1
0
mirror of https://github.com/golang/go synced 2024-11-24 22:00:09 -07:00

crypto/openpgp: add key generation support.

This change adds a function for generating new Entities and inchoate
support for reserialising Entities.

R=bradfitz, r, bradfitz
CC=golang-dev
https://golang.org/cl/4551044
This commit is contained in:
Adam Langley 2011-05-20 09:36:20 -07:00
parent b22151f7dc
commit 4fdcb7b684
8 changed files with 415 additions and 37 deletions

View File

@ -5,9 +5,11 @@
package openpgp package openpgp
import ( import (
"crypto"
"crypto/openpgp/armor" "crypto/openpgp/armor"
"crypto/openpgp/error" "crypto/openpgp/error"
"crypto/openpgp/packet" "crypto/openpgp/packet"
"crypto/rsa"
"io" "io"
"os" "os"
) )
@ -297,3 +299,104 @@ func addSubkey(e *Entity, packets *packet.Reader, pub *packet.PublicKey, priv *p
e.Subkeys = append(e.Subkeys, subKey) e.Subkeys = append(e.Subkeys, subKey)
return nil return nil
} }
const defaultRSAKeyBits = 2048
// NewEntity returns an Entity that contains a fresh RSA/RSA keypair with a
// single identity composed of the given full name, comment and email, any of
// which may be empty but must not contain any of "()<>\x00".
func NewEntity(rand io.Reader, currentTimeSecs int64, name, comment, email string) (*Entity, os.Error) {
uid := packet.NewUserId(name, comment, email)
if uid == nil {
return nil, error.InvalidArgumentError("user id field contained invalid characters")
}
signingPriv, err := rsa.GenerateKey(rand, defaultRSAKeyBits)
if err != nil {
return nil, err
}
encryptingPriv, err := rsa.GenerateKey(rand, defaultRSAKeyBits)
if err != nil {
return nil, err
}
t := uint32(currentTimeSecs)
e := &Entity{
PrimaryKey: packet.NewRSAPublicKey(t, &signingPriv.PublicKey, false /* not a subkey */ ),
PrivateKey: packet.NewRSAPrivateKey(t, signingPriv, false /* not a subkey */ ),
Identities: make(map[string]*Identity),
}
isPrimaryId := true
e.Identities[uid.Id] = &Identity{
Name: uid.Name,
UserId: uid,
SelfSignature: &packet.Signature{
CreationTime: t,
SigType: packet.SigTypePositiveCert,
PubKeyAlgo: packet.PubKeyAlgoRSA,
Hash: crypto.SHA256,
IsPrimaryId: &isPrimaryId,
FlagsValid: true,
FlagSign: true,
FlagCertify: true,
IssuerKeyId: &e.PrimaryKey.KeyId,
},
}
e.Subkeys = make([]Subkey, 1)
e.Subkeys[0] = Subkey{
PublicKey: packet.NewRSAPublicKey(t, &encryptingPriv.PublicKey, true /* is a subkey */ ),
PrivateKey: packet.NewRSAPrivateKey(t, encryptingPriv, true /* is a subkey */ ),
Sig: &packet.Signature{
CreationTime: t,
SigType: packet.SigTypeSubkeyBinding,
PubKeyAlgo: packet.PubKeyAlgoRSA,
Hash: crypto.SHA256,
FlagsValid: true,
FlagEncryptStorage: true,
FlagEncryptCommunications: true,
IssuerKeyId: &e.PrimaryKey.KeyId,
},
}
return e, nil
}
// SerializePrivate serializes an Entity, including private key material, to
// the given Writer. For now, it must only be used on an Entity returned from
// NewEntity.
func (e *Entity) SerializePrivate(w io.Writer) (err os.Error) {
err = e.PrivateKey.Serialize(w)
if err != nil {
return
}
for _, ident := range e.Identities {
err = ident.UserId.Serialize(w)
if err != nil {
return
}
err = ident.SelfSignature.SignUserId(ident.UserId.Id, e.PrimaryKey, e.PrivateKey)
if err != nil {
return
}
err = ident.SelfSignature.Serialize(w)
if err != nil {
return
}
}
for _, subkey := range e.Subkeys {
err = subkey.PrivateKey.Serialize(w)
if err != nil {
return
}
err = subkey.Sig.SignKey(subkey.PublicKey, e.PrivateKey)
if err != nil {
return
}
err = subkey.Sig.Serialize(w)
if err != nil {
return
}
}
return nil
}

