mirror of
https://github.com/golang/go
synced 2024-11-18 05:44:47 -07:00
math/big: implement Lehmer's extended GCD algorithm
Updates #15833 The extended GCD algorithm can be implemented using Lehmer's algorithm with additional updates for the cosequences following Algorithm 10.45 from Cohen et al. "Handbook of Elliptic and Hyperelliptic Curve Cryptography" pp 192. This brings the speed of the extended GCD calculation within ~2x of the base GCD calculation. There is a slight degradation in the non-extended GCD speed for small inputs (1-2 words) due to the additional code to handle the extended updates. name old time/op new time/op delta GCD10x10/WithoutXY-4 262ns ± 1% 266ns ± 2% ~ (p=0.333 n=5+5) GCD10x10/WithXY-4 1.42µs ± 2% 0.74µs ± 3% -47.90% (p=0.008 n=5+5) GCD10x100/WithoutXY-4 520ns ± 2% 539ns ± 1% +3.81% (p=0.008 n=5+5) GCD10x100/WithXY-4 2.32µs ± 1% 1.67µs ± 0% -27.80% (p=0.008 n=5+5) GCD10x1000/WithoutXY-4 1.40µs ± 1% 1.45µs ± 2% +3.26% (p=0.016 n=4+5) GCD10x1000/WithXY-4 4.78µs ± 1% 3.43µs ± 1% -28.37% (p=0.008 n=5+5) GCD10x10000/WithoutXY-4 10.0µs ± 0% 10.2µs ± 3% +1.80% (p=0.008 n=5+5) GCD10x10000/WithXY-4 20.9µs ± 3% 17.9µs ± 1% -14.20% (p=0.008 n=5+5) GCD10x100000/WithoutXY-4 96.8µs ± 0% 96.3µs ± 1% ~ (p=0.310 n=5+5) GCD10x100000/WithXY-4 196µs ± 3% 159µs ± 2% -18.61% (p=0.008 n=5+5) GCD100x100/WithoutXY-4 2.53µs ±15% 2.34µs ± 0% -7.35% (p=0.008 n=5+5) GCD100x100/WithXY-4 19.3µs ± 0% 3.9µs ± 1% -79.58% (p=0.008 n=5+5) GCD100x1000/WithoutXY-4 4.23µs ± 0% 4.17µs ± 3% ~ (p=0.127 n=5+5) GCD100x1000/WithXY-4 22.8µs ± 1% 7.5µs ±10% -67.00% (p=0.008 n=5+5) GCD100x10000/WithoutXY-4 19.1µs ± 0% 19.0µs ± 0% ~ (p=0.095 n=5+5) GCD100x10000/WithXY-4 75.1µs ± 2% 30.5µs ± 2% -59.38% (p=0.008 n=5+5) GCD100x100000/WithoutXY-4 170µs ± 5% 167µs ± 1% ~ (p=1.000 n=5+5) GCD100x100000/WithXY-4 542µs ± 2% 267µs ± 2% -50.79% (p=0.008 n=5+5) GCD1000x1000/WithoutXY-4 28.0µs ± 0% 27.1µs ± 0% -3.29% (p=0.008 n=5+5) GCD1000x1000/WithXY-4 329µs ± 0% 42µs ± 1% -87.12% (p=0.008 n=5+5) GCD1000x10000/WithoutXY-4 47.2µs ± 0% 46.4µs ± 0% -1.65% (p=0.016 n=5+4) GCD1000x10000/WithXY-4 607µs ± 9% 123µs ± 1% -79.70% (p=0.008 n=5+5) GCD1000x100000/WithoutXY-4 260µs ±17% 245µs ± 0% ~ (p=0.056 n=5+5) GCD1000x100000/WithXY-4 3.64ms ± 1% 0.93ms ± 1% -74.41% (p=0.016 n=4+5) GCD10000x10000/WithoutXY-4 513µs ± 0% 507µs ± 0% -1.22% (p=0.008 n=5+5) GCD10000x10000/WithXY-4 7.44ms ± 1% 1.00ms ± 0% -86.58% (p=0.008 n=5+5) GCD10000x100000/WithoutXY-4 1.23ms ± 0% 1.23ms ± 1% ~ (p=0.056 n=5+5) GCD10000x100000/WithXY-4 37.3ms ± 0% 7.3ms ± 1% -80.45% (p=0.008 n=5+5) GCD100000x100000/WithoutXY-4 24.2ms ± 0% 24.2ms ± 0% ~ (p=0.841 n=5+5) GCD100000x100000/WithXY-4 505ms ± 1% 56ms ± 1% -88.92% (p=0.008 n=5+5) Change-Id: I25f42ab8c55033acb83cc32bb03c12c1963925e8 Reviewed-on: https://go-review.googlesource.com/78755 Reviewed-by: Robert Griesemer <gri@golang.org> Run-TryBot: Robert Griesemer <gri@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org>
This commit is contained in:
parent
25858cce70
commit
50649a967c
@ -485,86 +485,36 @@ func (z *Int) GCD(x, y, a, b *Int) *Int {
|
||||
}
|
||||
return z
|
||||
}
|
||||
if x == nil && y == nil {
|
||||
return z.lehmerGCD(a, b)
|
||||
}
|
||||
|
||||
A := new(Int).Set(a)
