey, "+")
hash, err1 := strconv.ParseUint(hash16, 16, 32)
key, err2 := base64.StdEncoding.DecodeString(key64)
if len(hash16) != 8 || err1 != nil || err2 != nil || !isValidName(name) || len(key) == 0 {
return nil, errVerifierID
}
if uint32(hash) != keyHash(name, key) {
return nil, errVerifierHash
}
v := &verifier{
name: name,
hash: uint32(hash),
}
alg, key := key[0], key[1:]
switch alg {
default:
return nil, errVerifierAlg
case algEd25519:
if len(key) != 32 {
return nil, errVerifierID
}
v.verify = func(msg, sig []byte) bool {
return ed25519.Verify(key, msg, sig)
}
}
return v, nil
}
// chop chops s at the first instance of sep, if any,
// and returns the text before and after sep.
// If sep is not present, chop returns before is s and after is empty.
func chop(s, sep string) (before, after string) {
i := strings.Index(s, sep)
if i < 0 {
return s, ""
}
return s[:i], s[i+len(sep):]
}
// verifier is a trivial Verifier implementation.
type verifier struct {
name string
hash uint32
verify func([]byte, []byte) bool
}
func (v *verifier) Name() string { return v.name }
func (v *verifier) KeyHash() uint32 { return v.hash }
func (v *verifier) Verify(msg, sig []byte) bool { return v.verify(msg, sig) }
// NewSigner constructs a new Signer from an encoded signer key.
func NewSigner(skey string) (Signer, error) {
priv1, skey := chop(skey, "+")
priv2, skey := chop(skey, "+")
name, skey := chop(skey, "+")
hash16, key64 := chop(skey, "+")
hash, err1 := strconv.ParseUint(hash16, 16, 32)
key, err2 := base64.StdEncoding.DecodeString(key64)
if priv1 != "PRIVATE" || priv2 != "KEY" || len(hash16) != 8 || err1 != nil || err2 != nil || !isValidName(name) || len(key) == 0 {
return nil, errSignerID
}
// Note: hash is the hash of the public key and we have the private key.
// Must verify hash after deriving public key.
s := &signer{
name: name,
hash: uint32(hash),
}
var pubkey []byte
alg, key := key[0], key[1:]
switch alg {
default:
return nil, errSignerAlg
case algEd25519:
if len(key) != 32 {
return nil, errSignerID
}
key = ed25519.NewKeyFromSeed(key)
pubkey = append([]byte{algEd25519}, key[32:]...)
s.sign = func(msg []byte) ([]byte, error) {
return ed25519.Sign(key, msg), nil
}
}
if uint32(hash) != keyHash(name, pubkey) {
return nil, errSignerHash
}
return s, nil
}
var (
errSignerID = errors.New("malformed verifier id")
errSignerAlg = errors.New("unknown verifier algorithm")
errSignerHash = errors.New("invalid verifier hash")
)
// signer is a trivial Signer implementation.
type signer struct {
name string
hash uint32
sign func([]byte) ([]byte, error)
}
func (s *signer) Name() string { return s.name }
func (s *signer) KeyHash() uint32 { return s.hash }
func (s *signer) Sign(msg []byte) ([]byte, error) { return s.sign(msg) }
// GenerateKey generates a signer and verifier key pair for a named server.
// The signer key skey is private and must be kept secret.
func GenerateKey(rand io.Reader, name string) (skey, vkey string, err error) {
pub, priv, err := ed25519.GenerateKey(rand)
if err != nil {
return "", "", err
}
pubkey := append([]byte{algEd25519}, pub...)
privkey := append([]byte{algEd25519}, priv.Seed()...)
h := keyHash(name, pubkey)
skey = fmt.Sprintf("PRIVATE+KEY+%s+%08x+%s", name, h, base64.StdEncoding.EncodeToString(privkey))
vkey = fmt.Sprintf("%s+%08x+%s", name, h, base64.StdEncoding.EncodeToString(pubkey))
return skey, vkey, nil
}
// NewEd25519VerifierKey returns an encoded verifier key using the given name
// and Ed25519 public key.
func NewEd25519VerifierKey(name string, key ed25519.PublicKey) (string, error) {
if len(key) != ed25519.PublicKeySize {
return "", fmt.Errorf("invalid public key size %d, expected %d", len(key), ed25519.PublicKeySize)
}
pubkey := append([]byte{algEd25519}, key...)
hash := keyHash(name, pubkey)
b64Key := base64.StdEncoding.EncodeToString(pubkey)
return fmt.Sprintf("%s+%08x+%s", name, hash, b64Key), nil
}
// A Verifiers is a collection of known verifier keys.
type Verifiers interface {
// Verifier returns the Verifier associated with the key
// identified by the name and hash.
// If the name, hash pair is unknown, Verifier should return
// an UnknownVerifierError.
Verifier(name string, hash uint32) (Verifier, error)
}
// An UnknownVerifierError indicates that the given key is not known.
// The Open function records signatures without associated verifiers as
// unverified signatures.
type UnknownVerifierError struct {
Name string
KeyHash uint32
}
func (e *UnknownVerifierError) Error() string {
return fmt.Sprintf("unknown key %s+%08x", e.Name, e.KeyHash)
}
// An ambiguousVerifierError indicates that the given name and hash
// match multiple keys passed to VerifierList.
// (If this happens, some malicious actor has taken control of the
// verifier list, at which point we may as well give up entirely,
// but we diagnose the problem instead.)
type ambiguousVerifierError struct {
name string
hash uint32
}
func (e *ambiguousVerifierError) Error() string {
return fmt.Sprintf("ambiguous key %s+%08x", e.name, e.hash)
}
// VerifierList returns a Verifiers implementation that uses the given list of verifiers.
func VerifierList(list ...Verifier) Verifiers {
m := make(verifierMap)
for _, v := range list {
k := nameHash{v.Name(), v.KeyHash()}
m[k] = append(m[k], v)
}
return m
}
type nameHash struct {
name string
hash uint32
}
type verifierMap map[nameHash][]Verifier
func (m verifierMap) Verifier(name string, hash uint32) (Verifier, error) {
v, ok := m[nameHash{name, hash}]
if !ok {
return nil, &UnknownVerifierError{name, hash}
}
if len(v) > 1 {
return nil, &ambiguousVerifierError{name, hash}
}
return v[0], nil
}
// A Note is a text and signatures.
type Note struct {
Text string // text of note
Sigs []Signature // verified signatures
UnverifiedSigs []Signature // unverified signatures
}
// A Signature is a single signature found in a note.
type Signature struct {
// Name and Hash give the name and key hash
// for the key that generated the signature.
Name string
Hash uint32
// Base64 records the base64-encoded signature bytes.
Base64 string
}
// An UnverifiedNoteError indicates that the note
// successfully parsed but had no verifiable signatures.
type UnverifiedNoteError struct {
Note *Note
}
func (e *UnverifiedNoteError) Error() string {
return "note has no verifiable signatures"
}
// An InvalidSignatureError indicates that the given key was known
// and the associated Verifier rejected the signature.
type InvalidSignatureError struct {
Name string
Hash uint32
}
func (e *InvalidSignatureError) Error() string {
return fmt.Sprintf("invalid signature for key %s+%08x", e.Name, e.Hash)
}
var (
errMalformedNote = errors.New("malformed note")
errInvalidSigner = errors.New("invalid signer")
sigSplit = []byte("\n\n")
sigPrefix = []byte("— ")
)
// Open opens and parses the message msg, checking signatures from the known verifiers.
//
// For each signature in the message, Open calls known.Verifier to find a verifier.
// If known.Verifier returns a verifier and the verifier accepts the signature,
// Open records the signature in the returned note's Sigs field.
// If known.Verifier returns a verifier but the verifier rejects the signature,
// Open returns an InvalidSignatureError.
// If known.Verifier returns an UnknownVerifierError,
// Open records the signature in the returned note's UnverifiedSigs field.
// If known.Verifier returns any other error, Open returns that error.
//
// If no known verifier has signed an otherwise valid note,
// Open returns an UnverifiedNoteError.
// In this case, the unverified note can be fetched from inside the error.
func Open(msg []byte, known Verifiers) (*Note, error) {
if known == nil {
// Treat nil Verifiers as empty list, to produce useful error instead of crash.
known = VerifierList()
}
// Must have valid UTF-8 with no non-newline ASCII control characters.
for i := 0; i < len(msg); {
r, size := utf8.DecodeRune(msg[i:])
if r < 0x20 && r != '\n' || r == utf8.RuneError && size == 1 {
return nil, errMalformedNote
}
i += size
}
// Must end with signature block preceded by blank line.
split := bytes.LastIndex(msg, sigSplit)
if split < 0 {
return nil, errMalformedNote
}
text, sigs := msg[:split+1], msg[split+2:]
if len(sigs) == 0 || sigs[len(sigs)-1] != '\n' {
return nil, errMalformedNote
}
n := &Note{
Text: string(text),
}
var buf bytes.Buffer
buf.Write(text)
// Parse and verify signatures.
// Ignore duplicate signatures.
seen := make(map[nameHash]bool)
seenUnverified := make(map[string]bool)
numSig := 0
for len(sigs) > 0 {
// Pull out next signature line.
// We know sigs[len(sigs)-1] == '\n', so IndexByte always finds one.
i := bytes.IndexByte(sigs, '\n')
line := sigs[:i]
sigs = sigs[i+1:]
if !bytes.HasPrefix(line, sigPrefix) {
return nil, errMalformedNote
}
line = line[len(sigPrefix):]
name, b64 := chop(string(line), " ")
sig, err := base64.StdEncoding.DecodeString(b64)
if err != nil || !isValidName(name) || b64 == "" || len(sig) < 5 {
return nil, errMalformedNote
}
hash := binary.BigEndian.Uint32(sig[0:4])
sig = sig[4:]
if numSig++; numSig > 100 {
// Avoid spending forever parsing a note with many signatures.
return nil, errMalformedNote
}
v, err := known.Verifier(name, hash)
if _, ok := err.(*UnknownVerifierError); ok {
// Drop repeated identical unverified signatures.
if seenUnverified[string(line)] {
continue
}
seenUnverified[string(line)] = true
n.UnverifiedSigs = append(n.UnverifiedSigs, Signature{Name: name, Hash: hash, Base64: b64})
continue
}
if err != nil {
return nil, err
}
// Drop repeated signatures by a single verifier.
if seen[nameHash{name, hash}] {
continue
}
seen[nameHash{name, hash}] = true
ok := v.Verify(text, sig)
if !ok {
return nil, &InvalidSignatureError{name, hash}
}
n.Sigs = append(n.Sigs, Signature{Name: name, Hash: hash, Base64: b64})
}
// Parsed and verified all the signatures.
if len(n.Sigs) == 0 {
return nil, &UnverifiedNoteError{n}
}
return n, nil
}
// Sign signs the note with the given signers and returns the encoded message.
// The new signatures from signers are listed in the encoded message after
// the existing signatures already present in n.Sigs.
// If any signer uses the same key as an existing signature,
// the existing signature is elided from the output.
func Sign(n *Note, signers ...Signer) ([]byte, error) {
var buf bytes.Buffer
if !strings.HasSuffix(n.Text, "\n") {
return nil, errMalformedNote
}
buf.WriteString(n.Text)
// Prepare signatures.
var sigs bytes.Buffer
have := make(map[nameHash]bool)
for _, s := range signers {
name := s.Name()
hash := s.KeyHash()
have[nameHash{name, hash}] = true
if !isValidName(name) {
return nil, errInvalidSigner
}
sig, err := s.Sign(buf.Bytes()) // buf holds n.Text
if err != nil {
return nil, err
}
var hbuf [4]byte
binary.BigEndian.PutUint32(hbuf[:], hash)
b64 := base64.StdEncoding.EncodeToString(append(hbuf[:], sig...))
sigs.WriteString("— ")
sigs.WriteString(name)
sigs.WriteString(" ")
sigs.WriteString(b64)
sigs.WriteString("\n")
}
buf.WriteString("\n")
// Emit existing signatures not replaced by new ones.
for _, list := range [][]Signature{n.Sigs, n.UnverifiedSigs} {
for _, sig := range list {
name, hash := sig.Name, sig.Hash
if !isValidName(name) {
return nil, errMalformedNote
}
if have[nameHash{name, hash}] {
continue
}
// Double-check hash against base64.
raw, err := base64.StdEncoding.DecodeString(sig.Base64)
if err != nil || len(raw) < 4 || binary.BigEndian.Uint32(raw) != hash {
return nil, errMalformedNote
}
buf.WriteString("— ")
buf.WriteString(sig.Name)
buf.WriteString(" ")
buf.WriteString(sig.Base64)
buf.WriteString("\n")
}
}
buf.Write(sigs.Bytes())
return buf.Bytes(), nil
}