View File

@ -32,6 +32,13 @@ type PrivateKey struct {
iv []byte iv []byte
} }
func NewRSAPrivateKey(currentTimeSecs uint32, priv *rsa.PrivateKey, isSubkey bool) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewRSAPublicKey(currentTimeSecs, &priv.PublicKey, isSubkey)
pk.PrivateKey = priv
return pk
}
func (pk *PrivateKey) parse(r io.Reader) (err os.Error) { func (pk *PrivateKey) parse(r io.Reader) (err os.Error) {
err = (&pk.PublicKey).parse(r) err = (&pk.PublicKey).parse(r)
if err != nil { if err != nil {
@ -91,6 +98,83 @@ func (pk *PrivateKey) parse(r io.Reader) (err os.Error) {
return return
} }
func mod64kHash(d []byte) uint16 {
h := uint16(0)
for i := 0; i < len(d); i += 2 {
v := uint16(d[i]) << 8
if i+1 < len(d) {
v += uint16(d[i+1])
}
h += v
}
return h
}
func (pk *PrivateKey) Serialize(w io.Writer) (err os.Error) {
// TODO(agl): support encrypted private keys
buf := bytes.NewBuffer(nil)
err = pk.PublicKey.serializeWithoutHeaders(buf)
if err != nil {
return
}
buf.WriteByte(0 /* no encryption */ )
privateKeyBuf := bytes.NewBuffer(nil)
switch priv := pk.PrivateKey.(type) {
case *rsa.PrivateKey:
err = serializeRSAPrivateKey(privateKeyBuf, priv)
default:
err = error.InvalidArgumentError("non-RSA private key")
}
if err != nil {
return
}
ptype := packetTypePrivateKey
contents := buf.Bytes()
privateKeyBytes := privateKeyBuf.Bytes()
if pk.IsSubkey {
ptype = packetTypePrivateSubkey
}
err = serializeHeader(w, ptype, len(contents)+len(privateKeyBytes)+2)
if err != nil {
return
}
_, err = w.Write(contents)
if err != nil {
return
}
_, err = w.Write(privateKeyBytes)
if err != nil {
return
}
checksum := mod64kHash(privateKeyBytes)
var checksumBytes [2]byte
checksumBytes[0] = byte(checksum >> 8)
checksumBytes[1] = byte(checksum)
_, err = w.Write(checksumBytes[:])
return
}
func serializeRSAPrivateKey(w io.Writer, priv *rsa.PrivateKey) os.Error {
err := writeBig(w, priv.D)
if err != nil {
return err
}
err = writeBig(w, priv.Primes[1])
if err != nil {
return err
}
err = writeBig(w, priv.Primes[0])
if err != nil {
return err
}
return writeBig(w, priv.Precomputed.Qinv)
}
// Decrypt decrypts an encrypted private key using a passphrase. // Decrypt decrypts an encrypted private key using a passphrase.
func (pk *PrivateKey) Decrypt(passphrase []byte) os.Error { func (pk *PrivateKey) Decrypt(passphrase []byte) os.Error {
if !pk.Encrypted { if !pk.Encrypted {