|
||||
B := new(Int).Set(b)
|
||||
|
||||
X := new(Int)
|
||||
lastX := new(Int).SetInt64(1)
|
||||
|
||||
q := new(Int)
|
||||
temp := new(Int)
|
||||
|
||||
r := new(Int)
|
||||
for len(B.abs) > 0 {
|
||||
q, r = q.QuoRem(A, B, r)
|
||||
|
||||
A, B, r = B, r, A
|
||||
|
||||
temp.Set(X)
|
||||
X.Mul(X, q)
|
||||
X.Sub(lastX, X)
|
||||
lastX.Set(temp)
|
||||
}
|
||||
|
||||
if x != nil {
|
||||
*x = *lastX
|
||||
}
|
||||
|
||||
if y != nil {
|
||||
// y = (z - a*x)/b
|
||||
y.Mul(a, lastX)
|
||||
y.Sub(A, y)
|
||||
y.Div(y, b)
|
||||
}
|
||||
|
||||
*z = *A
|
||||
return z
|
||||
return z.lehmerGCD(x, y, a, b)
|
||||
}
|
||||
|
||||
// lehmerGCD sets z to the greatest common divisor of a and b,
|
||||
// which both must be > 0, and returns z.
|
||||
// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm L.
|
||||
// This implementation uses the improved condition by Collins requiring only one
|
||||
// quotient and avoiding the possibility of single Word overflow.
|
||||
// See Jebelean, "Improving the multiprecision Euclidean algorithm",
|
||||
// Design and Implementation of Symbolic Computation Systems, pp 45-58.
|
||||
func (z *Int) lehmerGCD(a, b *Int) *Int {
|
||||
// ensure a >= b
|
||||
if a.abs.cmp(b.abs) < 0 {
|
||||
a, b = b, a
|
||||
}
|
||||
|
||||
// don't destroy incoming values of a and b
|
||||
B := new(Int).Set(b) // must be set first in case b is an alias of z
|
||||
A := z.Set(a)
|
||||
|
||||
// temp variables for multiprecision update
|
||||
t := new(Int)
|
||||
r := new(Int)
|
||||
s := new(Int)
|
||||
w := new(Int)
|
||||
|
||||
// loop invariant A >= B
|
||||
for len(B.abs) > 1 {
|
||||
// lehmerSimulate attempts to simulate several Euclidean update steps
|
||||
// using the leading digits of A and B. It returns u0, u1, v0, v1
|
||||
// such that A and B can be updated as:
|
||||
// A = u0*A + v0*B
|
||||
// B = u1*A + v1*B
|
||||
// Requirements: A >= B and len(B.abs) >= 2
|
||||
// Since we are calculating with full words to avoid overflow,
|
||||
// we use 'even' to track the sign of the cosequences.
|
||||
// For even iterations: u0, v1 >= 0 && u1, v0 <= 0
|
||||
// For odd iterations: u0, v1 <= 0 && u1, v0 >= 0
|
||||
func lehmerSimulate(A, B *Int) (u0, u1, v0, v1 Word, even bool) {
|
||||
// initialize the digits
|
||||
var a1, a2, u0, u1, u2, v0, v1, v2 Word
|
||||
var a1, a2, u2, v2 Word
|
||||
|
||||
m := len(B.abs) // m >= 2
|
||||
n := len(A.abs) // n >= m >= 2
|
||||
|
||||
// extract the top Word of bits from A and B
|
||||
h := nlz(A.abs[n-1])
|
||||
a1 = (A.abs[n-1] << h) | (A.abs[n-2] >> (_W - h))
|
||||
a1 = A.abs[n-1]<<h | A.abs[n-2]>>(_W-h)
|
||||
// B may have implicit zero words in the high bits if the lengths differ
|
||||
switch {
|
||||
case n == m:
|
||||
a2 = (B.abs[n-1] << h) | (B.abs[n-2] >> (_W - h))
|
||||
a2 = B.abs[n-1]<<h | B.abs[n-2]>>(_W-h)
|
||||
case n == m+1:
|
||||
a2 = (B.abs[n-2] >> (_W - h))
|
||||
a2 = B.abs[n-2] >> (_W - h)
|
||||
default:
|
||||
a2 = 0
|
||||
}
|
||||
@ -574,7 +524,7 @@ func (z *Int) lehmerGCD(a, b *Int) *Int {
|
||||
// For even iterations: u0, v1 >= 0 && u1, v0 <= 0
|
||||
// For odd iterations: u0, v1 <= 0 && u1, v0 >= 0
|
||||
// The first iteration starts with k=1 (odd).