View File

@ -0,0 +1,473 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package note
import (
"crypto/rand"
"errors"
"strings"
"testing"
"testing/iotest"
"golang.org/x/crypto/ed25519"
)
func TestNewVerifier(t *testing.T) {
vkey := "PeterNeumann+c74f20a3+ARpc2QcUPDhMQegwxbzhKqiBfsVkmqq/LDE4izWy10TW"
_, err := NewVerifier(vkey)
if err != nil {
t.Fatal(err)
}
// Check various manglings are not accepted.
badKey := func(k string) {
_, err := NewVerifier(k)
if err == nil {
t.Errorf("NewVerifier(%q) succeeded, should have failed", k)
}
}
b := []byte(vkey)
for i := 0; i <= len(b); i++ {
for j := i + 1; j <= len(b); j++ {
if i != 0 || j != len(b) {
badKey(string(b[i:j]))
}
}
}
for i := 0; i < len(b); i++ {
b[i]++
badKey(string(b))
b[i]--
}
badKey("PeterNeumann+cc469956+ARpc2QcUPDhMQegwxbzhKqiBfsVkmqq/LDE4izWy10TWBADKEY==") // wrong length key, with adjusted key hash
badKey("PeterNeumann+173116ae+ZRpc2QcUPDhMQegwxbzhKqiBfsVkmqq/LDE4izWy10TW") // unknown algorithm, with adjusted key hash
}
func TestNewSigner(t *testing.T) {
skey := "PRIVATE+KEY+PeterNeumann+c74f20a3+AYEKFALVFGyNhPJEMzD1QIDr+Y7hfZx09iUvxdXHKDFz"
_, err := NewSigner(skey)
if err != nil {
t.Fatal(err)
}
// Check various manglings are not accepted.
b := []byte(skey)
for i := 0; i <= len(b); i++ {
for j := i + 1; j <= len(b); j++ {
if i == 0 && j == len(b) {
continue
}
_, err := NewSigner(string(b[i:j]))
if err == nil {
t.Errorf("NewSigner(%q) succeeded, should have failed", b[i:j])
}
}
}
for i := 0; i < len(b); i++ {
b[i]++
_, err := NewSigner(string(b))
if err == nil {
t.Errorf("NewSigner(%q) succeeded, should have failed", b)
}
b[i]--
}
}
func testSignerAndVerifier(t *testing.T, Name string, signer Signer, verifier Verifier) {
if name := signer.Name(); name != Name {
t.Errorf("signer.Name() = %q, want %q", name, Name)
}
if name := verifier.Name(); name != Name {
t.Errorf("verifier.Name() = %q, want %q", name, Name)
}
shash := signer.KeyHash()
vhash := verifier.KeyHash()
if shash != vhash {
t.Errorf("signer.KeyHash() = %#08x != verifier.KeyHash() = %#08x", shash, vhash)
}
msg := []byte("hi")
sig, err := signer.Sign(msg)
if err != nil {
t.Fatalf("signer.Sign: %v", err)
}
if !verifier.Verify(msg, sig) {
t.Fatalf("verifier.Verify failed on signature returned by signer.Sign")
}
sig[0]++
if verifier.Verify(msg, sig) {
t.Fatalf("verifier.Verify succceeded on corrupt signature")
}
sig[0]--
msg[0]++
if verifier.Verify(msg, sig) {
t.Fatalf("verifier.Verify succceeded on corrupt message")
}
}
func TestGenerateKey(t *testing.T) {
// Generate key pair, make sure it is all self-consistent.
const Name = "EnochRoot"
skey, vkey, err := GenerateKey(rand.Reader, Name)
if err != nil {
t.Fatalf("GenerateKey: %v", err)
}
signer, err := NewSigner(skey)
if err != nil {
t.Fatalf("NewSigner: %v", err)
}
verifier, err := NewVerifier(vkey)
if err != nil {
t.Fatalf("NewVerifier: %v", err)
}
testSignerAndVerifier(t, Name, signer, verifier)
// Check that GenerateKey returns error from rand reader.
_, _, err = GenerateKey(iotest.TimeoutReader(iotest.OneByteReader(rand.Reader)), Name)
if err == nil {
t.Fatalf("GenerateKey succeeded with error-returning rand reader")
}
}
func TestFromEd25519(t *testing.T) {
const Name = "EnochRoot"
pub, priv, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
t.Fatalf("GenerateKey: %v", err)
}
signer, err := newSignerFromEd25519Seed(Name, priv.Seed())
if err != nil {
t.Fatalf("newSignerFromEd25519Seed: %v", err)
}
vkey, err := NewEd25519VerifierKey(Name, pub)
if err != nil {
t.Fatalf("NewEd25519VerifierKey: %v", err)
}
verifier, err := NewVerifier(vkey)
if err != nil {
t.Fatalf("NewVerifier: %v", err)
}
testSignerAndVerifier(t, Name, signer, verifier)
// Check that wrong key sizes return errors.
_, err = NewEd25519VerifierKey(Name, pub[:len(pub)-1])
if err == nil {
t.Errorf("NewEd25519VerifierKey succeeded with a seed of the wrong size")
}
}
// newSignerFromEd25519Seed constructs a new signer from a verifier name and a
// golang.org/x/crypto/ed25519 private key seed.
func newSignerFromEd25519Seed(name string, seed []byte) (Signer, error) {
if len(seed) != ed25519.SeedSize {
return nil, errors.New("invalid seed size")
}
priv := ed25519.NewKeyFromSeed(seed)
pub := priv[32:]
pubkey := append([]byte{algEd25519}, pub...)
hash := keyHash(name, pubkey)
s := &signer{
name: name,
hash: uint32(hash),
sign: func(msg []byte) ([]byte, error) {
return ed25519.Sign(priv, msg), nil
},
}
return s, nil
}
func TestSign(t *testing.T) {
skey := "PRIVATE+KEY+PeterNeumann+c74f20a3+AYEKFALVFGyNhPJEMzD1QIDr+Y7hfZx09iUvxdXHKDFz"
text := "If you think cryptography is the answer to your problem,\n" +
"then you don't know what your problem is.\n"
signer, err := NewSigner(skey)
if err != nil {
t.Fatal(err)
}
msg, err := Sign(&Note{Text: text}, signer)
if err != nil {
t.Fatal(err)
}
want := `If you think cryptography is the answer to your problem,
then you don't know what your problem is.
PeterNeumann x08go/ZJkuBS9UG/SffcvIAQxVBtiFupLLr8pAcElZInNIuGUgYN1FFYC2pZSNXgKvqfqdngotpRZb6KE6RyyBwJnAM=
`
if string(msg) != want {
t.Errorf("Sign: wrong output\nhave:\n%s\nwant:\n%s", msg, want)
}
// Check that existing signature is replaced by new one.
msg, err = Sign(&Note{Text: text, Sigs: []Signature{{Name: "PeterNeumann", Hash: 0xc74f20a3, Base64: "BADSIGN="}}}, signer)
if err != nil {
t.Fatal(err)
}
if string(msg) != want {
t.Errorf("Sign replacing signature: wrong output\nhave:\n%s\nwant:\n%s", msg, want)
}
// Check various bad inputs.
_, err = Sign(&Note{Text: "abc"}, signer)
if err == nil || err.Error() != "malformed note" {
t.Fatalf("Sign with short text: %v, want malformed note error", err)
}
_, err = Sign(&Note{Text: text, Sigs: []Signature{{Name: "a+b", Base64: "ABCD"}}})
if err == nil || err.Error() != "malformed note" {
t.Fatalf("Sign with bad name: %v, want malformed note error", err)
}
_, err = Sign(&Note{Text: text, Sigs: []Signature{{Name: "PeterNeumann", Hash: 0xc74f20a3, Base64: "BADHASH="}}})
if err == nil || err.Error() != "malformed note" {
t.Fatalf("Sign with bad pre-filled signature: %v, want malformed note error", err)
}
_, err = Sign(&Note{Text: text}, &badSigner{signer})
if err == nil || err.Error() != "invalid signer" {
t.Fatalf("Sign with bad signer: %v, want invalid signer error", err)
}
_, err = Sign(&Note{Text: text}, &errSigner{signer})
if err != errSurprise {
t.Fatalf("Sign with failing signer: %v, want errSurprise", err)
}
}
func TestVerifierList(t *testing.T) {
peterKey := "PeterNeumann+c74f20a3+ARpc2QcUPDhMQegwxbzhKqiBfsVkmqq/LDE4izWy10TW"
peterVerifier, err := NewVerifier(peterKey)
if err != nil {
t.Fatal(err)
}
enochKey := "EnochRoot+af0cfe78+ATtqJ7zOtqQtYqOo0CpvDXNlMhV3HeJDpjrASKGLWdop"
enochVerifier, err := NewVerifier(enochKey)
if err != nil {
t.Fatal(err)
}
list := VerifierList(peterVerifier, enochVerifier, enochVerifier)
v, err := list.Verifier("PeterNeumann", 0xc74f20a3)
if v != peterVerifier || err != nil {
t.Fatalf("list.Verifier(peter) = %v, %v, want %v, nil", v, err, peterVerifier)
}
v, err = list.Verifier("PeterNeumann", 0xc74f20a4)
if v != nil || err == nil || err.Error() != "unknown key PeterNeumann+c74f20a4" {
t.Fatalf("list.Verifier(peter bad hash) = %v, %v, want nil, unknown key error", v, err)
}
v, err = list.Verifier("PeterNeuman", 0xc74f20a3)
if v != nil || err == nil || err.Error() != "unknown key PeterNeuman+c74f20a3" {
t.Fatalf("list.Verifier(peter bad name) = %v, %v, want nil, unknown key error", v, err)
}
v, err = list.Verifier("EnochRoot", 0xaf0cfe78)
if v != nil || err == nil || err.Error() != "ambiguous key EnochRoot+af0cfe78" {
t.Fatalf("list.Verifier(enoch) = %v, %v, want nil, ambiguous key error", v, err)
}
}
type badSigner struct {
Signer
}
func (b *badSigner) Name() string {
return "bad name"
}
var errSurprise = errors.New("surprise!")
type errSigner struct {
Signer
}
func (e *errSigner) Sign([]byte) ([]byte, error) {
return nil, errSurprise
}
func TestOpen(t *testing.T) {
peterKey := "PeterNeumann+c74f20a3+ARpc2QcUPDhMQegwxbzhKqiBfsVkmqq/LDE4izWy10TW"
peterVerifier, err := NewVerifier(peterKey)
if err != nil {
t.Fatal(err)
}
enochKey := "EnochRoot+af0cfe78+ATtqJ7zOtqQtYqOo0CpvDXNlMhV3HeJDpjrASKGLWdop"
enochVerifier, err := NewVerifier(enochKey)
if err != nil {
t.Fatal(err)
}
text := `If you think cryptography is the answer to your problem,
then you don't know what your problem is.
`
peterSig := "— PeterNeumann x08go/ZJkuBS9UG/SffcvIAQxVBtiFupLLr8pAcElZInNIuGUgYN1FFYC2pZSNXgKvqfqdngotpRZb6KE6RyyBwJnAM=\n"
enochSig := "— EnochRoot rwz+eBzmZa0SO3NbfRGzPCpDckykFXSdeX+MNtCOXm2/5n2tiOHp+vAF1aGrQ5ovTG01oOTGwnWLox33WWd1RvMc+QQ=\n"
peter := Signature{"PeterNeumann", 0xc74f20a3, "x08go/ZJkuBS9UG/SffcvIAQxVBtiFupLLr8pAcElZInNIuGUgYN1FFYC2pZSNXgKvqfqdngotpRZb6KE6RyyBwJnAM="}
enoch := Signature{"EnochRoot", 0xaf0cfe78, "rwz+eBzmZa0SO3NbfRGzPCpDckykFXSdeX+MNtCOXm2/5n2tiOHp+vAF1aGrQ5ovTG01oOTGwnWLox33WWd1RvMc+QQ="}
// Check one signature verified, one not.
n, err := Open([]byte(text+"\n"+peterSig+enochSig), VerifierList(peterVerifier))
if err != nil {
t.Fatal(err)
}
if n.Text != text {
t.Errorf("n.Text = %q, want %q", n.Text, text)
}
if len(n.Sigs) != 1 || n.Sigs[0] != peter {
t.Errorf("n.Sigs:\nhave %v\nwant %v", n.Sigs, []Signature{peter})
}
if len(n.UnverifiedSigs) != 1 || n.UnverifiedSigs[0] != enoch {
t.Errorf("n.UnverifiedSigs:\nhave %v\nwant %v", n.Sigs, []Signature{peter})
}
// Check both verified.
n, err = Open([]byte(text+"\n"+peterSig+enochSig), VerifierList(peterVerifier, enochVerifier))
if err != nil {
t.Fatal(err)
}
if len(n.Sigs) != 2 || n.Sigs[0] != peter || n.Sigs[1] != enoch {
t.Errorf("n.Sigs:\nhave %v\nwant %v", n.Sigs, []Signature{peter, enoch})
}
if len(n.UnverifiedSigs) != 0 {
t.Errorf("n.UnverifiedSigs:\nhave %v\nwant %v", n.Sigs, []Signature{})
}
// Check both unverified.
n, err = Open([]byte(text+"\n"+peterSig+enochSig), VerifierList())
if n != nil || err == nil {
t.Fatalf("Open unverified = %v, %v, want nil, error", n, err)
}
e, ok := err.(*UnverifiedNoteError)
if !ok {
t.Fatalf("Open unverified: err is %T, want *UnverifiedNoteError", err)
}
if err.Error() != "note has no verifiable signatures" {
t.Fatalf("Open unverified: err.Error() = %q, want %q", err.Error(), "note has no verifiable signatures")
}
n = e.Note
if n == nil {
t.Fatalf("Open unverified: missing note in UnverifiedNoteError")
}
if len(n.Sigs) != 0 {
t.Errorf("n.Sigs:\nhave %v\nwant %v", n.Sigs, []Signature{})
}
if len(n.UnverifiedSigs) != 2 || n.UnverifiedSigs[0] != peter || n.UnverifiedSigs[1] != enoch {
t.Errorf("n.UnverifiedSigs:\nhave %v\nwant %v", n.Sigs, []Signature{peter, enoch})
}
// Check duplicated verifier.
_, err = Open([]byte(text+"\n"+enochSig), VerifierList(enochVerifier, peterVerifier, enochVerifier))
if err == nil || err.Error() != "ambiguous key EnochRoot+af0cfe78" {
t.Fatalf("Open with duplicated verifier: err=%v, want ambiguous key", err)
}
// Check unused duplicated verifier.
_, err = Open([]byte(text+"\n"+peterSig), VerifierList(enochVerifier, peterVerifier, enochVerifier))
if err != nil {
t.Fatal(err)
}
// Check too many signatures.
n, err = Open([]byte(text+"\n"+strings.Repeat(peterSig, 101)), VerifierList(peterVerifier))
if n != nil || err == nil || err.Error() != "malformed note" {
t.Fatalf("Open too many verified signatures = %v, %v, want nil, malformed note error", n, err)
}
n, err = Open([]byte(text+"\n"+strings.Repeat(peterSig, 101)), VerifierList())
if n != nil || err == nil || err.Error() != "malformed note" {
t.Fatalf("Open too many verified signatures = %v, %v, want nil, malformed note error", n, err)
}
// Invalid signature.
n, err = Open([]byte(text+"\n"+peterSig[:60]+"ABCD"+peterSig[60:]), VerifierList(peterVerifier))
if n != nil || err == nil || err.Error() != "invalid signature for key PeterNeumann+c74f20a3" {
t.Fatalf("Open too many verified signatures = %v, %v, want nil, invalid signature error", n, err)
}
// Duplicated verified and unverified signatures.
enochABCD := Signature{"EnochRoot", 0xaf0cfe78, "rwz+eBzmZa0SO3NbfRGzPCpDckykFXSdeX+MNtCOXm2/5n" + "ABCD" + "2tiOHp+vAF1aGrQ5ovTG01oOTGwnWLox33WWd1RvMc+QQ="}
n, err = Open([]byte(text+"\n"+peterSig+peterSig+enochSig+enochSig+enochSig[:60]+"ABCD"+enochSig[60:]), VerifierList(peterVerifier))
if err != nil {
t.Fatal(err)
}
if len(n.Sigs) != 1 || n.Sigs[0] != peter {
t.Errorf("n.Sigs:\nhave %v\nwant %v", n.Sigs, []Signature{peter})
}
if len(n.UnverifiedSigs) != 2 || n.UnverifiedSigs[0] != enoch || n.UnverifiedSigs[1] != enochABCD {
t.Errorf("n.UnverifiedSigs:\nhave %v\nwant %v", n.UnverifiedSigs, []Signature{enoch, enochABCD})
}
// Invalid encoded message syntax.
badMsgs := []string{
text,
text + "\n",
text + "\n" + peterSig[:len(peterSig)-1],
"\x01" + text + "\n" + peterSig,
"\xff" + text + "\n" + peterSig,
text + "\n" + "— Bad Name x08go/ZJkuBS9UG/SffcvIAQxVBtiFupLLr8pAcElZInNIuGUgYN1FFYC2pZSNXgKvqfqdngotpRZb6KE6RyyBwJnAM=",
text + "\n" + peterSig + "Unexpected line.\n",
}
for _, msg := range badMsgs {
n, err := Open([]byte(msg), VerifierList(peterVerifier))
if n != nil || err == nil || err.Error() != "malformed note" {
t.Fatalf("Open bad msg = %v, %v, want nil, malformed note error\nmsg:\n%s", n, err, msg)
}
}
}
func BenchmarkOpen(b *testing.B) {
vkey := "PeterNeumann+c74f20a3+ARpc2QcUPDhMQegwxbzhKqiBfsVkmqq/LDE4izWy10TW"
msg := []byte("If you think cryptography is the answer to your problem,\n" +
"then you don't know what your problem is.\n" +
"\n" +
"— PeterNeumann x08go/ZJkuBS9UG/SffcvIAQxVBtiFupLLr8pAcElZInNIuGUgYN1FFYC2pZSNXgKvqfqdngotpRZb6KE6RyyBwJnAM=\n")
verifier, err := NewVerifier(vkey)
if err != nil {
b.Fatal(err)
}
verifiers := VerifierList(verifier)
verifiers0 := VerifierList()
// Try with 0 signatures and 1 signature so we can tell how much each signature adds.
b.Run("Sig0", func(b *testing.B) {
for i := 0; i < b.N; i++ {
_, err := Open(msg, verifiers0)
e, ok := err.(*UnverifiedNoteError)
if !ok {
b.Fatal("expected UnverifiedNoteError")
}
n := e.Note
if len(n.Sigs) != 0 || len(n.UnverifiedSigs) != 1 {
b.Fatal("wrong signature count")
}
}
})
b.Run("Sig1", func(b *testing.B) {
for i := 0; i < b.N; i++ {
n, err := Open(msg, verifiers)
if err != nil {
b.Fatal(err)
}
if len(n.Sigs) != 1 || len(n.UnverifiedSigs) != 0 {
b.Fatal("wrong signature count")
}
}
})
}

View File

@ -5,6 +5,7 @@
package str
import (
"path"
"path/filepath"
"strings"
)
@ -49,3 +50,47 @@ func HasFilePathPrefix(s, prefix string) bool {
return s[len(prefix)] == filepath.Separator && s[:len(prefix)] == prefix
}
}
// GlobsMatchPath reports whether any path prefix of target
// matches one of the glob patterns (as defined by path.Match)
// in the comma-separated globs list.
// It ignores any empty or malformed patterns in the list.
func GlobsMatchPath(globs, target string) bool {
for globs != "" {
// Extract next non-empty glob in comma-separated list.
var glob string
if i := strings.Index(globs, ","); i >= 0 {
glob, globs = globs[:i], globs[i+1:]
} else {
glob, globs = globs, ""
}
if glob == "" {
continue
}
// A glob with N+1 path elements (N slashes) needs to be matched
// against the first N+1 path elements of target,
// which end just before the N+1'th slash.
n := strings.Count(glob, "/")
prefix := target
// Walk target, counting slashes, truncating at the N+1'th slash.
for i := 0; i < len(target); i++ {
if target[i] == '/' {
if n == 0 {
prefix = target[:i]
break
}
n--
}
}
if n > 0 {
// Not enough prefix elements.
continue
}
matched, _ := path.Match(glob, prefix)
if matched {
return true
}
}
return false
}

View File

@ -0,0 +1,59 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Parallel cache.
// This file is copied from cmd/go/internal/par.
package sumweb
import (
"sync"
"sync/atomic"
)
// parCache runs an action once per key and caches the result.
type parCache struct {
m sync.Map
}
type cacheEntry struct {
done uint32
mu sync.Mutex
result interface{}
}
// Do calls the function f if and only if Do is being called for the first time with this key.
// No call to Do with a given key returns until the one call to f returns.
// Do returns the value returned by the one call to f.
func (c *parCache) Do(key interface{}, f func() interface{}) interface{} {
entryIface, ok := c.m.Load(key)
if !ok {
entryIface, _ = c.m.LoadOrStore(key, new(cacheEntry))
}
e := entryIface.(*cacheEntry)
if atomic.LoadUint32(&e.done) == 0 {
e.mu.Lock()
if atomic.LoadUint32(&e.done) == 0 {
e.result = f()
atomic.StoreUint32(&e.done, 1)
}
e.mu.Unlock()
}
return e.result
}
// Get returns the cached result associated with key.
// It returns nil if there is no such result.
// If the result for key is being computed, Get does not wait for the computation to finish.
func (c *parCache) Get(key interface{}) interface{} {
entryIface, ok := c.m.Load(key)
if !ok {
return nil
}
e := entryIface.(*cacheEntry)
if atomic.LoadUint32(&e.done) == 0 {
return nil
}
return e.result
}