View File

@ -30,6 +30,28 @@ type PublicKey struct {
n, e, p, q, g, y parsedMPI n, e, p, q, g, y parsedMPI
} }
func fromBig(n *big.Int) parsedMPI {
return parsedMPI{
bytes: n.Bytes(),
bitLength: uint16(n.BitLen()),
}
}
// NewRSAPublicKey returns a PublicKey that wraps the given rsa.PublicKey.
func NewRSAPublicKey(creationTimeSecs uint32, pub *rsa.PublicKey, isSubkey bool) *PublicKey {
pk := &PublicKey{
CreationTime: creationTimeSecs,
PubKeyAlgo: PubKeyAlgoRSA,
PublicKey: pub,
IsSubkey: isSubkey,
n: fromBig(pub.N),
e: fromBig(big.NewInt(int64(pub.E))),
}
pk.setFingerPrintAndKeyId()
return pk
}
func (pk *PublicKey) parse(r io.Reader) (err os.Error) { func (pk *PublicKey) parse(r io.Reader) (err os.Error) {
// RFC 4880, section 5.5.2 // RFC 4880, section 5.5.2
var buf [6]byte var buf [6]byte
@ -54,14 +76,17 @@ func (pk *PublicKey) parse(r io.Reader) (err os.Error) {
return return
} }
pk.setFingerPrintAndKeyId()
return
}
func (pk *PublicKey) setFingerPrintAndKeyId() {
// RFC 4880, section 12.2 // RFC 4880, section 12.2
fingerPrint := sha1.New() fingerPrint := sha1.New()
pk.SerializeSignaturePrefix(fingerPrint) pk.SerializeSignaturePrefix(fingerPrint)
pk.serializeWithoutHeaders(fingerPrint) pk.serializeWithoutHeaders(fingerPrint)
copy(pk.Fingerprint[:], fingerPrint.Sum()) copy(pk.Fingerprint[:], fingerPrint.Sum())
pk.KeyId = binary.BigEndian.Uint64(pk.Fingerprint[12:20]) pk.KeyId = binary.BigEndian.Uint64(pk.Fingerprint[12:20])
return
} }
// parseRSA parses RSA public key material from the given Reader. See RFC 4880, // parseRSA parses RSA public key material from the given Reader. See RFC 4880,
@ -232,12 +257,12 @@ func (pk *PublicKey) VerifySignature(signed hash.Hash, sig *Signature) (err os.E
panic("unreachable") panic("unreachable")
} }
// VerifyKeySignature returns nil iff sig is a valid signature, make by this // keySignatureHash returns a Hash of the message that needs to be signed for
// public key, of the public key in signed. // pk to assert a subkey relationship to signed.
func (pk *PublicKey) VerifyKeySignature(signed *PublicKey, sig *Signature) (err os.Error) { func keySignatureHash(pk, signed *PublicKey, sig *Signature) (h hash.Hash, err os.Error) {
h := sig.Hash.New() h = sig.Hash.New()
if h == nil { if h == nil {
return error.UnsupportedError("hash function") return nil, error.UnsupportedError("hash function")
} }
// RFC 4880, section 5.2.4 // RFC 4880, section 5.2.4
@ -245,16 +270,25 @@ func (pk *PublicKey) VerifyKeySignature(signed *PublicKey, sig *Signature) (err
pk.serializeWithoutHeaders(h) pk.serializeWithoutHeaders(h)
signed.SerializeSignaturePrefix(h) signed.SerializeSignaturePrefix(h)
signed.serializeWithoutHeaders(h) signed.serializeWithoutHeaders(h)
return
}
// VerifyKeySignature returns nil iff sig is a valid signature, made by this
// public key, of signed.
func (pk *PublicKey) VerifyKeySignature(signed *PublicKey, sig *Signature) (err os.Error) {
h, err := keySignatureHash(pk, signed, sig)
if err != nil {
return err
}
return pk.VerifySignature(h, sig) return pk.VerifySignature(h, sig)
} }
// VerifyUserIdSignature returns nil iff sig is a valid signature, make by this // userIdSignatureHash returns a Hash of the message that needs to be signed
// public key, of the given user id. // to assert that pk is a valid key for id.
func (pk *PublicKey) VerifyUserIdSignature(id string, sig *Signature) (err os.Error) { func userIdSignatureHash(id string, pk *PublicKey, sig *Signature) (h hash.Hash, err os.Error) {
h := sig.Hash.New() h = sig.Hash.New()
if h == nil { if h == nil {
return error.UnsupportedError("hash function") return nil, error.UnsupportedError("hash function")
} }
// RFC 4880, section 5.2.4 // RFC 4880, section 5.2.4
@ -270,6 +304,16 @@ func (pk *PublicKey) VerifyUserIdSignature(id string, sig *Signature) (err os.Er
h.Write(buf[:]) h.Write(buf[:])
h.Write([]byte(id)) h.Write([]byte(id))
return
}
// VerifyUserIdSignature returns nil iff sig is a valid signature, made by this
// public key, of id.
func (pk *PublicKey) VerifyUserIdSignature(id string, sig *Signature) (err os.Error) {
h, err := userIdSignatureHash(id, pk, sig)
if err != nil {
return err
}
return pk.VerifySignature(h, sig) return pk.VerifySignature(h, sig)
} }