|
||||
even := false
|
||||
even = false
|
||||
// variables to track the cosequences
|
||||
u0, u1, u2 = 0, 1, 0
|
||||
v0, v1, v2 = 0, 0, 1
|
||||
@ -584,18 +534,23 @@ func (z *Int) lehmerGCD(a, b *Int) *Int {
|
||||
// sequence and cosequences since the cosequence size is bounded by the input size.
|
||||
// See section 4.2 of Jebelean for details.
|
||||
for a2 >= v2 && a1-a2 >= v1+v2 {
|
||||
q := a1 / a2
|
||||
a1, a2 = a2, a1-q*a2
|
||||
q, r := a1/a2, a1%a2
|
||||
a1, a2 = a2, r
|
||||
u0, u1, u2 = u1, u2, u1+q*u2
|
||||
v0, v1, v2 = v1, v2, v1+q*v2
|
||||
even = !even
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// multiprecision step
|
||||
if v0 != 0 {
|
||||
// simulate the effect of the single precision steps using the cosequences
|
||||
// A = u0*A + v0*B
|
||||
// B = u1*A + v1*B
|
||||
// lehmerUpdate updates the inputs A and B such that:
|
||||
// A = u0*A + v0*B
|
||||
// B = u1*A + v1*B
|
||||
// where the signs of u0, u1, v0, v1 are given by even
|
||||
// For even == true: u0, v1 >= 0 && u1, v0 <= 0
|
||||
// For even == false: u0, v1 <= 0 && u1, v0 >= 0
|
||||
// q, r, s, t are temporary variables to avoid allocations in the multiplication
|
||||
func lehmerUpdate(A, B, q, r, s, t *Int, u0, u1, v0, v1 Word, even bool) {
|
||||
|
||||
t.abs = t.abs.setWord(u0)
|
||||
s.abs = s.abs.setWord(v0)
|
||||
@ -606,41 +561,147 @@ func (z *Int) lehmerGCD(a, b *Int) *Int {
|
||||
s.Mul(B, s)
|
||||
|
||||
r.abs = r.abs.setWord(u1)
|
||||
w.abs = w.abs.setWord(v1)
|
||||
q.abs = q.abs.setWord(v1)
|
||||
r.neg = even
|
||||
w.neg = !even
|
||||
q.neg = !even
|
||||
|
||||
r.Mul(A, r)
|
||||
w.Mul(B, w)
|
||||
q.Mul(B, q)
|
||||
|
||||
A.Add(t, s)
|
||||
B.Add(r, w)
|
||||
B.Add(r, q)
|
||||
}
|
||||
|
||||
// euclidUpdate performs a single step of the Euclidean GCD algorithm
|
||||
// if extended is true, it also updates the cosequence Ua, Ub
|
||||
func euclidUpdate(A, B, Ua, Ub, q, r, s, t *Int, extended bool) {
|
||||
q, r = q.QuoRem(A, B, r)
|
||||
|
||||
*A, *B, *r = *B, *r, *A
|
||||
|
||||
if extended {
|
||||
// Ua, Ub = Ub, Ua - q*Ub
|
||||
t.Set(Ub)
|
||||
s.Mul(Ub, q)
|
||||
Ub.Sub(Ua, s)
|
||||
Ua.Set(t)
|
||||
}
|
||||
}
|
||||
|
||||
// lehmerGCD sets z to the greatest common divisor of a and b,
|
||||
// which both must be > 0, and returns z.
|
||||
// If x or y are not nil, their values are set such that z = a*x + b*y.
|
||||
// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm L.
|
||||
// This implementation uses the improved condition by Collins requiring only one
|
||||
// quotient and avoiding the possibility of single Word overflow.
|
||||
// See Jebelean, "Improving the multiprecision Euclidean algorithm",
|
||||
// Design and Implementation of Symbolic Computation Systems, pp 45-58.
|
||||
// The cosequences are updated according to Algorithm 10.45 from
|
||||
// Cohen et al. "Handbook of Elliptic and Hyperelliptic Curve Cryptography" pp 192.