View File

@ -0,0 +1,619 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sumweb
import (
"bytes"
"errors"
"fmt"
"strings"
"sync"
"sync/atomic"
"cmd/go/internal/note"
"cmd/go/internal/str"
"cmd/go/internal/tlog"
)
// A Client provides the external operations
// (file caching, HTTP fetches, and so on)
// needed to implement the HTTP client Conn.
// The methods must be safe for concurrent use by multiple goroutines.
type Client interface {
// ReadRemote reads and returns the content served at the given path
// on the remote database server. The path begins with "/lookup" or "/tile/".
// It is the implementation's responsibility to turn that path into a full URL
// and make the HTTP request. ReadRemote should return an error for
// any non-200 HTTP response status.
ReadRemote(path string) ([]byte, error)
// ReadConfig reads and returns the content of the named configuration file.
// There are only a fixed set of configuration files.
//
// "key" returns a file containing the verifier key for the server.
//
// serverName + "/latest" returns a file containing the latest known
// signed tree from the server. It is read and written (using WriteConfig).
// To signal that the client wishes to start with an "empty" signed tree,
// ReadConfig can return a successful empty result (0 bytes of data).
ReadConfig(file string) ([]byte, error)
// WriteConfig updates the content of the named configuration file,
// changing it from the old []byte to the new []byte.
// If the old []byte does not match the stored configuration,
// WriteConfig must return ErrWriteConflict.
// Otherwise, WriteConfig should atomically replace old with new.
WriteConfig(file string, old, new []byte) error
// ReadCache reads and returns the content of the named cache file.
// Any returned error will be treated as equivalent to the file not existing.
// There can be arbitrarily many cache files, such as:
// serverName/lookup/pkg@version
// serverName/tile/8/1/x123/456
ReadCache(file string) ([]byte, error)
// WriteCache writes the named cache file.
WriteCache(file string, data []byte)
// Log prints the given log message (such as with log.Print)
Log(msg string)
// SecurityError prints the given security error log message.
// The Conn returns ErrSecurity from any operation that invokes SecurityError,
// but the return value is mainly for testing. In a real program,
// SecurityError should typically print the message and call log.Fatal or os.Exit.
SecurityError(msg string)
}
// ErrWriteConflict signals a write conflict during Client.WriteConfig.
var ErrWriteConflict = errors.New("write conflict")
// ErrSecurity is returned by Conn operations that invoke Client.SecurityError.
var ErrSecurity = errors.New("security error: misbehaving server")
// A Conn is a client connection to a go.sum database.
// All the methods are safe for simultaneous use by multiple goroutines.
type Conn struct {
client Client // client-provided external world
didLookup uint32
// one-time initialized data
initOnce sync.Once
initErr error // init error, if any
name string // name of accepted verifier
verifiers note.Verifiers // accepted verifiers (just one, but Verifiers for note.Open)
tileReader tileReader
tileHeight int
nosumdb string
record parCache // cache of record lookup, keyed by path@vers
tileCache parCache // cache of c.readTile, keyed by tile
latestMu sync.Mutex
latest tlog.Tree // latest known tree head
latestMsg []byte // encoded signed note for latest
tileSavedMu sync.Mutex
tileSaved map[tlog.Tile]bool // which tiles have been saved using c.client.WriteCache already
}
// NewConn returns a new Conn using the given Client.
func NewConn(client Client) *Conn {
return &Conn{
client: client,
}
}
// init initiailzes the conn (if not already initialized)
// and returns any initialization error.
func (c *Conn) init() error {
c.initOnce.Do(c.initWork)
return c.initErr
}
// initWork does the actual initialization work.
func (c *Conn) initWork() {
defer func() {
if c.initErr != nil {
c.initErr = fmt.Errorf("initializing sumweb.Conn: %v", c.initErr)
}
}()
c.tileReader.c = c
if c.tileHeight == 0 {
c.tileHeight = 8
}
c.tileSaved = make(map[tlog.Tile]bool)
vkey, err := c.client.ReadConfig("key")
if err != nil {
c.initErr = err
return
}
verifier, err := note.NewVerifier(strings.TrimSpace(string(vkey)))
if err != nil {
c.initErr = err
return
}
c.verifiers = note.VerifierList(verifier)
c.name = verifier.Name()
data, err := c.client.ReadConfig(c.name + "/latest")
if err != nil {
c.initErr = err
return
}
if err := c.mergeLatest(data); err != nil {
c.initErr = err
return
}
}
// SetTileHeight sets the tile height for the Conn.
// Any call to SetTileHeight must happen before the first call to Lookup.
// If SetTileHeight is not called, the Conn defaults to tile height 8.
func (c *Conn) SetTileHeight(height int) {
if atomic.LoadUint32(&c.didLookup) != 0 {
panic("SetTileHeight used after Lookup")
}
if c.tileHeight != 0 {
panic("multiple calls to SetTileHeight")
}
c.tileHeight = height
}
// SetGONOSUMDB sets the list of comma-separated GONOSUMDB patterns for the Conn.
// For any module path matching one of the patterns,
// Lookup will return ErrGONOSUMDB.
// Any call to SetGONOSUMDB must happen before the first call to Lookup.
func (c *Conn) SetGONOSUMDB(list string) {
if atomic.LoadUint32(&c.didLookup) != 0 {
panic("SetGONOSUMDB used after Lookup")
}
if c.nosumdb != "" {
panic("multiple calls to SetGONOSUMDB")
}
c.nosumdb = list
}
// ErrGONOSUMDB is returned by Lookup for paths that match
// a pattern listed in the GONOSUMDB list (set by SetGONOSUMDB,
// usually from the environment variable).
var ErrGONOSUMDB = errors.New("skipped (listed in GONOSUMDB)")
func (c *Conn) skip(target string) bool {
return str.GlobsMatchPath(c.nosumdb, target)
}
// Lookup returns the go.sum lines for the given module path and version.
// The version may end in a /go.mod suffix, in which case Lookup returns
// the go.sum lines for the module's go.mod-only hash.
func (c *Conn) Lookup(path, vers string) (lines []string, err error) {
atomic.StoreUint32(&c.didLookup, 1)
if c.skip(path) {
return nil, ErrGONOSUMDB
}
defer func() {
if err != nil {
err = fmt.Errorf("%s@%s: %v", path, vers, err)
}
}()
if err := c.init(); err != nil {
return nil, err
}
// Prepare encoded cache filename / URL.
epath, err := encodePath(path)
if err != nil {
return nil, err
}
evers, err := encodeVersion(strings.TrimSuffix(vers, "/go.mod"))
if err != nil {
return nil, err
}
file := c.name + "/lookup/" + epath + "@" + evers
remotePath := "/lookup/" + epath + "@" + evers
// Fetch the data.
// The lookupCache avoids redundant ReadCache/GetURL operations
// (especially since go.sum lines tend to come in pairs for a given
// path and version) and also avoids having multiple of the same
// request in flight at once.
type cached struct {
data []byte
err error
}
result := c.record.Do(file, func() interface{} {
// Try the on-disk cache, or else get from web.
writeCache := false
data, err := c.client.ReadCache(file)
if err != nil {
data, err = c.client.ReadRemote(remotePath)
if err != nil {
return cached{nil, err}
}
writeCache = true
}
// Validate the record before using it for anything.
id, text, treeMsg, err := tlog.ParseRecord(data)
if err != nil {
return cached{nil, err}
}
if err := c.mergeLatest(treeMsg); err != nil {
return cached{nil, err}
}
if err := c.checkRecord(id, text); err != nil {
return cached{nil, err}
}
// Now that we've validated the record,
// save it to the on-disk cache (unless that's where it came from).
if writeCache {
c.client.WriteCache(file, data)
}
return cached{data, nil}
}).(cached)
if result.err != nil {
return nil, result.err
}
// Extract the lines for the specific version we want
// (with or without /go.mod).
prefix := path + " " + vers + " "
var hashes []string
for _, line := range strings.Split(string(result.data), "\n") {
if strings.HasPrefix(line, prefix) {
hashes = append(hashes, line)
}
}
return hashes, nil
}
// mergeLatest merges the tree head in msg
// with the Conn's current latest tree head,
// ensuring the result is a consistent timeline.
// If the result is inconsistent, mergeLatest calls c.client.SecurityError
// with a detailed security error message and then
// (only if c.client.SecurityError does not exit the program) returns ErrSecurity.
// If the Conn's current latest tree head moves forward,
// mergeLatest updates the underlying configuration file as well,
// taking care to merge any independent updates to that configuration.
func (c *Conn) mergeLatest(msg []byte) error {
// Merge msg into our in-memory copy of the latest tree head.
when, err := c.mergeLatestMem(msg)
if err != nil {
return err
}
if when != msgFuture {
// msg matched our present or was in the past.
// No change to our present, so no update of config file.
return nil
}
// Flush our extended timeline back out to the configuration file.
// If the configuration file has been updated in the interim,
// we need to merge any updates made there as well.
// Note that writeConfig is an atomic compare-and-swap.
for {
msg, err := c.client.ReadConfig(c.name + "/latest")
if err != nil {
return err
}
when, err := c.mergeLatestMem(msg)
if err != nil {
return err
}
if when != msgPast {
// msg matched our present or was from the future,
// and now our in-memory copy matches.
return nil
}
// msg (== config) is in the past, so we need to update it.
c.latestMu.Lock()
latestMsg := c.latestMsg
c.latestMu.Unlock()
if err := c.client.WriteConfig(c.name+"/latest", msg, latestMsg); err != ErrWriteConflict {
// Success or a non-write-conflict error.
return err
}
}
}
const (
msgPast = 1 + iota
msgNow
msgFuture
)
// mergeLatestMem is like mergeLatest but is only concerned with
// updating the in-memory copy of the latest tree head (c.latest)
// not the configuration file.
// The when result explains when msg happened relative to our
// previous idea of c.latest:
// msgPast means msg was from before c.latest,
// msgNow means msg was exactly c.latest, and
// msgFuture means msg was from after c.latest, which has now been updated.
func (c *Conn) mergeLatestMem(msg []byte) (when int, err error) {
if len(msg) == 0 {
// Accept empty msg as the unsigned, empty timeline.
c.latestMu.Lock()
latest := c.latest
c.latestMu.Unlock()
if latest.N == 0 {
return msgNow, nil
}
return msgPast, nil
}
note, err := note.Open(msg, c.verifiers)
if err != nil {
return 0, fmt.Errorf("reading tree note: %v\nnote:\n%s", err, msg)
}
tree, err := tlog.ParseTree([]byte(note.Text))
if err != nil {
return 0, fmt.Errorf("reading tree: %v\ntree:\n%s", err, note.Text)
}
// Other lookups may be calling mergeLatest with other heads,
// so c.latest is changing underfoot. We don't want to hold the
// c.mu lock during tile fetches, so loop trying to update c.latest.
c.latestMu.Lock()
latest := c.latest
latestMsg := c.latestMsg
c.latestMu.Unlock()
for {
// If the tree head looks old, check that it is on our timeline.
if tree.N <= latest.N {
if err := c.checkTrees(tree, msg, latest, latestMsg); err != nil {
return 0, err
}
if tree.N < latest.N {
return msgPast, nil
}
return msgNow, nil
}
// The tree head looks new. Check that we are on its timeline and try to move our timeline forward.
if err := c.checkTrees(latest, latestMsg, tree, msg); err != nil {
return 0, err
}
// Install our msg if possible.
// Otherwise we will go around again.
c.latestMu.Lock()
installed := false
if c.latest == latest {
installed = true
c.latest = tree
c.latestMsg = msg
} else {
latest = c.latest
latestMsg = c.latestMsg
}
c.latestMu.Unlock()
if installed {
return msgFuture, nil
}
}
}
// checkTrees checks that older (from olderNote) is contained in newer (from newerNote).
// If an error occurs, such as malformed data or a network problem, checkTrees returns that error.
// If on the other hand checkTrees finds evidence of misbehavior, it prepares a detailed
// message and calls log.Fatal.
func (c *Conn) checkTrees(older tlog.Tree, olderNote []byte, newer tlog.Tree, newerNote []byte) error {
thr := tlog.TileHashReader(newer, &c.tileReader)
h, err := tlog.TreeHash(older.N, thr)
if err != nil {
if older.N == newer.N {
return fmt.Errorf("checking tree#%d: %v", older.N, err)
}
return fmt.Errorf("checking tree#%d against tree#%d: %v", older.N, newer.N, err)
}
if h == older.Hash {
return nil
}
// Detected a fork in the tree timeline.
// Start by reporting the inconsistent signed tree notes.
var buf bytes.Buffer
fmt.Fprintf(&buf, "SECURITY ERROR\n")
fmt.Fprintf(&buf, "go.sum database server misbehavior detected!\n\n")
indent := func(b []byte) []byte {
return bytes.Replace(b, []byte("\n"), []byte("\n\t"), -1)
}
fmt.Fprintf(&buf, "old database:\n\t%s\n", indent(olderNote))
fmt.Fprintf(&buf, "new database:\n\t%s\n", indent(newerNote))
// The notes alone are not enough to prove the inconsistency.
// We also need to show that the newer note's tree hash for older.N
// does not match older.Hash. The consumer of this report could
// of course consult the server to try to verify the inconsistency,
// but we are holding all the bits we need to prove it right now,
// so we might as well print them and make the report not depend
// on the continued availability of the misbehaving server.
// Preparing this data only reuses the tiled hashes needed for
// tlog.TreeHash(older.N, thr) above, so assuming thr is caching tiles,
// there are no new access to the server here, and these operations cannot fail.
fmt.Fprintf(&buf, "proof of misbehavior:\n\t%v", h)
if p, err := tlog.ProveTree(newer.N, older.N, thr); err != nil {
fmt.Fprintf(&buf, "\tinternal error: %v\n", err)
} else if err := tlog.CheckTree(p, newer.N, newer.Hash, older.N, h); err != nil {
fmt.Fprintf(&buf, "\tinternal error: generated inconsistent proof\n")
} else {
for _, h := range p {
fmt.Fprintf(&buf, "\n\t%v", h)
}
}
c.client.SecurityError(buf.String())
return ErrSecurity
}
// checkRecord checks that record #id's hash matches data.
func (c *Conn) checkRecord(id int64, data []byte) error {
c.latestMu.Lock()
latest := c.latest
c.latestMu.Unlock()
if id >= latest.N {
return fmt.Errorf("cannot validate record %d in tree of size %d", id, latest.N)
}
hashes, err := tlog.TileHashReader(latest, &c.tileReader).ReadHashes([]int64{tlog.StoredHashIndex(0, id)})
if err != nil {
return err
}
if hashes[0] == tlog.RecordHash(data) {
return nil
}
return fmt.Errorf("cannot authenticate record data in server response")
}
// tileReader is a *Conn wrapper that implements tlog.TileReader.
// The separate type avoids exposing the ReadTiles and SaveTiles
// methods on Conn itself.
type tileReader struct {
c *Conn
}
func (r *tileReader) Height() int {
return r.c.tileHeight
}
// ReadTiles reads and returns the requested tiles,
// either from the on-disk cache or the server.
func (r *tileReader) ReadTiles(tiles []tlog.Tile) ([][]byte, error) {
// Read all the tiles in parallel.
data := make([][]byte, len(tiles))
errs := make([]error, len(tiles))
var wg sync.WaitGroup
for i, tile := range tiles {
wg.Add(1)
go func(i int, tile tlog.Tile) {
defer wg.Done()
data[i], errs[i] = r.c.readTile(tile)
}(i, tile)
}
wg.Wait()
for _, err := range errs {
if err != nil {
return nil, err
}
}
return data, nil
}
// tileCacheKey returns the cache key for the tile.
func (c *Conn) tileCacheKey(tile tlog.Tile) string {
return c.name + "/" + tile.Path()
}
// tileRemotePath returns the remote path for the tile.
func (c *Conn) tileRemotePath(tile tlog.Tile) string {
return "/" + tile.Path()
}
// readTile reads a single tile, either from the on-disk cache or the server.
func (c *Conn) readTile(tile tlog.Tile) ([]byte, error) {
type cached struct {
data []byte
err error
}
result := c.tileCache.Do(tile, func() interface{} {
// Try the requested tile in on-disk cache.
data, err := c.client.ReadCache(c.tileCacheKey(tile))
if err == nil {
c.markTileSaved(tile)
return cached{data, nil}
}
// Try the full tile in on-disk cache (if requested tile not already full).
// We only save authenticated tiles to the on-disk cache,
// so the recreated prefix is equally authenticated.
full := tile
full.W = 1 << tile.H
if tile != full {
data, err := c.client.ReadCache(c.tileCacheKey(full))
if err == nil {
c.markTileSaved(tile) // don't save tile later; we already have full
return cached{data[:len(data)/full.W*tile.W], nil}
}
}
// Try requested tile from server.
data, err = c.client.ReadRemote(c.tileRemotePath(tile))
if err == nil {
return cached{data, nil}
}
// Try full tile on server.
// If the partial tile does not exist, it should be because
// the tile has been completed and only the complete one
// is available.
if tile != full {
data, err := c.client.ReadRemote(c.tileRemotePath(full))
if err == nil {
// Note: We could save the full tile in the on-disk cache here,
// but we don't know if it is valid yet, and we will only find out
// about the partial data, not the full data. So let SaveTiles
// save the partial tile, and we'll just refetch the full tile later
// once we can validate more (or all) of it.
return cached{data[:len(data)/full.W*tile.W], nil}
}
}
// Nothing worked.
// Return the error from the server fetch for the requested (not full) tile.
return cached{nil, err}
}).(cached)
return result.data, result.err
}
// markTileSaved records that tile is already present in the on-disk cache,
// so that a future SaveTiles for that tile can be ignored.
func (c *Conn) markTileSaved(tile tlog.Tile) {
c.tileSavedMu.Lock()
c.tileSaved[tile] = true
c.tileSavedMu.Unlock()
}
// SaveTiles saves the now validated tiles.
func (r *tileReader) SaveTiles(tiles []tlog.Tile, data [][]byte) {
c := r.c
// Determine which tiles need saving.
// (Tiles that came from the cache need not be saved back.)
save := make([]bool, len(tiles))
c.tileSavedMu.Lock()
for i, tile := range tiles {
if !c.tileSaved[tile] {
save[i] = true
c.tileSaved[tile] = true
}
}
c.tileSavedMu.Unlock()
for i, tile := range tiles {
if save[i] {
// If WriteCache fails here (out of disk space? i/o error?),
// c.tileSaved[tile] is still true and we will not try to write it again.
// Next time we run maybe we'll redownload it again and be
// more successful.
c.client.WriteCache(c.name+"/"+tile.Path(), data[i])
}
}
}