|
||||
func (z *Int) lehmerGCD(x, y, a, b *Int) *Int {
|
||||
var A, B, Ua, Ub *Int
|
||||
|
||||
A = new(Int).Set(a)
|
||||
B = new(Int).Set(b)
|
||||
|
||||
extended := x != nil || y != nil
|
||||
|
||||
if extended {
|
||||
// Ua (Ub) tracks how many times input a has been accumulated into A (B).
|
||||
Ua = new(Int).SetInt64(1)
|
||||
Ub = new(Int)
|
||||
}
|
||||
|
||||
// temp variables for multiprecision update
|
||||
q := new(Int)
|
||||
r := new(Int)
|
||||
s := new(Int)
|
||||
t := new(Int)
|
||||
|
||||
// ensure A >= B
|
||||
if A.abs.cmp(B.abs) < 0 {
|
||||
A, B = B, A
|
||||
Ub, Ua = Ua, Ub
|
||||
}
|
||||
|
||||
// loop invariant A >= B
|
||||
for len(B.abs) > 1 {
|
||||
// Attempt to calculate in single-precision using leading words of A and B.
|
||||
u0, u1, v0, v1, even := lehmerSimulate(A, B)
|
||||
|
||||
// multiprecision Step
|
||||
if v0 != 0 {
|
||||
// Simulate the effect of the single-precision steps using the cosequences.
|
||||
// A = u0*A + v0*B
|
||||
// B = u1*A + v1*B
|
||||
lehmerUpdate(A, B, q, r, s, t, u0, u1, v0, v1, even)
|
||||
|
||||
if extended {
|
||||
// Ua = u0*Ua + v0*Ub
|
||||
// Ub = u1*Ua + v1*Ub
|
||||
lehmerUpdate(Ua, Ub, q, r, s, t, u0, u1, v0, v1, even)
|
||||
}
|
||||
|
||||
} else {
|
||||
// single-digit calculations failed to simulate any quotients
|
||||
// do a standard Euclidean step
|
||||
t.Rem(A, B)
|
||||
A, B, t = B, t, A
|
||||
// Single-digit calculations failed to simulate any quotients.
|
||||
// Do a standard Euclidean step.
|
||||
euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended)
|
||||
}
|
||||
}
|
||||
|
||||
if len(B.abs) > 0 {
|
||||
// standard Euclidean algorithm base case for B a single Word
|
||||
// extended Euclidean algorithm base case if B is a single Word
|
||||
if len(A.abs) > 1 {
|
||||
// A is longer than a single Word
|
||||
t.Rem(A, B)
|
||||
A, B, t = B, t, A
|
||||
// A is longer than a single Word, so one update is needed.
|
||||
euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended)
|
||||
}
|
||||
if len(B.abs) > 0 {
|
||||
// A and B are both a single Word
|
||||
a1, a2 := A.abs[0], B.abs[0]
|
||||
for a2 != 0 {
|
||||
a1, a2 = a2, a1%a2
|
||||
// A and B are both a single Word.
|
||||
aWord, bWord := A.abs[0], B.abs[0]
|
||||
if extended {
|
||||
var ua, ub, va, vb Word
|
||||
ua, ub = 1, 0
|
||||
va, vb = 0, 1
|
||||
even := true
|
||||
for bWord != 0 {
|
||||
q, r := aWord/bWord, aWord%bWord
|
||||
aWord, bWord = bWord, r
|
||||
ua, ub = ub, ua+q*ub
|
||||
va, vb = vb, va+q*vb
|
||||
even = !even
|
||||
}
|
||||
A.abs[0] = a1
|
||||
|
||||
t.abs = t.abs.setWord(ua)
|
||||
s.abs = s.abs.setWord(va)
|
||||
t.neg = !even
|
||||
s.neg = even
|
||||
|
||||
t.Mul(Ua, t)
|
||||
s.Mul(Ub, s)
|
||||
|
||||
Ua.Add(t, s)
|
||||
} else {
|
||||
for bWord != 0 {
|
||||
aWord, bWord = bWord, aWord%bWord
|
||||
}
|
||||
}
|
||||
A.abs[0] = aWord
|
||||
}
|
||||
}
|
||||
|
||||
if x != nil {
|
||||
*x = *Ua
|
||||
}
|
||||
|
||||
if y != nil {
|
||||
// y = (z - a*x)/b
|
||||
y.Mul(a, Ua)
|
||||
y.Sub(A, y)
|
||||
y.Div(y, b)
|
||||
}
|
||||
|
||||
*z = *A
|
||||
|
||||
return z
|
||||
}
|
||||
|
||||
|
@ -675,21 +675,43 @@ func checkGcd(aBytes, bBytes []byte) bool {
|
||||
return x.Cmp(d) == 0
|
||||
}
|
||||
|
||||
// euclidGCD is a reference implementation of Euclid's GCD
|
||||
// algorithm for testing against optimized algorithms.