View File

@ -0,0 +1,460 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sumweb
import (
"bytes"
"fmt"
"strings"
"sync"
"testing"
"cmd/go/internal/note"
"cmd/go/internal/tlog"
)
const (
testName = "localhost.localdev/sumdb"
testVerifierKey = "localhost.localdev/sumdb+00000c67+AcTrnkbUA+TU4heY3hkjiSES/DSQniBqIeQ/YppAUtK6"
testSignerKey = "PRIVATE+KEY+localhost.localdev/sumdb+00000c67+AXu6+oaVaOYuQOFrf1V59JK1owcFlJcHwwXHDfDGxSPk"
)
func TestConnLookup(t *testing.T) {
tc := newTestClient(t)
tc.mustHaveLatest(1)
// Basic lookup.
tc.mustLookup("rsc.io/sampler", "v1.3.0", "rsc.io/sampler v1.3.0 h1:7uVkIFmeBqHfdjD+gZwtXXI+RODJ2Wc4O7MPEh/QiW4=")
tc.mustHaveLatest(3)
// Everything should now be cached, both for the original package and its /go.mod.
tc.getOK = false
tc.mustLookup("rsc.io/sampler", "v1.3.0", "rsc.io/sampler v1.3.0 h1:7uVkIFmeBqHfdjD+gZwtXXI+RODJ2Wc4O7MPEh/QiW4=")
tc.mustLookup("rsc.io/sampler", "v1.3.0/go.mod", "rsc.io/sampler v1.3.0/go.mod h1:T1hPZKmBbMNahiBKFy5HrXp6adAjACjK9JXDnKaTXpA=")
tc.mustHaveLatest(3)
tc.getOK = true
tc.getTileOK = false // the cache has what we need
// Lookup with multiple returned lines.
tc.mustLookup("rsc.io/quote", "v1.5.2", "rsc.io/quote v1.5.2 h1:w5fcysjrx7yqtD/aO+QwRjYZOKnaM9Uh2b40tElTs3Y=\nrsc.io/quote v1.5.2 h2:xyzzy")
tc.mustHaveLatest(3)
// Lookup with need for !-encoding.
// rsc.io/Quote is the only record written after rsc.io/samper,
// so it is the only one that should need more tiles.
tc.getTileOK = true
tc.mustLookup("rsc.io/Quote", "v1.5.2", "rsc.io/Quote v1.5.2 h1:uppercase!=")
tc.mustHaveLatest(4)
}
func TestConnBadTiles(t *testing.T) {
tc := newTestClient(t)
flipBits := func() {
for url, data := range tc.remote {
if strings.Contains(url, "/tile/") {
for i := range data {
data[i] ^= 0x80
}
}
}
}
// Bad tiles in initial download.
tc.mustHaveLatest(1)
flipBits()
_, err := tc.conn.Lookup("rsc.io/sampler", "v1.3.0")
tc.mustError(err, "rsc.io/sampler@v1.3.0: initializing sumweb.Conn: checking tree#1: downloaded inconsistent tile")
flipBits()
tc.newConn()
tc.mustLookup("rsc.io/sampler", "v1.3.0", "rsc.io/sampler v1.3.0 h1:7uVkIFmeBqHfdjD+gZwtXXI+RODJ2Wc4O7MPEh/QiW4=")
// Bad tiles after initial download.
flipBits()
_, err = tc.conn.Lookup("rsc.io/Quote", "v1.5.2")
tc.mustError(err, "rsc.io/Quote@v1.5.2: checking tree#3 against tree#4: downloaded inconsistent tile")
flipBits()
tc.newConn()
tc.mustLookup("rsc.io/Quote", "v1.5.2", "rsc.io/Quote v1.5.2 h1:uppercase!=")
// Bad starting tree hash looks like bad tiles.
tc.newConn()
text := tlog.FormatTree(tlog.Tree{N: 1, Hash: tlog.Hash{}})
data, err := note.Sign(&note.Note{Text: string(text)}, tc.signer)
if err != nil {
tc.t.Fatal(err)
}
tc.config[testName+"/latest"] = data
_, err = tc.conn.Lookup("rsc.io/sampler", "v1.3.0")
tc.mustError(err, "rsc.io/sampler@v1.3.0: initializing sumweb.Conn: checking tree#1: downloaded inconsistent tile")
}
func TestConnFork(t *testing.T) {
tc := newTestClient(t)
tc2 := tc.fork()
tc.addRecord("rsc.io/pkg1@v1.5.2", `rsc.io/pkg1 v1.5.2 h1:hash!=
`)
tc.addRecord("rsc.io/pkg1@v1.5.4", `rsc.io/pkg1 v1.5.4 h1:hash!=
`)
tc.mustLookup("rsc.io/pkg1", "v1.5.2", "rsc.io/pkg1 v1.5.2 h1:hash!=")
tc2.addRecord("rsc.io/pkg1@v1.5.3", `rsc.io/pkg1 v1.5.3 h1:hash!=
`)
tc2.addRecord("rsc.io/pkg1@v1.5.4", `rsc.io/pkg1 v1.5.4 h1:hash!=
`)
tc2.mustLookup("rsc.io/pkg1", "v1.5.4", "rsc.io/pkg1 v1.5.4 h1:hash!=")
key := "/lookup/rsc.io/pkg1@v1.5.2"
tc2.remote[key] = tc.remote[key]
_, err := tc2.conn.Lookup("rsc.io/pkg1", "v1.5.2")
tc2.mustError(err, ErrSecurity.Error())
/*
SECURITY ERROR
go.sum database server misbehavior detected!
old database:
go.sum database tree!
5
nWzN20+pwMt62p7jbv1/NlN95ePTlHijabv5zO/s36w=
localhost.localdev/sumdb AAAMZ5/2FVAdMH58kmnz/0h299pwyskEbzDzoa2/YaPdhvLya4YWDFQQxu2TQb5GpwAH4NdWnTwuhILafisyf3CNbgg=
new database:
go.sum database tree
6
wc4SkQt52o5W2nQ8To2ARs+mWuUJjss+sdleoiqxMmM=
localhost.localdev/sumdb AAAMZ6oRNswlEZ6ZZhxrCvgl1MBy+nusq4JU+TG6Fe2NihWLqOzb+y2c2kzRLoCr4tvw9o36ucQEnhc20e4nA4Qc/wc=
proof of misbehavior:
T7i+H/8ER4nXOiw4Bj0koZOkGjkxoNvlI34GpvhHhQg=
Nsuejv72de9hYNM5bqFv8rv3gm3zJQwv/DT/WNbLDLA=
mOmqqZ1aI/lzS94oq/JSbj7pD8Rv9S+xDyi12BtVSHo=
/7Aw5jVSMM9sFjQhaMg+iiDYPMk6decH7QLOGrL9Lx0=
*/
wants := []string{
"SECURITY ERROR",
"go.sum database server misbehavior detected!",
"old database:\n\tgo.sum database tree\n\t5\n",
"— localhost.localdev/sumdb AAAMZ5/2FVAd",
"new database:\n\tgo.sum database tree\n\t6\n",
"— localhost.localdev/sumdb AAAMZ6oRNswl",
"proof of misbehavior:\n\tT7i+H/8ER4nXOiw4Bj0k",
}
text := tc2.security.String()
for _, want := range wants {
if !strings.Contains(text, want) {
t.Fatalf("cannot find %q in security text:\n%s", want, text)
}
}
}
func TestConnGONOSUMDB(t *testing.T) {
tc := newTestClient(t)
tc.conn.SetGONOSUMDB("p,*/q")
tc.conn.Lookup("rsc.io/sampler", "v1.3.0") // initialize before we turn off network
tc.getOK = false
ok := []string{
"abc",
"a/p",
"pq",
"q",
"n/o/p/q",
}
skip := []string{
"p",
"p/x",
"x/q",
"x/q/z",
}
for _, path := range ok {
_, err := tc.conn.Lookup(path, "v1.0.0")
if err == ErrGONOSUMDB {
t.Errorf("Lookup(%q): ErrGONOSUMDB, wanted failed actual lookup", path)
}
}
for _, path := range skip {
_, err := tc.conn.Lookup(path, "v1.0.0")
if err != ErrGONOSUMDB {
t.Errorf("Lookup(%q): %v, wanted ErrGONOSUMDB", path, err)
}
}
}
// A testClient is a self-contained client-side testing environment.
type testClient struct {
t *testing.T // active test
conn *Conn // conn being tested
tileHeight int // tile height to use (default 2)
getOK bool // should tc.GetURL succeed?
getTileOK bool // should tc.GetURL of tiles succeed?
treeSize int64
hashes []tlog.Hash
remote map[string][]byte
signer note.Signer
// mu protects config, cache, log, security
// during concurrent use of the exported methods
// by the conn itself (testClient is the Conn's Client,
// and the Client methods can both read and write these fields).
// Unexported methods invoked directly by the test
// (for example, addRecord) need not hold the mutex:
// for proper test execution those methods should only
// be called when the Conn is idle and not using its Client.
// Not holding the mutex in those methods ensures
// that if a mistake is made, go test -race will report it.
// (Holding the mutex would eliminate the race report but
// not the underlying problem.)
// Similarly, the get map is not protected by the mutex,
// because the Client methods only read it.
mu sync.Mutex // prot
config map[string][]byte
cache map[string][]byte
security bytes.Buffer
}
// newTestClient returns a new testClient that will call t.Fatal on error
// and has a few records already available on the remote server.
func newTestClient(t *testing.T) *testClient {
tc := &testClient{
t: t,
tileHeight: 2,
getOK: true,
getTileOK: true,
config: make(map[string][]byte),
cache: make(map[string][]byte),
remote: make(map[string][]byte),
}
tc.config["key"] = []byte(testVerifierKey + "\n")
var err error
tc.signer, err = note.NewSigner(testSignerKey)
if err != nil {
t.Fatal(err)
}
tc.newConn()
tc.addRecord("rsc.io/quote@v1.5.2", `rsc.io/quote v1.5.2 h1:w5fcysjrx7yqtD/aO+QwRjYZOKnaM9Uh2b40tElTs3Y=
rsc.io/quote v1.5.2/go.mod h1:LzX7hefJvL54yjefDEDHNONDjII0t9xZLPXsUe+TKr0=
rsc.io/quote v1.5.2 h2:xyzzy
`)
tc.addRecord("golang.org/x/text@v0.0.0-20170915032832-14c0d48ead0c", `golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c h1:qgOY6WgZOaTkIIMiVjBQcw93ERBE4m30iBm00nkL0i8=
golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
`)
tc.addRecord("rsc.io/sampler@v1.3.0", `rsc.io/sampler v1.3.0 h1:7uVkIFmeBqHfdjD+gZwtXXI+RODJ2Wc4O7MPEh/QiW4=
rsc.io/sampler v1.3.0/go.mod h1:T1hPZKmBbMNahiBKFy5HrXp6adAjACjK9JXDnKaTXpA=
`)
tc.config[testName+"/latest"] = tc.signTree(1)
tc.addRecord("rsc.io/!quote@v1.5.2", `rsc.io/Quote v1.5.2 h1:uppercase!=
`)
return tc
}
// newConn resets the Conn associated with tc.
// This clears any in-memory cache from the Conn
// but not tc's on-disk cache.
func (tc *testClient) newConn() {
tc.conn = NewConn(tc)
tc.conn.SetTileHeight(tc.tileHeight)
}
// mustLookup does a lookup for path@vers and checks that the lines that come back match want.
func (tc *testClient) mustLookup(path, vers, want string) {
tc.t.Helper()
lines, err := tc.conn.Lookup(path, vers)
if err != nil {
tc.t.Fatal(err)
}
if strings.Join(lines, "\n") != want {
tc.t.Fatalf("Lookup(%q, %q):\n\t%s\nwant:\n\t%s", path, vers, strings.Join(lines, "\n\t"), strings.Replace(want, "\n", "\n\t", -1))
}
}
// mustHaveLatest checks that the on-disk configuration
// for latest is a tree of size n.
func (tc *testClient) mustHaveLatest(n int64) {
tc.t.Helper()
latest := tc.config[testName+"/latest"]
lines := strings.Split(string(latest), "\n")
if len(lines) < 2 || lines[1] != fmt.Sprint(n) {
tc.t.Fatalf("/latest should have tree %d, but has:\n%s", n, latest)
}
}
// mustError checks that err's error string contains the text.
func (tc *testClient) mustError(err error, text string) {
tc.t.Helper()
if err == nil || !strings.Contains(err.Error(), text) {
tc.t.Fatalf("err = %v, want %q", err, text)
}
}
// fork returns a copy of tc.
// Changes made to the new copy or to tc are not reflected in the other.
func (tc *testClient) fork() *testClient {
tc2 := &testClient{
t: tc.t,
getOK: tc.getOK,
getTileOK: tc.getTileOK,
tileHeight: tc.tileHeight,
treeSize: tc.treeSize,
hashes: append([]tlog.Hash{}, tc.hashes...),
signer: tc.signer,
config: copyMap(tc.config),
cache: copyMap(tc.cache),
remote: copyMap(tc.remote),
}
tc2.newConn()
return tc2
}
func copyMap(m map[string][]byte) map[string][]byte {
m2 := make(map[string][]byte)
for k, v := range m {
m2[k] = v
}
return m2
}
// ReadHashes is tc's implementation of tlog.HashReader, for use with
// tlog.TreeHash and so on.
func (tc *testClient) ReadHashes(indexes []int64) ([]tlog.Hash, error) {
var list []tlog.Hash
for _, id := range indexes {
list = append(list, tc.hashes[id])
}
return list, nil
}
// addRecord adds a log record using the given (!-encoded) key and data.
func (tc *testClient) addRecord(key, data string) {
tc.t.Helper()
// Create record, add hashes to log tree.
id := tc.treeSize
tc.treeSize++
rec, err := tlog.FormatRecord(id, []byte(data))
if err != nil {
tc.t.Fatal(err)
}
hashes, err := tlog.StoredHashesForRecordHash(id, tlog.RecordHash([]byte(data)), tc)
if err != nil {
tc.t.Fatal(err)
}
tc.hashes = append(tc.hashes, hashes...)
// Create lookup result.
tc.remote["/lookup/"+key] = append(rec, tc.signTree(tc.treeSize)...)
// Create new tiles.
tiles := tlog.NewTiles(tc.tileHeight, id, tc.treeSize)
for _, tile := range tiles {
data, err := tlog.ReadTileData(tile, tc)
if err != nil {
tc.t.Fatal(err)
}
tc.remote["/"+tile.Path()] = data
// TODO delete old partial tiles
}
}
// signTree returns the signed head for the tree of the given size.
func (tc *testClient) signTree(size int64) []byte {
h, err := tlog.TreeHash(size, tc)
if err != nil {
tc.t.Fatal(err)
}
text := tlog.FormatTree(tlog.Tree{N: size, Hash: h})
data, err := note.Sign(&note.Note{Text: string(text)}, tc.signer)
if err != nil {
tc.t.Fatal(err)
}
return data
}
// ReadRemote is for tc's implementation of Client.
func (tc *testClient) ReadRemote(path string) ([]byte, error) {
// No mutex here because only the Client should be running
// and the Client cannot change tc.get.
if !tc.getOK {
return nil, fmt.Errorf("disallowed remote read %s", path)
}
if strings.Contains(path, "/tile/") && !tc.getTileOK {
return nil, fmt.Errorf("disallowed remote tile read %s", path)
}
data, ok := tc.remote[path]
if !ok {
return nil, fmt.Errorf("no remote path %s", path)
}
return data, nil
}
// ReadConfig is for tc's implementation of Client.
func (tc *testClient) ReadConfig(file string) ([]byte, error) {
tc.mu.Lock()
defer tc.mu.Unlock()
data, ok := tc.config[file]
if !ok {
return nil, fmt.Errorf("no config %s", file)
}
return data, nil
}
// WriteConfig is for tc's implementation of Client.
func (tc *testClient) WriteConfig(file string, old, new []byte) error {
tc.mu.Lock()
defer tc.mu.Unlock()
data := tc.config[file]
if !bytes.Equal(old, data) {
return ErrWriteConflict
}
tc.config[file] = new
return nil
}
// ReadCache is for tc's implementation of Client.
func (tc *testClient) ReadCache(file string) ([]byte, error) {
tc.mu.Lock()
defer tc.mu.Unlock()
data, ok := tc.cache[file]
if !ok {
return nil, fmt.Errorf("no cache %s", file)
}
return data, nil
}
// WriteCache is for tc's implementation of Client.
func (tc *testClient) WriteCache(file string, data []byte) {
tc.mu.Lock()
defer tc.mu.Unlock()
tc.cache[file] = data
}
// Log is for tc's implementation of Client.
func (tc *testClient) Log(msg string) {
tc.t.Log(msg)
}
// SecurityError is for tc's implementation of Client.
func (tc *testClient) SecurityError(msg string) {
tc.mu.Lock()
defer tc.mu.Unlock()
fmt.Fprintf(&tc.security, "%s\n", strings.TrimRight(msg, "\n"))
}

View File

@ -0,0 +1,167 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// FS-safe encoding of module paths and versions.
// Copied from cmd/go/internal/module and unexported.
package sumweb
import (
"fmt"
"unicode/utf8"
)
// Safe encodings
//
// Module paths appear as substrings of file system paths
// (in the download cache) and of web server URLs in the proxy protocol.
// In general we cannot rely on file systems to be case-sensitive,
// nor can we rely on web servers, since they read from file systems.
// That is, we cannot rely on the file system to keep rsc.io/QUOTE
// and rsc.io/quote separate. Windows and macOS don't.
// Instead, we must never require two different casings of a file path.
// Because we want the download cache to match the proxy protocol,
// and because we want the proxy protocol to be possible to serve
// from a tree of static files (which might be stored on a case-insensitive
// file system), the proxy protocol must never require two different casings
// of a URL path either.
//
// One possibility would be to make the safe encoding be the lowercase
// hexadecimal encoding of the actual path bytes. This would avoid ever
// needing different casings of a file path, but it would be fairly illegible
// to most programmers when those paths appeared in the file system
// (including in file paths in compiler errors and stack traces)
// in web server logs, and so on. Instead, we want a safe encoding that
// leaves most paths unaltered.
//
// The safe encoding is this:
// replace every uppercase letter with an exclamation mark
// followed by the letter's lowercase equivalent.
//
// For example,
// github.com/Azure/azure-sdk-for-go -> github.com/!azure/azure-sdk-for-go.
// github.com/GoogleCloudPlatform/cloudsql-proxy -> github.com/!google!cloud!platform/cloudsql-proxy
// github.com/Sirupsen/logrus -> github.com/!sirupsen/logrus.
//
// Import paths that avoid upper-case letters are left unchanged.
// Note that because import paths are ASCII-only and avoid various
// problematic punctuation (like : < and >), the safe encoding is also ASCII-only
// and avoids the same problematic punctuation.
//
// Import paths have never allowed exclamation marks, so there is no
// need to define how to encode a literal !.
//
// Although paths are disallowed from using Unicode (see pathOK above),
// the eventual plan is to allow Unicode letters as well, to assume that
// file systems and URLs are Unicode-safe (storing UTF-8), and apply
// the !-for-uppercase convention. Note however that not all runes that
// are different but case-fold equivalent are an upper/lower pair.
// For example, U+004B ('K'), U+006B ('k'), and U+212A ('' for Kelvin)
// are considered to case-fold to each other. When we do add Unicode
// letters, we must not assume that upper/lower are the only case-equivalent pairs.
// Perhaps the Kelvin symbol would be disallowed entirely, for example.
// Or perhaps it would encode as "!!k", or perhaps as "(212A)".
//
// Also, it would be nice to allow Unicode marks as well as letters,
// but marks include combining marks, and then we must deal not
// only with case folding but also normalization: both U+00E9 ('é')
// and U+0065 U+0301 ('e' followed by combining acute accent)
// look the same on the page and are treated by some file systems
// as the same path. If we do allow Unicode marks in paths, there
// must be some kind of normalization to allow only one canonical
// encoding of any character used in an import path.
// encodePath returns the safe encoding of the given module path.
// It fails if the module path is invalid.
func encodePath(path string) (encoding string, err error) {
return encodeString(path)
}
// encodeVersion returns the safe encoding of the given module version.
// Versions are allowed to be in non-semver form but must be valid file names
// and not contain exclamation marks.
func encodeVersion(v string) (encoding string, err error) {
return encodeString(v)
}
func encodeString(s string) (encoding string, err error) {
haveUpper := false
for _, r := range s {
if r == '!' || r >= utf8.RuneSelf {
// This should be disallowed by CheckPath, but diagnose anyway.
// The correctness of the encoding loop below depends on it.
return "", fmt.Errorf("internal error: inconsistency in EncodePath")
}
if 'A' <= r && r <= 'Z' {
haveUpper = true
}
}
if !haveUpper {
return s, nil
}
var buf []byte
for _, r := range s {
if 'A' <= r && r <= 'Z' {
buf = append(buf, '!', byte(r+'a'-'A'))
} else {
buf = append(buf, byte(r))
}
}
return string(buf), nil
}
// decodePath returns the module path of the given safe encoding.
// It fails if the encoding is invalid or encodes an invalid path.
func decodePath(encoding string) (path string, err error) {
path, ok := decodeString(encoding)
if !ok {
return "", fmt.Errorf("invalid module path encoding %q", encoding)
}
return path, nil
}
// decodeVersion returns the version string for the given safe encoding.
// It fails if the encoding is invalid or encodes an invalid version.
// Versions are allowed to be in non-semver form but must be valid file names
// and not contain exclamation marks.
func decodeVersion(encoding string) (v string, err error) {
v, ok := decodeString(encoding)
if !ok {
return "", fmt.Errorf("invalid version encoding %q", encoding)
}
return v, nil
}
func decodeString(encoding string) (string, bool) {
var buf []byte
bang := false
for _, r := range encoding {
if r >= utf8.RuneSelf {
return "", false
}
if bang {
bang = false
if r < 'a' || 'z' < r {
return "", false
}
buf = append(buf, byte(r+'A'-'a'))
continue
}
if r == '!' {
bang = true
continue
}
if 'A' <= r && r <= 'Z' {
return "", false
}
buf = append(buf, byte(r))
}
if bang {
return "", false
}
return string(buf), true
}

View File

@ -0,0 +1,67 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sumweb
import "testing"
var encodeTests = []struct {
path string
enc string // empty means same as path
}{
{path: "ascii.com/abcdefghijklmnopqrstuvwxyz.-+/~_0123456789"},
{path: "github.com/GoogleCloudPlatform/omega", enc: "github.com/!google!cloud!platform/omega"},
}
func TestEncodePath(t *testing.T) {
// Check encodings.
for _, tt := range encodeTests {
enc, err := encodePath(tt.path)
if err != nil {
t.Errorf("encodePath(%q): unexpected error: %v", tt.path, err)
continue
}
want := tt.enc
if want == "" {
want = tt.path
}
if enc != want {
t.Errorf("encodePath(%q) = %q, want %q", tt.path, enc, want)
}
}
}
var badDecode = []string{
"github.com/GoogleCloudPlatform/omega",
"github.com/!google!cloud!platform!/omega",
"github.com/!0google!cloud!platform/omega",
"github.com/!_google!cloud!platform/omega",
"github.com/!!google!cloud!platform/omega",
}
func TestDecodePath(t *testing.T) {
// Check invalid decodings.
for _, bad := range badDecode {
_, err := decodePath(bad)
if err == nil {
t.Errorf("DecodePath(%q): succeeded, want error (invalid decoding)", bad)
}
}
// Check encodings.
for _, tt := range encodeTests {
enc := tt.enc
if enc == "" {
enc = tt.path
}
path, err := decodePath(enc)
if err != nil {
t.Errorf("decodePath(%q): unexpected error: %v", enc, err)
continue
}
if path != tt.path {
t.Errorf("decodePath(%q) = %q, want %q", enc, path, tt.path)
}
}
}

View File

@ -0,0 +1,183 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package sumweb implements the HTTP protocols for serving or accessing a go.sum database.
package sumweb
import (
"context"
"net/http"
"os"
"regexp"
"strings"
"cmd/go/internal/tlog"
)
// A Server provides the external operations
// (underlying database access and so on)
// needed to implement the HTTP server Handler.
type Server interface {
// NewContext returns the context to use for the request r.
NewContext(r *http.Request) (context.Context, error)
// Signed returns the signed hash of the latest tree.
Signed(ctx context.Context) ([]byte, error)
// ReadRecords returns the content for the n records id through id+n-1.
ReadRecords(ctx context.Context, id, n int64) ([][]byte, error)
// Lookup looks up a record by its associated key ("module@version"),
// returning the record ID.
Lookup(ctx context.Context, key string) (int64, error)
// ReadTileData reads the content of tile t.
// It is only invoked for hash tiles (t.L ≥ 0).
ReadTileData(ctx context.Context, t tlog.Tile) ([]byte, error)
}
// A Handler is the go.sum database server handler,
// which should be invoked to serve the paths listed in Paths.
// The calling code is responsible for initializing Server.
type Handler struct {
Server Server
}
// Paths are the URL paths for which Handler should be invoked.
//
// Typically a server will do:
//
// handler := &sumweb.Handler{Server: srv}
// for _, path := range sumweb.Paths {
// http.HandleFunc(path, handler)
// }
//
var Paths = []string{
"/lookup/",
"/latest",
"/tile/",
}
var modVerRE = regexp.MustCompile(`^[^@]+@v[0-9]+\.[0-9]+\.[0-9]+(-[^@]*)?$`)
func (h *Handler) ServeHTTP(w http.ResponseWriter, r *http.Request) {
ctx, err := h.Server.NewContext(r)
if err != nil {
http.Error(w, err.Error(), 500)
return
}
switch {
default:
http.NotFound(w, r)
case strings.HasPrefix(r.URL.Path, "/lookup/"):
mod := strings.TrimPrefix(r.URL.Path, "/lookup/")
if !modVerRE.MatchString(mod) {
http.Error(w, "invalid module@version syntax", http.StatusBadRequest)
return
}
i := strings.Index(mod, "@")
encPath, encVers := mod[:i], mod[i+1:]
path, err := decodePath(encPath)
if err != nil {
reportError(w, r, err)
return
}
vers, err := decodeVersion(encVers)
if err != nil {
reportError(w, r, err)
return
}
id, err := h.Server.Lookup(ctx, path+"@"+vers)
if err != nil {
reportError(w, r, err)
return
}
records, err := h.Server.ReadRecords(ctx, id, 1)
if err != nil {
// This should never happen - the lookup says the record exists.
http.Error(w, err.Error(), http.StatusInternalServerError)
return
}
if len(records) != 1 {
http.Error(w, "invalid record count returned by ReadRecords", http.StatusInternalServerError)
return
}
msg, err := tlog.FormatRecord(id, records[0])
if err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
return
}
signed, err := h.Server.Signed(ctx)
if err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
return
}
w.Header().Set("Content-Type", "text/plain; charset=UTF-8")
w.Write(msg)
w.Write(signed)
case r.URL.Path == "/latest":
data, err := h.Server.Signed(ctx)
if err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
return
}
w.Header().Set("Content-Type", "text/plain; charset=UTF-8")
w.Write(data)
case strings.HasPrefix(r.URL.Path, "/tile/"):
t, err := tlog.ParseTilePath(r.URL.Path[1:])
if err != nil {
http.Error(w, "invalid tile syntax", http.StatusBadRequest)
return
}
if t.L == -1 {
// Record data.
start := t.N << uint(t.H)
records, err := h.Server.ReadRecords(ctx, start, int64(t.W))
if err != nil {
reportError(w, r, err)
return
}
if len(records) != t.W {
http.Error(w, "invalid record count returned by ReadRecords", http.StatusInternalServerError)
return
}
var data []byte
for i, text := range records {
msg, err := tlog.FormatRecord(start+int64(i), text)
if err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
}
data = append(data, msg...)
}
w.Header().Set("Content-Type", "text/plain; charset=UTF-8")
w.Write(data)
return
}
data, err := h.Server.ReadTileData(ctx, t)
if err != nil {
reportError(w, r, err)
return
}
w.Header().Set("Content-Type", "application/octet-stream")
w.Write(data)
}
}
// reportError reports err to w.
// If it's a not-found, the reported error is 404.
// Otherwise it is an internal server error.
// The caller must only call reportError in contexts where
// a not-found err should be reported as 404.
func reportError(w http.ResponseWriter, r *http.Request, err error) {
if os.IsNotExist(err) {
http.Error(w, err.Error(), http.StatusNotFound)
return
}
http.Error(w, err.Error(), http.StatusInternalServerError)
}

View File

@ -0,0 +1,133 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sumweb
import (
"context"
"fmt"
"net/http"
"strings"
"sync"
"cmd/go/internal/note"
"cmd/go/internal/tlog"
)
// NewTestServer constructs a new TestServer
// that will sign its tree with the given signer key
// (see cmd/go/internal/note)
// and fetch new records as needed by calling gosum.
func NewTestServer(signer string, gosum func(path, vers string) ([]byte, error)) *TestServer {
return &TestServer{signer: signer, gosum: gosum}
}
// A TestServer is an in-memory implementation of Server for testing.
type TestServer struct {
signer string
gosum func(path, vers string) ([]byte, error)
mu sync.Mutex
hashes testHashes
records [][]byte
lookup map[string]int64
}
// testHashes implements tlog.HashReader, reading from a slice.
type testHashes []tlog.Hash
func (h testHashes) ReadHashes(indexes []int64) ([]tlog.Hash, error) {
var list []tlog.Hash
for _, id := range indexes {
list = append(list, h[id])
}
return list, nil
}
func (s *TestServer) NewContext(r *http.Request) (context.Context, error) {
return nil, nil
}
func (s *TestServer) Signed(ctx context.Context) ([]byte, error) {
s.mu.Lock()
defer s.mu.Unlock()
size := int64(len(s.records))
h, err := tlog.TreeHash(size, s.hashes)
if err != nil {
return nil, err
}
text := tlog.FormatTree(tlog.Tree{N: size, Hash: h})
signer, err := note.NewSigner(s.signer)
if err != nil {
return nil, err
}
return note.Sign(&note.Note{Text: string(text)}, signer)
}
func (s *TestServer) ReadRecords(ctx context.Context, id, n int64) ([][]byte, error) {
s.mu.Lock()
defer s.mu.Unlock()
var list [][]byte
for i := int64(0); i < n; i++ {
if id+i >= int64(len(s.records)) {
return nil, fmt.Errorf("missing records")
}
list = append(list, s.records[id+i])
}
return list, nil
}
func (s *TestServer) Lookup(ctx context.Context, key string) (int64, error) {
s.mu.Lock()
id, ok := s.lookup[key]
s.mu.Unlock()
if ok {
return id, nil
}
// Look up module and compute go.sum lines.
i := strings.Index(key, "@")
if i < 0 {
return 0, fmt.Errorf("invalid lookup key %q", key)
}
path, vers := key[:i], key[i+1:]
data, err := s.gosum(path, vers)
if err != nil {
return 0, err
}
s.mu.Lock()
defer s.mu.Unlock()
// We ran the fetch without the lock.
// If another fetch happened and committed, use it instead.
id, ok = s.lookup[key]
if ok {
return id, nil
}
// Add record.
id = int64(len(s.records))
s.records = append(s.records, data)
if s.lookup == nil {
s.lookup = make(map[string]int64)
}
s.lookup[key] = id
hashes, err := tlog.StoredHashesForRecordHash(id, tlog.RecordHash([]byte(data)), s.hashes)
if err != nil {
panic(err)
}
s.hashes = append(s.hashes, hashes...)
return id, nil
}
func (s *TestServer) ReadTileData(ctx context.Context, t tlog.Tile) ([]byte, error) {
s.mu.Lock()
defer s.mu.Unlock()
return tlog.ReadTileData(t, s.hashes)
}

View File

@ -0,0 +1,96 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tlog
import (
"encoding/json"
"fmt"
"io/ioutil"
"net/http"
"net/url"
"os"
"testing"
)
func TestCertificateTransparency(t *testing.T) {
// Test that we can verify actual Certificate Transparency proofs.
// (The other tests check that we can verify our own proofs;
// this is a test that the two are compatible.)
if testing.Short() {
t.Skip("skipping in -short mode")
}
var root ctTree
httpGET(t, "http://ct.googleapis.com/logs/argon2020/ct/v1/get-sth", &root)
var leaf ctEntries
httpGET(t, "http://ct.googleapis.com/logs/argon2020/ct/v1/get-entries?start=10000&end=10000", &leaf)
hash := RecordHash(leaf.Entries[0].Data)
var rp ctRecordProof
httpGET(t, "http://ct.googleapis.com/logs/argon2020/ct/v1/get-proof-by-hash?tree_size="+fmt.Sprint(root.Size)+"&hash="+url.QueryEscape(hash.String()), &rp)
err := CheckRecord(rp.Proof, root.Size, root.Hash, 10000, hash)
if err != nil {
t.Fatal(err)
}
var tp ctTreeProof
httpGET(t, "http://ct.googleapis.com/logs/argon2020/ct/v1/get-sth-consistency?first=3654490&second="+fmt.Sprint(root.Size), &tp)
oh, _ := ParseHash("AuIZ5V6sDUj1vn3Y1K85oOaQ7y+FJJKtyRTl1edIKBQ=")
err = CheckTree(tp.Proof, root.Size, root.Hash, 3654490, oh)
if err != nil {
t.Fatal(err)
}
}
type ctTree struct {
Size int64 `json:"tree_size"`
Hash Hash `json:"sha256_root_hash"`
}
type ctEntries struct {
Entries []*ctEntry
}
type ctEntry struct {
Data []byte `json:"leaf_input"`
}
type ctRecordProof struct {
Index int64 `json:"leaf_index"`
Proof RecordProof `json:"audit_path"`
}
type ctTreeProof struct {
Proof TreeProof `json:"consistency"`
}
func httpGET(t *testing.T, url string, targ interface{}) {
if testing.Verbose() {
println()
println(url)
}
resp, err := http.Get(url)
if err != nil {
t.Fatal(err)
}
defer resp.Body.Close()
data, err := ioutil.ReadAll(resp.Body)
if err != nil {
t.Fatal(err)
}
if testing.Verbose() {
os.Stdout.Write(data)
}
err = json.Unmarshal(data, targ)
if err != nil {
println(url)
os.Stdout.Write(data)
t.Fatal(err)
}
}