|
||||
// euclidExtGCD is a reference implementation of Euclid's
|
||||
// extended GCD algorithm for testing against optimized algorithms.
|
||||
// Requirements: a, b > 0
|
||||
func euclidGCD(a, b *Int) *Int {
|
||||
|
||||
func euclidExtGCD(a, b *Int) (g, x, y *Int) {
|
||||
A := new(Int).Set(a)
|
||||
B := new(Int).Set(b)
|
||||
t := new(Int)
|
||||
|
||||
// A = Ua*a + Va*b
|
||||
// B = Ub*a + Vb*b
|
||||
Ua := new(Int).SetInt64(1)
|
||||
Va := new(Int)
|
||||
|
||||
Ub := new(Int)
|
||||
Vb := new(Int).SetInt64(1)
|
||||
|
||||
q := new(Int)
|
||||
temp := new(Int)
|
||||
|
||||
r := new(Int)
|
||||
for len(B.abs) > 0 {
|
||||
// A, B = B, A % B
|
||||
t.Rem(A, B)
|
||||
A, B, t = B, t, A
|
||||
q, r = q.QuoRem(A, B, r)
|
||||
|
||||
A, B, r = B, r, A
|
||||
|
||||
// Ua, Ub = Ub, Ua-q*Ub
|
||||
temp.Set(Ub)
|
||||
Ub.Mul(Ub, q)
|
||||
Ub.Sub(Ua, Ub)
|
||||
Ua.Set(temp)
|
||||
|
||||
// Va, Vb = Vb, Va-q*Vb
|
||||
temp.Set(Vb)
|
||||
Vb.Mul(Vb, q)
|
||||
Vb.Sub(Va, Vb)
|
||||
Va.Set(temp)
|
||||
}
|
||||
return A
|
||||
return A, Ua, Va
|
||||
}
|
||||
|
||||
func checkLehmerGcd(aBytes, bBytes []byte) bool {
|
||||
@ -700,12 +722,28 @@ func checkLehmerGcd(aBytes, bBytes []byte) bool {
|
||||
return true // can only test positive arguments
|
||||
}
|
||||
|
||||
d := new(Int).lehmerGCD(a, b)
|
||||
d0 := euclidGCD(a, b)
|
||||
d := new(Int).lehmerGCD(nil, nil, a, b)
|
||||
d0, _, _ := euclidExtGCD(a, b)
|
||||
|
||||
return d.Cmp(d0) == 0
|
||||
}
|
||||
|
||||
func checkLehmerExtGcd(aBytes, bBytes []byte) bool {
|
||||
a := new(Int).SetBytes(aBytes)
|
||||
b := new(Int).SetBytes(bBytes)
|
||||
x := new(Int)
|
||||
y := new(Int)
|
||||
|
||||
if a.Sign() <= 0 || b.Sign() <= 0 {
|
||||
return true // can only test positive arguments
|
||||
}
|
||||
|
||||
d := new(Int).lehmerGCD(x, y, a, b)
|
||||
d0, x0, y0 := euclidExtGCD(a, b)
|
||||
|
||||
return d.Cmp(d0) == 0 && x.Cmp(x0) == 0 && y.Cmp(y0) == 0
|
||||
}
|
||||
|
||||
var gcdTests = []struct {
|
||||
d, x, y, a, b string
|
||||
}{
|
||||
@ -785,6 +823,10 @@ func TestGcd(t *testing.T) {
|
||||
if err := quick.Check(checkLehmerGcd, nil); err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
|
||||
if err := quick.Check(checkLehmerExtGcd, nil); err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
}
|
||||
|
||||
type intShiftTest struct {
|
||||
|
@ -422,7 +422,7 @@ func (z *Rat) norm() *Rat {
|
||||
neg := z.a.neg
|
||||
z.a.neg = false
|
||||
z.b.neg = false
|
||||
if f := NewInt(0).lehmerGCD(&z.a, &z.b); f.Cmp(intOne) != 0 {
|
||||
if f := NewInt(0).lehmerGCD(nil, nil, &z.a, &z.b); f.Cmp(intOne) != 0 {
|
||||
z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs)
|
||||
z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs)
|
||||
if z.b.abs.cmp(natOne) == 0 {
|
||||
|
Loading…
Reference in New Issue
Block a user