View File

@ -0,0 +1,135 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tlog
import (
"bytes"
"encoding/base64"
"errors"
"fmt"
"strconv"
"strings"
"unicode/utf8"
)
// A Tree is a tree description, to be signed by a go.sum database server.
type Tree struct {
N int64
Hash Hash
}
// FormatTree formats a tree description for inclusion in a note.
//
// The encoded form is three lines, each ending in a newline (U+000A):
//
// go.sum database tree
// N
// Hash
//
// where N is in decimal and Hash is in base64.
//
// A future backwards-compatible encoding may add additional lines,
// which the parser can ignore.
// A future backwards-incompatible encoding would use a different
// first line (for example, "go.sum database tree v2").
func FormatTree(tree Tree) []byte {
return []byte(fmt.Sprintf("go.sum database tree\n%d\n%s\n", tree.N, tree.Hash))
}
var errMalformedTree = errors.New("malformed tree note")
var treePrefix = []byte("go.sum database tree\n")
// ParseTree parses a tree root description.
func ParseTree(text []byte) (tree Tree, err error) {
// The message looks like:
//
// go.sum database tree
// 2
// nND/nri/U0xuHUrYSy0HtMeal2vzD9V4k/BO79C+QeI=
//
// For forwards compatibility, extra text lines after the encoding are ignored.
if !bytes.HasPrefix(text, treePrefix) || bytes.Count(text, []byte("\n")) < 3 || len(text) > 1e6 {
return Tree{}, errMalformedTree
}
lines := strings.SplitN(string(text), "\n", 4)
n, err := strconv.ParseInt(lines[1], 10, 64)
if err != nil || n < 0 || lines[1] != strconv.FormatInt(n, 10) {
return Tree{}, errMalformedTree
}
h, err := base64.StdEncoding.DecodeString(lines[2])
if err != nil || len(h) != HashSize {
return Tree{}, errMalformedTree
}
var hash Hash
copy(hash[:], h)
return Tree{n, hash}, nil
}
var errMalformedRecord = errors.New("malformed record data")
// FormatRecord formats a record for serving to a client
// in a lookup response or data tile.
//
// The encoded form is the record ID as a single number,
// then the text of the record, and then a terminating blank line.
// Record text must be valid UTF-8 and must not contain any ASCII control
// characters (those below U+0020) other than newline (U+000A).
// It must end in a terminating newline and not contain any blank lines.
func FormatRecord(id int64, text []byte) (msg []byte, err error) {
if !isValidRecordText(text) {
return nil, errMalformedRecord
}
msg = []byte(fmt.Sprintf("%d\n", id))
msg = append(msg, text...)
msg = append(msg, '\n')
return msg, nil
}
// isValidRecordText reports whether text is syntactically valid record text.
func isValidRecordText(text []byte) bool {
var last rune
for i := 0; i < len(text); {
r, size := utf8.DecodeRune(text[i:])
if r < 0x20 && r != '\n' || r == utf8.RuneError && size == 1 || last == '\n' && r == '\n' {
return false
}
i += size
last = r
}
if last != '\n' {
return false
}
return true
}
// ParseRecord parses a record description at the start of text,
// stopping immediately after the terminating blank line.
// It returns the record id, the record text, and the remainder of text.
func ParseRecord(msg []byte) (id int64, text, rest []byte, err error) {
// Leading record id.
i := bytes.IndexByte(msg, '\n')
if i < 0 {
return 0, nil, nil, errMalformedRecord
}
id, err = strconv.ParseInt(string(msg[:i]), 10, 64)
if err != nil {
return 0, nil, nil, errMalformedRecord
}
msg = msg[i+1:]
// Record text.
i = bytes.Index(msg, []byte("\n\n"))
if i < 0 {
return 0, nil, nil, errMalformedRecord
}
text, rest = msg[:i+1], msg[i+2:]
if !isValidRecordText(text) {
return 0, nil, nil, errMalformedRecord
}
return id, text, rest, nil
}

View File

@ -0,0 +1,117 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tlog
import (
"strings"
"testing"
)
func TestFormatTree(t *testing.T) {
n := int64(123456789012)
h := RecordHash([]byte("hello world"))
golden := "go.sum database tree\n123456789012\nTszzRgjTG6xce+z2AG31kAXYKBgQVtCSCE40HmuwBb0=\n"
b := FormatTree(Tree{n, h})
if string(b) != golden {
t.Errorf("FormatTree(...) = %q, want %q", b, golden)
}
}
func TestParseTree(t *testing.T) {
in := "go.sum database tree\n123456789012\nTszzRgjTG6xce+z2AG31kAXYKBgQVtCSCE40HmuwBb0=\n"
goldH := RecordHash([]byte("hello world"))
goldN := int64(123456789012)
tree, err := ParseTree([]byte(in))
if tree.N != goldN || tree.Hash != goldH || err != nil {
t.Fatalf("ParseTree(...) = Tree{%d, %v}, %v, want Tree{%d, %v}, nil", tree.N, tree.Hash, err, goldN, goldH)
}
// Check invalid trees.
var badTrees = []string{
"not-" + in,
"go.sum database tree\n0xabcdef\nTszzRgjTG6xce+z2AG31kAXYKBgQVtCSCE40HmuwBb0=\n",
"go.sum database tree\n123456789012\nTszzRgjTG6xce+z2AG31kAXYKBgQVtCSCE40HmuwBTOOBIG=\n",
}
for _, bad := range badTrees {
_, err := ParseTree([]byte(bad))
if err == nil {
t.Fatalf("ParseTree(%q) succeeded, want failure", in)
}
}
// Check junk on end is ignored.
var goodTrees = []string{
in + "JOE",
in + "JOE\n",
in + strings.Repeat("JOE\n", 1000),
}
for _, good := range goodTrees {
_, err := ParseTree([]byte(good))
if tree.N != goldN || tree.Hash != goldH || err != nil {
t.Fatalf("ParseTree(...+%q) = Tree{%d, %v}, %v, want Tree{%d, %v}, nil", good[len(in):], tree.N, tree.Hash, err, goldN, goldH)
}
}
}
func TestFormatRecord(t *testing.T) {
id := int64(123456789012)
text := "hello, world\n"
golden := "123456789012\nhello, world\n\n"
msg, err := FormatRecord(id, []byte(text))
if err != nil {
t.Fatalf("FormatRecord: %v", err)
}
if string(msg) != golden {
t.Fatalf("FormatRecord(...) = %q, want %q", msg, golden)
}
var badTexts = []string{
"",
"hello\nworld",
"hello\n\nworld\n",
"hello\x01world\n",
}
for _, bad := range badTexts {
msg, err := FormatRecord(id, []byte(bad))
if err == nil {
t.Errorf("FormatRecord(id, %q) = %q, want error", bad, msg)
}
}
}
func TestParseRecord(t *testing.T) {
in := "123456789012\nhello, world\n\njunk on end\x01\xff"
goldID := int64(123456789012)
goldText := "hello, world\n"
goldRest := "junk on end\x01\xff"
id, text, rest, err := ParseRecord([]byte(in))
if id != goldID || string(text) != goldText || string(rest) != goldRest || err != nil {
t.Fatalf("ParseRecord(%q) = %d, %q, %q, %v, want %d, %q, %q, nil", in, id, text, rest, err, goldID, goldText, goldRest)
}
in = "123456789012\nhello, world\n\n"
id, text, rest, err = ParseRecord([]byte(in))
if id != goldID || string(text) != goldText || len(rest) != 0 || err != nil {
t.Fatalf("ParseRecord(%q) = %d, %q, %q, %v, want %d, %q, %q, nil", in, id, text, rest, err, goldID, goldText, "")
}
if rest == nil {
t.Fatalf("ParseRecord(%q): rest = []byte(nil), want []byte{}", in)
}
// Check invalid records.
var badRecords = []string{
"not-" + in,
"123\nhello\x01world\n\n",
"123\nhello\xffworld\n\n",
"123\nhello world\n",
"0x123\nhello world\n\n",
}
for _, bad := range badRecords {
id, text, rest, err := ParseRecord([]byte(bad))
if err == nil {
t.Fatalf("ParseRecord(%q) = %d, %q, %q, nil, want error", in, id, text, rest)
}
}
}

View File

@ -0,0 +1,418 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tlog
import (
"fmt"
"strconv"
"strings"
)
// A Tile is a description of a transparency log tile.
// A tile of height H at level L offset N lists W consecutive hashes
// at level H*L of the tree starting at offset N*(2**H).
// A complete tile lists 2**H hashes; a partial tile lists fewer.
// Note that a tile represents the entire subtree of height H
// with those hashes as the leaves. The levels above H*L
// can be reconstructed by hashing the leaves.
//
// Each Tile can be encoded as a “tile coordinate path”
// of the form tile/H/L/NNN[.p/W].
// The .p/W suffix is present only for partial tiles, meaning W < 2**H.
// The NNN element is an encoding of N into 3-digit path elements.
// All but the last path element begins with an "x".
// For example,
// Tile{H: 3, L: 4, N: 1234067, W: 1}'s path
// is tile/3/4/x001/x234/067.p/1, and
// Tile{H: 3, L: 4, N: 1234067, W: 8}'s path
// is tile/3/4/x001/x234/067.
// See Tile's Path method and the ParseTilePath function.
//
// The special level L=-1 holds raw record data instead of hashes.
// In this case, the level encodes into a tile path as the path element
// "data" instead of "-1".
type Tile struct {
H int // height of tile (1 ≤ H ≤ 30)
L int // level in tiling (-1 ≤ L ≤ 63)
N int64 // number within level (0 ≤ N, unbounded)
W int // width of tile (1 ≤ W ≤ 2**H; 2**H is complete tile)
}
// TileForIndex returns the tile of height h ≥ 1
// and least width storing the given hash storage index.
func TileForIndex(h int, index int64) Tile {
if h < 1 {
panic("TileForIndex: invalid height")
}
t, _, _ := tileForIndex(h, index)
return t
}
// tileForIndex returns the tile of height h ≥ 1
// storing the given hash index, which can be
// reconstructed using tileHash(data[start:end]).
func tileForIndex(h int, index int64) (t Tile, start, end int) {
level, n := SplitStoredHashIndex(index)
t.H = h
t.L = level / h
level -= t.L * h // now level within tile
t.N = n << uint(level) >> uint(t.H)
n -= t.N << uint(t.H) >> uint(level) // now n within tile at level
t.W = int((n + 1) << uint(level))
return t, int(n<<uint(level)) * HashSize, int((n+1)<<uint(level)) * HashSize
}
// HashFromTile returns the hash at the given storage index,
// provided that t == TileForIndex(t.H, index) or a wider version,
// and data is t's tile data (of length at least t.W*HashSize).
func HashFromTile(t Tile, data []byte, index int64) (Hash, error) {
if t.H < 1 || t.H > 30 || t.L < 0 || t.L >= 64 || t.W < 1 || t.W > 1<<uint(t.H) {
return Hash{}, fmt.Errorf("invalid tile %v", t.Path())
}
if len(data) < t.W*HashSize {
return Hash{}, fmt.Errorf("data len %d too short for tile %v", len(data), t.Path())
}
t1, start, end := tileForIndex(t.H, index)
if t.L != t1.L || t.N != t1.N || t.W < t1.W {
return Hash{}, fmt.Errorf("index %v is in %v not %v", index, t1.Path(), t.Path())
}
return tileHash(data[start:end]), nil
}
// tileHash computes the subtree hash corresponding to the (2^K)-1 hashes in data.
func tileHash(data []byte) Hash {
if len(data) == 0 {
panic("bad math in tileHash")
}
if len(data) == HashSize {
var h Hash
copy(h[:], data)
return h
}
n := len(data) / 2
return NodeHash(tileHash(data[:n]), tileHash(data[n:]))
}
// NewTiles returns the coordinates of the tiles of height h ≥ 1
// that must be published when publishing from a tree of
// size newTreeSize to replace a tree of size oldTreeSize.
// (No tiles need to be published for a tree of size zero.)
func NewTiles(h int, oldTreeSize, newTreeSize int64) []Tile {
if h < 1 {
panic(fmt.Sprintf("NewTiles: invalid height %d", h))
}
H := uint(h)
var tiles []Tile
for level := uint(0); newTreeSize>>(H*level) > 0; level++ {
oldN := oldTreeSize >> (H * level)
newN := newTreeSize >> (H * level)
for n := oldN >> H; n < newN>>H; n++ {
tiles = append(tiles, Tile{H: h, L: int(level), N: n, W: 1 << H})
}
n := newN >> H
maxW := int(newN - n<<H)
minW := 1
if oldN > n<<H {
minW = int(oldN - n<<H)
}
for w := minW; w <= maxW; w++ {
tiles = append(tiles, Tile{H: h, L: int(level), N: n, W: w})
}
}
return tiles
}
// ReadTileData reads the hashes for tile t from r
// and returns the corresponding tile data.
func ReadTileData(t Tile, r HashReader) ([]byte, error) {
size := t.W
if size == 0 {
size = 1 << uint(t.H)
}
start := t.N << uint(t.H)
indexes := make([]int64, size)
for i := 0; i < size; i++ {
indexes[i] = StoredHashIndex(t.H*t.L, start+int64(i))
}
hashes, err := r.ReadHashes(indexes)
if err != nil {
return nil, err
}
if len(hashes) != len(indexes) {
return nil, fmt.Errorf("tlog: ReadHashes(%d indexes) = %d hashes", len(indexes), len(hashes))
}
tile := make([]byte, size*HashSize)
for i := 0; i < size; i++ {
copy(tile[i*HashSize:], hashes[i][:])
}
return tile, nil
}
// To limit the size of any particular directory listing,
// we encode the (possibly very large) number N
// by encoding three digits at a time.
// For example, 123456789 encodes as x123/x456/789.
// Each directory has at most 1000 each xNNN, NNN, and NNN.p children,
// so there are at most 3000 entries in any one directory.
const pathBase = 1000
// Path returns a tile coordinate path describing t.
func (t Tile) Path() string {
n := t.N
nStr := fmt.Sprintf("%03d", n%pathBase)
for n >= pathBase {
n /= pathBase
nStr = fmt.Sprintf("x%03d/%s", n%pathBase, nStr)
}
pStr := ""
if t.W != 1<<uint(t.H) {
pStr = fmt.Sprintf(".p/%d", t.W)
}
var L string
if t.L == -1 {
L = "data"
} else {
L = fmt.Sprintf("%d", t.L)
}
return fmt.Sprintf("tile/%d/%s/%s%s", t.H, L, nStr, pStr)
}
// ParseTilePath parses a tile coordinate path.
func ParseTilePath(path string) (Tile, error) {
f := strings.Split(path, "/")
if len(f) < 4 || f[0] != "tile" {
return Tile{}, &badPathError{path}
}
h, err1 := strconv.Atoi(f[1])
isData := false
if f[2] == "data" {
isData = true
f[2] = "0"
}
l, err2 := strconv.Atoi(f[2])
if err1 != nil || err2 != nil || h < 1 || l < 0 || h > 30 {
return Tile{}, &badPathError{path}
}
w := 1 << uint(h)
if dotP := f[len(f)-2]; strings.HasSuffix(dotP, ".p") {
ww, err := strconv.Atoi(f[len(f)-1])
if err != nil || ww <= 0 || ww >= w {
return Tile{}, &badPathError{path}
}
w = ww
f[len(f)-2] = dotP[:len(dotP)-len(".p")]
f = f[:len(f)-1]
}
f = f[3:]
n := int64(0)
for _, s := range f {
nn, err := strconv.Atoi(strings.TrimPrefix(s, "x"))
if err != nil || nn < 0 || nn >= pathBase {
return Tile{}, &badPathError{path}
}
n = n*pathBase + int64(nn)
}
if isData {
l = -1
}
t := Tile{H: h, L: l, N: n, W: w}
if path != t.Path() {
return Tile{}, &badPathError{path}
}
return t, nil
}
type badPathError struct {
path string
}
func (e *badPathError) Error() string {
return fmt.Sprintf("malformed tile path %q", e.path)
}
// A TileReader reads tiles from a go.sum database log.
type TileReader interface {
// Height returns the height of the available tiles.
Height() int
// ReadTiles returns the data for each requested tile.
// If ReadTiles returns err == nil, it must also return
// a data record for each tile (len(data) == len(tiles))
// and each data record must be the correct length
// (len(data[i]) == tiles[i].W*HashSize).
ReadTiles(tiles []Tile) (data [][]byte, err error)
// SaveTiles informs the TileReader that the tile data
// returned by ReadTiles has been confirmed as valid
// and can be saved in persistent storage (on disk).
SaveTiles(tiles []Tile, data [][]byte)
}
// TileHashReader returns a HashReader that satisfies requests
// by loading tiles of the given tree.
//
// The returned HashReader checks that loaded tiles are
// valid for the given tree. Therefore, any hashes returned
// by the HashReader are already proven to be in the tree.
func TileHashReader(tree Tree, tr TileReader) HashReader {
return &tileHashReader{tree: tree, tr: tr}
}
type tileHashReader struct {
tree Tree
tr TileReader
}
// tileParent returns t's k'th tile parent in the tiles for a tree of size n.
// If there is no such parent, tileParent returns Tile{}.
func tileParent(t Tile, k int, n int64) Tile {
t.L += k
t.N >>= uint(k * t.H)
t.W = 1 << uint(t.H)
if max := n >> uint(t.L*t.H); t.N<<uint(t.H)+int64(t.W) >= max {
if t.N<<uint(t.H) >= max {
return Tile{}
}
t.W = int(max - t.N<<uint(t.H))
}
return t
}
func (r *tileHashReader) ReadHashes(indexes []int64) ([]Hash, error) {
h := r.tr.Height()
tileOrder := make(map[Tile]int) // tileOrder[tileKey(tiles[i])] = i
var tiles []Tile
// Plan to fetch tiles necessary to recompute tree hash.
// If it matches, those tiles are authenticated.
stx := subTreeIndex(0, r.tree.N, nil)
stxTileOrder := make([]int, len(stx))
for i, x := range stx {
tile, _, _ := tileForIndex(h, x)
tile = tileParent(tile, 0, r.tree.N)
if j, ok := tileOrder[tile]; ok {
stxTileOrder[i] = j
continue
}
stxTileOrder[i] = len(tiles)
tileOrder[tile] = len(tiles)
tiles = append(tiles, tile)
}
// Plan to fetch tiles containing the indexes,
// along with any parent tiles needed
// for authentication. For most calls,
// the parents are being fetched anyway.
indexTileOrder := make([]int, len(indexes))
for i, x := range indexes {
if x >= StoredHashIndex(0, r.tree.N) {
return nil, fmt.Errorf("indexes not in tree")
}
tile, _, _ := tileForIndex(h, x)
// Walk up parent tiles until we find one we've requested.
// That one will be authenticated.
k := 0
for ; ; k++ {
p := tileParent(tile, k, r.tree.N)
if j, ok := tileOrder[p]; ok {
if k == 0 {
indexTileOrder[i] = j
}
break
}
}
// Walk back down recording child tiles after parents.
// This loop ends by revisiting the tile for this index
// (tileParent(tile, 0, r.tree.N)) unless k == 0, in which
// case the previous loop did it.
for k--; k >= 0; k-- {
p := tileParent(tile, k, r.tree.N)
if p.W != 1<<uint(p.H) {
// Only full tiles have parents.
// This tile has a parent, so it must be full.
return nil, fmt.Errorf("bad math in tileHashReader: %d %d %v", r.tree.N, x, p)
}
tileOrder[p] = len(tiles)
if k == 0 {
indexTileOrder[i] = len(tiles)
}
tiles = append(tiles, p)
}
}
// Fetch all the tile data.
data, err := r.tr.ReadTiles(tiles)
if err != nil {
return nil, err
}
if len(data) != len(tiles) {
return nil, fmt.Errorf("TileReader returned bad result slice (len=%d, want %d)", len(data), len(tiles))
}
for i, tile := range tiles {
if len(data[i]) != tile.W*HashSize {
return nil, fmt.Errorf("TileReader returned bad result slice (%v len=%d, want %d)", tile.Path(), len(data[i]), tile.W*HashSize)
}
}
// Authenticate the initial tiles against the tree hash.
// They are arranged so that parents are authenticated before children.
// First the tiles needed for the tree hash.
th, err := HashFromTile(tiles[stxTileOrder[len(stx)-1]], data[stxTileOrder[len(stx)-1]], stx[len(stx)-1])
if err != nil {
return nil, err
}
for i := len(stx) - 2; i >= 0; i-- {
h, err := HashFromTile(tiles[stxTileOrder[i]], data[stxTileOrder[i]], stx[i])
if err != nil {
return nil, err
}
th = NodeHash(h, th)
}
if th != r.tree.Hash {
// The tiles do not support the tree hash.
// We know at least one is wrong, but not which one.
return nil, fmt.Errorf("downloaded inconsistent tile")
}
// Authenticate full tiles against their parents.
for i := len(stx); i < len(tiles); i++ {
tile := tiles[i]
p := tileParent(tile, 1, r.tree.N)
j, ok := tileOrder[p]
if !ok {
return nil, fmt.Errorf("bad math in tileHashReader %d %v: lost parent of %v", r.tree.N, indexes, tile)
}
h, err := HashFromTile(p, data[j], StoredHashIndex(p.L*p.H, tile.N))
if err != nil {
return nil, fmt.Errorf("bad math in tileHashReader %d %v: lost hash of %v: %v", r.tree.N, indexes, tile, err)
}
if h != tileHash(data[i]) {
return nil, fmt.Errorf("downloaded inconsistent tile")
}
}
// Now we have all the tiles needed for the requested hashes,
// and we've authenticated the full tile set against the trusted tree hash.
r.tr.SaveTiles(tiles, data)
// Pull out the requested hashes.
hashes := make([]Hash, len(indexes))
for i, x := range indexes {
j := indexTileOrder[i]
h, err := HashFromTile(tiles[j], data[j], x)
if err != nil {
return nil, fmt.Errorf("bad math in tileHashReader %d %v: lost hash %v: %v", r.tree.N, indexes, x, err)
}
hashes[i] = h
}
return hashes, nil
}

View File

@ -0,0 +1,601 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package tlog implements a tamper-evident log
// used in the Go module go.sum database server.
//
// This package is part of a DRAFT of what the go.sum database server will look like.
// Do not assume the details here are final!
//
// This package follows the design of Certificate Transparency (RFC 6962)
// and its proofs are compatible with that system.
// See TestCertificateTransparency.
//
package tlog
import (
"crypto/sha256"
"encoding/base64"
"errors"
"fmt"
"math/bits"
)
// A Hash is a hash identifying a log record or tree root.
type Hash [HashSize]byte
// HashSize is the size of a Hash in bytes.
const HashSize = 32
// String returns a base64 representation of the hash for printing.
func (h Hash) String() string {
return base64.StdEncoding.EncodeToString(h[:])
}
// MarshalJSON marshals the hash as a JSON string containing the base64-encoded hash.
func (h Hash) MarshalJSON() ([]byte, error) {
return []byte(`"` + h.String() + `"`), nil
}
// UnmarshalJSON unmarshals a hash from JSON string containing the a base64-encoded hash.
func (h *Hash) UnmarshalJSON(data []byte) error {
if len(data) != 1+44+1 || data[0] != '"' || data[len(data)-2] != '=' || data[len(data)-1] != '"' {
return errors.New("cannot decode hash")
}
// As of Go 1.12, base64.StdEncoding.Decode insists on
// slicing into target[33:] even when it only writes 32 bytes.
// Since we already checked that the hash ends in = above,
// we can use base64.RawStdEncoding with the = removed;
// RawStdEncoding does not exhibit the same bug.
// We decode into a temporary to avoid writing anything to *h
// unless the entire input is well-formed.
var tmp Hash
n, err := base64.RawStdEncoding.Decode(tmp[:], data[1:len(data)-2])
if err != nil || n != HashSize {
return errors.New("cannot decode hash")
}
*h = tmp
return nil
}
// ParseHash parses the base64-encoded string form of a hash.
func ParseHash(s string) (Hash, error) {
data, err := base64.StdEncoding.DecodeString(s)
if err != nil || len(data) != HashSize {
return Hash{}, fmt.Errorf("malformed hash")
}
var h Hash
copy(h[:], data)
return h, nil
}
// maxpow2 returns k, the maximum power of 2 smaller than n,
// as well as l = log₂ k (so k = 1<<l).
func maxpow2(n int64) (k int64, l int) {
l = 0
for 1<<uint(l+1) < n {
l++
}
return 1 << uint(l), l
}
var zeroPrefix = []byte{0x00}
// RecordHash returns the content hash for the given record data.
func RecordHash(data []byte) Hash {
// SHA256(0x00 || data)
// https://tools.ietf.org/html/rfc6962#section-2.1
h := sha256.New()
h.Write(zeroPrefix)
h.Write(data)
var h1 Hash
h.Sum(h1[:0])
return h1
}
// NodeHash returns the hash for an interior tree node with the given left and right hashes.
func NodeHash(left, right Hash) Hash {
// SHA256(0x01 || left || right)
// https://tools.ietf.org/html/rfc6962#section-2.1
// We use a stack buffer to assemble the hash input
// to avoid allocating a hash struct with sha256.New.
var buf [1 + HashSize + HashSize]byte
buf[0] = 0x01
copy(buf[1:], left[:])
copy(buf[1+HashSize:], right[:])
return sha256.Sum256(buf[:])
}
// For information about the stored hash index ordering,
// see section 3.3 of Crosby and Wallach's paper
// "Efficient Data Structures for Tamper-Evident Logging".
// https://www.usenix.org/legacy/event/sec09/tech/full_papers/crosby.pdf
// StoredHashIndex maps the tree coordinates (level, n)
// to a dense linear ordering that can be used for hash storage.
// Hash storage implementations that store hashes in sequential
// storage can use this function to compute where to read or write
// a given hash.
func StoredHashIndex(level int, n int64) int64 {
// Level L's n'th hash is written right after level L+1's 2n+1'th hash.
// Work our way down to the level 0 ordering.
// We'll add back the orignal level count at the end.
for l := level; l > 0; l-- {
n = 2*n + 1
}
// Level 0's n'th hash is written at n+n/2+n/4+... (eventually n/2ⁱ hits zero).
i := int64(0)
for ; n > 0; n >>= 1 {
i += n
}
return i + int64(level)
}
// SplitStoredHashIndex is the inverse of StoredHashIndex.
// That is, SplitStoredHashIndex(StoredHashIndex(level, n)) == level, n.
func SplitStoredHashIndex(index int64) (level int, n int64) {
// Determine level 0 record before index.
// StoredHashIndex(0, n) < 2*n,
// so the n we want is in [index/2, index/2+log₂(index)].
n = index / 2
indexN := StoredHashIndex(0, n)
if indexN > index {
panic("bad math")
}
for {
// Each new record n adds 1 + trailingZeros(n) hashes.
x := indexN + 1 + int64(bits.TrailingZeros64(uint64(n+1)))
if x > index {
break
}
n++
indexN = x
}
// The hash we want was commited with record n,
// meaning it is one of (0, n), (1, n/2), (2, n/4), ...
level = int(index - indexN)
return level, n >> uint(level)
}
// StoredHashCount returns the number of stored hashes
// that are expected for a tree with n records.
func StoredHashCount(n int64) int64 {
if n == 0 {
return 0
}
// The tree will have the hashes up to the last leaf hash.
numHash := StoredHashIndex(0, n-1) + 1
// And it will have any hashes for subtrees completed by that leaf.
for i := uint64(n - 1); i&1 != 0; i >>= 1 {
numHash++
}
return numHash
}
// StoredHashes returns the hashes that must be stored when writing
// record n with the given data. The hashes should be stored starting
// at StoredHashIndex(0, n). The result will have at most 1 + log₂ n hashes,
// but it will average just under two per call for a sequence of calls for n=1..k.
//
// StoredHashes may read up to log n earlier hashes from r
// in order to compute hashes for completed subtrees.
func StoredHashes(n int64, data []byte, r HashReader) ([]Hash, error) {
return StoredHashesForRecordHash(n, RecordHash(data), r)
}
// StoredHashesForRecordHash is like StoredHashes but takes
// as its second argument RecordHash(data) instead of data itself.
func StoredHashesForRecordHash(n int64, h Hash, r HashReader) ([]Hash, error) {
// Start with the record hash.
hashes := []Hash{h}
// Build list of indexes needed for hashes for completed subtrees.
// Each trailing 1 bit in the binary representation of n completes a subtree
// and consumes a hash from an adjacent subtree.
m := int(bits.TrailingZeros64(uint64(n + 1)))
indexes := make([]int64, m)
for i := 0; i < m; i++ {
// We arrange indexes in sorted order.
// Note that n>>i is always odd.
indexes[m-1-i] = StoredHashIndex(i, n>>uint(i)-1)
}
// Fetch hashes.
old, err := r.ReadHashes(indexes)
if err != nil {
return nil, err
}
if len(old) != len(indexes) {
return nil, fmt.Errorf("tlog: ReadHashes(%d indexes) = %d hashes", len(indexes), len(old))
}
// Build new hashes.
for i := 0; i < m; i++ {
h = NodeHash(old[m-1-i], h)
hashes = append(hashes, h)
}
return hashes, nil
}
// A HashReader can read hashes for nodes in the log's tree structure.
type HashReader interface {
// ReadHashes returns the hashes with the given stored hash indexes
// (see StoredHashIndex and SplitStoredHashIndex).
// ReadHashes must return a slice of hashes the same length as indexes,
// or else it must return a non-nil error.
// ReadHashes may run faster if indexes is sorted in increasing order.
ReadHashes(indexes []int64) ([]Hash, error)
}
// A HashReaderFunc is a function implementing HashReader.
type HashReaderFunc func([]int64) ([]Hash, error)
func (f HashReaderFunc) ReadHashes(indexes []int64) ([]Hash, error) {
return f(indexes)
}
// TreeHash computes the hash for the root of the tree with n records,
// using the HashReader to obtain previously stored hashes
// (those returned by StoredHashes during the writes of those n records).
// TreeHash makes a single call to ReadHash requesting at most 1 + log₂ n hashes.
// The tree of size zero is defined to have an all-zero Hash.
func TreeHash(n int64, r HashReader) (Hash, error) {
if n == 0 {
return Hash{}, nil
}
indexes := subTreeIndex(0, n, nil)
hashes, err := r.ReadHashes(indexes)
if err != nil {
return Hash{}, err
}
if len(hashes) != len(indexes) {
return Hash{}, fmt.Errorf("tlog: ReadHashes(%d indexes) = %d hashes", len(indexes), len(hashes))
}
hash, hashes := subTreeHash(0, n, hashes)
if len(hashes) != 0 {
panic("tlog: bad index math in TreeHash")
}
return hash, nil
}
// subTreeIndex returns the storage indexes needed to compute
// the hash for the subtree containing records [lo, hi),
// appending them to need and returning the result.
// See https://tools.ietf.org/html/rfc6962#section-2.1
func subTreeIndex(lo, hi int64, need []int64) []int64 {
// See subTreeHash below for commentary.
for lo < hi {
k, level := maxpow2(hi - lo + 1)
if lo&(k-1) != 0 {
panic("tlog: bad math in subTreeIndex")
}
need = append(need, StoredHashIndex(level, lo>>uint(level)))
lo += k
}
return need
}
// subTreeHash computes the hash for the subtree containing records [lo, hi),
// assuming that hashes are the hashes corresponding to the indexes
// returned by subTreeIndex(lo, hi).
// It returns any leftover hashes.
func subTreeHash(lo, hi int64, hashes []Hash) (Hash, []Hash) {
// Repeatedly partition the tree into a left side with 2^level nodes,
// for as large a level as possible, and a right side with the fringe.
// The left hash is stored directly and can be read from storage.
// The right side needs further computation.
numTree := 0
for lo < hi {
k, _ := maxpow2(hi - lo + 1)
if lo&(k-1) != 0 || lo >= hi {
panic("tlog: bad math in subTreeHash")
}
numTree++
lo += k
}
if len(hashes) < numTree {
panic("tlog: bad index math in subTreeHash")
}
// Reconstruct hash.
h := hashes[numTree-1]
for i := numTree - 2; i >= 0; i-- {
h = NodeHash(hashes[i], h)
}
return h, hashes[numTree:]
}
// A RecordProof is a verifiable proof that a particular log root contains a particular record.
// RFC 6962 calls this a “Merkle audit path.”
type RecordProof []Hash
// ProveRecord returns the proof that the tree of size t contains the record with index n.
func ProveRecord(t, n int64, r HashReader) (RecordProof, error) {
if t < 0 || n < 0 || n >= t {
return nil, fmt.Errorf("tlog: invalid inputs in ProveRecord")
}
indexes := leafProofIndex(0, t, n, nil)
if len(indexes) == 0 {
return RecordProof{}, nil
}
hashes, err := r.ReadHashes(indexes)
if err != nil {
return nil, err
}
if len(hashes) != len(indexes) {
return nil, fmt.Errorf("tlog: ReadHashes(%d indexes) = %d hashes", len(indexes), len(hashes))
}
p, hashes := leafProof(0, t, n, hashes)
if len(hashes) != 0 {
panic("tlog: bad index math in ProveRecord")
}
return p, nil
}
// leafProofIndex builds the list of indexes needed to construct the proof
// that leaf n is contained in the subtree with leaves [lo, hi).
// It appends those indexes to need and returns the result.
// See https://tools.ietf.org/html/rfc6962#section-2.1.1
func leafProofIndex(lo, hi, n int64, need []int64) []int64 {
// See leafProof below for commentary.
if !(lo <= n && n < hi) {
panic("tlog: bad math in leafProofIndex")
}
if lo+1 == hi {
return need
}
if k, _ := maxpow2(hi - lo); n < lo+k {
need = leafProofIndex(lo, lo+k, n, need)
need = subTreeIndex(lo+k, hi, need)
} else {
need = subTreeIndex(lo, lo+k, need)
need = leafProofIndex(lo+k, hi, n, need)
}
return need
}
// leafProof constructs the proof that leaf n is contained in the subtree with leaves [lo, hi).
// It returns any leftover hashes as well.
// See https://tools.ietf.org/html/rfc6962#section-2.1.1
func leafProof(lo, hi, n int64, hashes []Hash) (RecordProof, []Hash) {
// We must have lo <= n < hi or else the code here has a bug.
if !(lo <= n && n < hi) {
panic("tlog: bad math in leafProof")
}
if lo+1 == hi { // n == lo
// Reached the leaf node.
// The verifier knows what the leaf hash is, so we don't need to send it.
return RecordProof{}, hashes
}
// Walk down the tree toward n.
// Record the hash of the path not taken (needed for verifying the proof).
var p RecordProof
var th Hash
if k, _ := maxpow2(hi - lo); n < lo+k {
// n is on left side
p, hashes = leafProof(lo, lo+k, n, hashes)
th, hashes = subTreeHash(lo+k, hi, hashes)
} else {
// n is on right side
th, hashes = subTreeHash(lo, lo+k, hashes)
p, hashes = leafProof(lo+k, hi, n, hashes)
}
return append(p, th), hashes
}
var errProofFailed = errors.New("invalid transparency proof")
// CheckRecord verifies that p is a valid proof that the tree of size t
// with hash th has an n'th record with hash h.
func CheckRecord(p RecordProof, t int64, th Hash, n int64, h Hash) error {
if t < 0 || n < 0 || n >= t {
return fmt.Errorf("tlog: invalid inputs in CheckRecord")
}
th2, err := runRecordProof(p, 0, t, n, h)
if err != nil {
return err
}
if th2 == th {
return nil
}
return errProofFailed
}
// runRecordProof runs the proof p that leaf n is contained in the subtree with leaves [lo, hi).
// Running the proof means constructing and returning the implied hash of that
// subtree.
func runRecordProof(p RecordProof, lo, hi, n int64, leafHash Hash) (Hash, error) {
// We must have lo <= n < hi or else the code here has a bug.
if !(lo <= n && n < hi) {
panic("tlog: bad math in runRecordProof")
}
if lo+1 == hi { // m == lo
// Reached the leaf node.
// The proof must not have any unnecessary hashes.
if len(p) != 0 {
return Hash{}, errProofFailed
}
return leafHash, nil
}
if len(p) == 0 {
return Hash{}, errProofFailed
}
k, _ := maxpow2(hi - lo)
if n < lo+k {
th, err := runRecordProof(p[:len(p)-1], lo, lo+k, n, leafHash)
if err != nil {
return Hash{}, err
}
return NodeHash(th, p[len(p)-1]), nil
} else {
th, err := runRecordProof(p[:len(p)-1], lo+k, hi, n, leafHash)
if err != nil {
return Hash{}, err
}
return NodeHash(p[len(p)-1], th), nil
}
}
// A TreeProof is a verifiable proof that a particular log tree contains
// as a prefix all records present in an earlier tree.
// RFC 6962 calls this a “Merkle consistency proof.”
type TreeProof []Hash
// ProveTree returns the proof that the tree of size t contains
// as a prefix all the records from the tree of smaller size n.
func ProveTree(t, n int64, h HashReader) (TreeProof, error) {
if t < 1 || n < 1 || n > t {
return nil, fmt.Errorf("tlog: invalid inputs in ProveTree")
}
indexes := treeProofIndex(0, t, n, nil)
if len(indexes) == 0 {
return TreeProof{}, nil
}
hashes, err := h.ReadHashes(indexes)
if err != nil {
return nil, err
}
if len(hashes) != len(indexes) {
return nil, fmt.Errorf("tlog: ReadHashes(%d indexes) = %d hashes", len(indexes), len(hashes))
}
p, hashes := treeProof(0, t, n, hashes)
if len(hashes) != 0 {
panic("tlog: bad index math in ProveTree")
}
return p, nil
}
// treeProofIndex builds the list of indexes needed to construct
// the sub-proof related to the subtree containing records [lo, hi).
// See https://tools.ietf.org/html/rfc6962#section-2.1.2.
func treeProofIndex(lo, hi, n int64, need []int64) []int64 {
// See treeProof below for commentary.
if !(lo < n && n <= hi) {
panic("tlog: bad math in treeProofIndex")
}
if n == hi {
if lo == 0 {
return need
}
return subTreeIndex(lo, hi, need)
}
if k, _ := maxpow2(hi - lo); n <= lo+k {
need = treeProofIndex(lo, lo+k, n, need)
need = subTreeIndex(lo+k, hi, need)
} else {
need = subTreeIndex(lo, lo+k, need)
need = treeProofIndex(lo+k, hi, n, need)
}
return need
}
// treeProof constructs the sub-proof related to the subtree containing records [lo, hi).
// It returns any leftover hashes as well.
// See https://tools.ietf.org/html/rfc6962#section-2.1.2.
func treeProof(lo, hi, n int64, hashes []Hash) (TreeProof, []Hash) {
// We must have lo < n <= hi or else the code here has a bug.
if !(lo < n && n <= hi) {
panic("tlog: bad math in treeProof")
}
// Reached common ground.
if n == hi {
if lo == 0 {
// This subtree corresponds exactly to the old tree.
// The verifier knows that hash, so we don't need to send it.
return TreeProof{}, hashes
}
th, hashes := subTreeHash(lo, hi, hashes)
return TreeProof{th}, hashes
}
// Interior node for the proof.
// Decide whether to walk down the left or right side.
var p TreeProof
var th Hash
if k, _ := maxpow2(hi - lo); n <= lo+k {
// m is on left side
p, hashes = treeProof(lo, lo+k, n, hashes)
th, hashes = subTreeHash(lo+k, hi, hashes)
} else {
// m is on right side
th, hashes = subTreeHash(lo, lo+k, hashes)
p, hashes = treeProof(lo+k, hi, n, hashes)
}
return append(p, th), hashes
}
// CheckTree verifies that p is a valid proof that the tree of size t with hash th
// contains as a prefix the tree of size n with hash h.
func CheckTree(p TreeProof, t int64, th Hash, n int64, h Hash) error {
if t < 1 || n < 1 || n > t {
return fmt.Errorf("tlog: invalid inputs in CheckTree")
}
h2, th2, err := runTreeProof(p, 0, t, n, h)
if err != nil {
return err
}
if th2 == th && h2 == h {
return nil
}
return errProofFailed
}
// runTreeProof runs the sub-proof p related to the subtree containing records [lo, hi),
// where old is the hash of the old tree with n records.
// Running the proof means constructing and returning the implied hashes of that
// subtree in both the old and new tree.
func runTreeProof(p TreeProof, lo, hi, n int64, old Hash) (Hash, Hash, error) {
// We must have lo < n <= hi or else the code here has a bug.
if !(lo < n && n <= hi) {
panic("tlog: bad math in runTreeProof")
}
// Reached common ground.
if n == hi {
if lo == 0 {
if len(p) != 0 {
return Hash{}, Hash{}, errProofFailed
}
return old, old, nil
}
if len(p) != 1 {
return Hash{}, Hash{}, errProofFailed
}
return p[0], p[0], nil
}
if len(p) == 0 {
return Hash{}, Hash{}, errProofFailed
}
// Interior node for the proof.
k, _ := maxpow2(hi - lo)
if n <= lo+k {
oh, th, err := runTreeProof(p[:len(p)-1], lo, lo+k, n, old)
if err != nil {
return Hash{}, Hash{}, err
}
return oh, NodeHash(th, p[len(p)-1]), nil
} else {
oh, th, err := runTreeProof(p[:len(p)-1], lo+k, hi, n, old)
if err != nil {
return Hash{}, Hash{}, err
}
return NodeHash(p[len(p)-1], oh), NodeHash(p[len(p)-1], th), nil
}
}

View File

@ -0,0 +1,269 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tlog
import (
"bytes"
"fmt"
"testing"
)
type testHashStorage []Hash
func (t testHashStorage) ReadHash(level int, n int64) (Hash, error) {
return t[StoredHashIndex(level, n)], nil
}
func (t testHashStorage) ReadHashes(index []int64) ([]Hash, error) {
// It's not required by HashReader that indexes be in increasing order,
// but check that the functions we are testing only ever ask for
// indexes in increasing order.
for i := 1; i < len(index); i++ {
if index[i-1] >= index[i] {
panic("indexes out of order")
}
}
out := make([]Hash, len(index))
for i, x := range index {
out[i] = t[x]
}
return out, nil
}
type testTilesStorage struct {
unsaved int
m map[Tile][]byte
}
func (t testTilesStorage) Height() int {
return 2
}
func (t *testTilesStorage) SaveTiles(tiles []Tile, data [][]byte) {
t.unsaved -= len(tiles)
}
func (t *testTilesStorage) ReadTiles(tiles []Tile) ([][]byte, error) {
out := make([][]byte, len(tiles))
for i, tile := range tiles {
out[i] = t.m[tile]
}
t.unsaved += len(tiles)
return out, nil
}
func TestTree(t *testing.T) {
var trees []Hash
var leafhashes []Hash
var storage testHashStorage
tiles := make(map[Tile][]byte)
const testH = 2
for i := int64(0); i < 100; i++ {
data := []byte(fmt.Sprintf("leaf %d", i))
hashes, err := StoredHashes(i, data, storage)
if err != nil {
t.Fatal(err)
}
leafhashes = append(leafhashes, RecordHash(data))
oldStorage := len(storage)
storage = append(storage, hashes...)
if count := StoredHashCount(i + 1); count != int64(len(storage)) {
t.Errorf("StoredHashCount(%d) = %d, have %d StoredHashes", i+1, count, len(storage))
}
th, err := TreeHash(i+1, storage)
if err != nil {
t.Fatal(err)
}
for _, tile := range NewTiles(testH, i, i+1) {
data, err := ReadTileData(tile, storage)
if err != nil {
t.Fatal(err)
}
old := Tile{H: tile.H, L: tile.L, N: tile.N, W: tile.W - 1}
oldData := tiles[old]
if len(oldData) != len(data)-HashSize || !bytes.Equal(oldData, data[:len(oldData)]) {
t.Fatalf("tile %v not extending earlier tile %v", tile.Path(), old.Path())
}
tiles[tile] = data
}
for _, tile := range NewTiles(testH, 0, i+1) {
data, err := ReadTileData(tile, storage)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(tiles[tile], data) {
t.Fatalf("mismatch at %+v", tile)
}
}
for _, tile := range NewTiles(testH, i/2, i+1) {
data, err := ReadTileData(tile, storage)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(tiles[tile], data) {
t.Fatalf("mismatch at %+v", tile)
}
}
// Check that all the new hashes are readable from their tiles.
for j := oldStorage; j < len(storage); j++ {
tile := TileForIndex(testH, int64(j))
data, ok := tiles[tile]
if !ok {
t.Log(NewTiles(testH, 0, i+1))
t.Fatalf("TileForIndex(%d, %d) = %v, not yet stored (i=%d, stored %d)", testH, j, tile.Path(), i, len(storage))
continue
}
h, err := HashFromTile(tile, data, int64(j))
if err != nil {
t.Fatal(err)
}
if h != storage[j] {
t.Errorf("HashFromTile(%v, %d) = %v, want %v", tile.Path(), int64(j), h, storage[j])
}
}
trees = append(trees, th)
// Check that leaf proofs work, for all trees and leaves so far.
for j := int64(0); j <= i; j++ {
p, err := ProveRecord(i+1, j, storage)
if err != nil {
t.Fatalf("ProveRecord(%d, %d): %v", i+1, j, err)
}
if err := CheckRecord(p, i+1, th, j, leafhashes[j]); err != nil {
t.Fatalf("CheckRecord(%d, %d): %v", i+1, j, err)
}
for k := range p {
p[k][0] ^= 1
if err := CheckRecord(p, i+1, th, j, leafhashes[j]); err == nil {
t.Fatalf("CheckRecord(%d, %d) succeeded with corrupt proof hash #%d!", i+1, j, k)
}
p[k][0] ^= 1
}
}
// Check that leaf proofs work using TileReader.
// To prove a leaf that way, all you have to do is read and verify its hash.
storage := &testTilesStorage{m: tiles}
thr := TileHashReader(Tree{i + 1, th}, storage)
for j := int64(0); j <= i; j++ {
h, err := thr.ReadHashes([]int64{StoredHashIndex(0, j)})
if err != nil {
t.Fatalf("TileHashReader(%d).ReadHashes(%d): %v", i+1, j, err)
}
if h[0] != leafhashes[j] {
t.Fatalf("TileHashReader(%d).ReadHashes(%d) returned wrong hash", i+1, j)
}
// Even though reading the hash suffices,
// check we can generate the proof too.
p, err := ProveRecord(i+1, j, thr)
if err != nil {
t.Fatalf("ProveRecord(%d, %d, TileHashReader(%d)): %v", i+1, j, i+1, err)
}
if err := CheckRecord(p, i+1, th, j, leafhashes[j]); err != nil {
t.Fatalf("CheckRecord(%d, %d, TileHashReader(%d)): %v", i+1, j, i+1, err)
}
}
if storage.unsaved != 0 {
t.Fatalf("TileHashReader(%d) did not save %d tiles", i+1, storage.unsaved)
}
// Check that ReadHashes will give an error if the index is not in the tree.
if _, err := thr.ReadHashes([]int64{(i + 1) * 2}); err == nil {
t.Fatalf("TileHashReader(%d).ReadHashes(%d) for index not in tree <nil>, want err", i, i+1)
}
if storage.unsaved != 0 {
t.Fatalf("TileHashReader(%d) did not save %d tiles", i+1, storage.unsaved)
}
// Check that tree proofs work, for all trees so far, using TileReader.
// To prove a tree that way, all you have to do is compute and verify its hash.
for j := int64(0); j <= i; j++ {
h, err := TreeHash(j+1, thr)
if err != nil {
t.Fatalf("TreeHash(%d, TileHashReader(%d)): %v", j, i+1, err)
}
if h != trees[j] {
t.Fatalf("TreeHash(%d, TileHashReader(%d)) = %x, want %x (%v)", j, i+1, h[:], trees[j][:], trees[j])
}
// Even though computing the subtree hash suffices,
// check that we can generate the proof too.
p, err := ProveTree(i+1, j+1, thr)
if err != nil {
t.Fatalf("ProveTree(%d, %d): %v", i+1, j+1, err)
}
if err := CheckTree(p, i+1, th, j+1, trees[j]); err != nil {
t.Fatalf("CheckTree(%d, %d): %v [%v]", i+1, j+1, err, p)
}
for k := range p {
p[k][0] ^= 1
if err := CheckTree(p, i+1, th, j+1, trees[j]); err == nil {
t.Fatalf("CheckTree(%d, %d) succeeded with corrupt proof hash #%d!", i+1, j+1, k)
}
p[k][0] ^= 1
}
}
if storage.unsaved != 0 {
t.Fatalf("TileHashReader(%d) did not save %d tiles", i+1, storage.unsaved)
}
}
}
func TestSplitStoredHashIndex(t *testing.T) {
for l := 0; l < 10; l++ {
for n := int64(0); n < 100; n++ {
x := StoredHashIndex(l, n)
l1, n1 := SplitStoredHashIndex(x)
if l1 != l || n1 != n {
t.Fatalf("StoredHashIndex(%d, %d) = %d, but SplitStoredHashIndex(%d) = %d, %d", l, n, x, x, l1, n1)
}
}
}
}
// TODO(rsc): Test invalid paths too, like "tile/3/5/123/456/078".
var tilePaths = []struct {
path string
tile Tile
}{
{"tile/4/0/001", Tile{4, 0, 1, 16}},
{"tile/4/0/001.p/5", Tile{4, 0, 1, 5}},
{"tile/3/5/x123/x456/078", Tile{3, 5, 123456078, 8}},
{"tile/3/5/x123/x456/078.p/2", Tile{3, 5, 123456078, 2}},
{"tile/1/0/x003/x057/500", Tile{1, 0, 3057500, 2}},
{"tile/3/5/123/456/078", Tile{}},
{"tile/3/-1/123/456/078", Tile{}},
{"tile/1/data/x003/x057/500", Tile{1, -1, 3057500, 2}},
}
func TestTilePath(t *testing.T) {
for _, tt := range tilePaths {
if tt.tile.H > 0 {
p := tt.tile.Path()
if p != tt.path {
t.Errorf("%+v.Path() = %q, want %q", tt.tile, p, tt.path)
}
}
tile, err := ParseTilePath(tt.path)
if err != nil {
if tt.tile.H == 0 {
// Expected error.
continue
}
t.Errorf("ParseTilePath(%q): %v", tt.path, err)
} else if tile != tt.tile {
if tt.tile.H == 0 {
t.Errorf("ParseTilePath(%q): expected error, got %+v", tt.path, tt.tile)
continue
}
t.Errorf("ParseTilePath(%q) = %+v, want %+v", tt.path, tile, tt.tile)
}
}
}