View File

@ -420,28 +420,46 @@ func (sig *Signature) signPrepareHash(h hash.Hash) (digest []byte, err os.Error)
return return
} }
// SignRSA signs a message with an RSA private key. The hash, h, must contain // Sign signs a message with a private key. The hash, h, must contain
// the hash of the message to be signed and will be mutated by this function. // the hash of the message to be signed and will be mutated by this function.
// On success, the signature is stored in sig. Call Serialize to write it out. // On success, the signature is stored in sig. Call Serialize to write it out.
func (sig *Signature) SignRSA(h hash.Hash, priv *rsa.PrivateKey) (err os.Error) { func (sig *Signature) Sign(h hash.Hash, priv *PrivateKey) (err os.Error) {
digest, err := sig.signPrepareHash(h) digest, err := sig.signPrepareHash(h)
if err != nil { if err != nil {
return return
} }
sig.RSASignature, err = rsa.SignPKCS1v15(rand.Reader, priv, sig.Hash, digest)
switch priv.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
sig.RSASignature, err = rsa.SignPKCS1v15(rand.Reader, priv.PrivateKey.(*rsa.PrivateKey), sig.Hash, digest)
case PubKeyAlgoDSA:
sig.DSASigR, sig.DSASigS, err = dsa.Sign(rand.Reader, priv.PrivateKey.(*dsa.PrivateKey), digest)
default:
err = error.UnsupportedError("public key algorithm: " + strconv.Itoa(int(sig.PubKeyAlgo)))
}
return return
} }
// SignDSA signs a message with a DSA private key. The hash, h, must contain // SignUserId computes a signature from priv, asserting that pub is a valid
// the hash of the message to be signed and will be mutated by this function. // key for the identity id. On success, the signature is stored in sig. Call
// On success, the signature is stored in sig. Call Serialize to write it out. // Serialize to write it out.
func (sig *Signature) SignDSA(h hash.Hash, priv *dsa.PrivateKey) (err os.Error) { func (sig *Signature) SignUserId(id string, pub *PublicKey, priv *PrivateKey) os.Error {
digest, err := sig.signPrepareHash(h) h, err := userIdSignatureHash(id, pub, sig)
if err != nil { if err != nil {
return return nil
} }
sig.DSASigR, sig.DSASigS, err = dsa.Sign(rand.Reader, priv, digest) return sig.Sign(h, priv)
return }
// SignKey computes a signature from priv, asserting that pub is a subkey. On
// success, the signature is stored in sig. Call Serialize to write it out.
func (sig *Signature) SignKey(pub *PublicKey, priv *PrivateKey) os.Error {
h, err := keySignatureHash(&priv.PublicKey, pub, sig)
if err != nil {
return err
}
return sig.Sign(h, priv)
} }
// Serialize marshals sig to w. SignRSA or SignDSA must have been called first. // Serialize marshals sig to w. SignRSA or SignDSA must have been called first.

View File

@ -20,6 +20,51 @@ type UserId struct {
Name, Comment, Email string Name, Comment, Email string
} }
func hasInvalidCharacters(s string) bool {
for _, c := range s {
switch c {
case '(', ')', '<', '>', 0:
return true
}
}
return false
}
// NewUserId returns a UserId or nil if any of the arguments contain invalid
// characters. The invalid characters are '\x00', '(', ')', '<' and '>'
func NewUserId(name, comment, email string) *UserId {
// RFC 4880 doesn't deal with the structure of userid strings; the
// name, comment and email form is just a convention. However, there's
// no convention about escaping the metacharacters and GPG just refuses
// to create user ids where, say, the name contains a '('. We mirror
// this behaviour.
if hasInvalidCharacters(name) || hasInvalidCharacters(comment) || hasInvalidCharacters(email) {
return nil
}
uid := new(UserId)
uid.Name, uid.Comment, uid.Email = name, comment, email
uid.Id = name
if len(comment) > 0 {
if len(uid.Id) > 0 {
uid.Id += " "
}
uid.Id += "("
uid.Id += comment
uid.Id += ")"
}
if len(email) > 0 {
if len(uid.Id) > 0 {
uid.Id += " "
}
uid.Id += "<"
uid.Id += email
uid.Id += ">"
}
return uid
}
func (uid *UserId) parse(r io.Reader) (err os.Error) { func (uid *UserId) parse(r io.Reader) (err os.Error) {
// RFC 4880, section 5.11 // RFC 4880, section 5.11
b, err := ioutil.ReadAll(r) b, err := ioutil.ReadAll(r)
@ -31,6 +76,17 @@ func (uid *UserId) parse(r io.Reader) (err os.Error) {
return return
} }
// Serialize marshals uid to w in the form of an OpenPGP packet, including
// header.
func (uid *UserId) Serialize(w io.Writer) os.Error {
err := serializeHeader(w, packetTypeUserId, len(uid.Id))
if err != nil {
return err
}
_, err = w.Write([]byte(uid.Id))
return err
}
// parseUserId extracts the name, comment and email from a user id string that // parseUserId extracts the name, comment and email from a user id string that
// is formatted as "Full Name (Comment) <email@example.com>". // is formatted as "Full Name (Comment) <email@example.com>".
func parseUserId(id string) (name, comment, email string) { func parseUserId(id string) (name, comment, email string) {

View File

@ -40,3 +40,48 @@ func TestParseUserId(t *testing.T) {
} }
} }
} }
var newUserIdTests = []struct {
name, comment, email, id string
}{
{"foo", "", "", "foo"},
{"", "bar", "", "(bar)"},
{"", "", "baz", "<baz>"},
{"foo", "bar", "", "foo (bar)"},
{"foo", "", "baz", "foo <baz>"},
{"", "bar", "baz", "(bar) <baz>"},
{"foo", "bar", "baz", "foo (bar) <baz>"},
}
func TestNewUserId(t *testing.T) {
for i, test := range newUserIdTests {
uid := NewUserId(test.name, test.comment, test.email)
if uid == nil {
t.Errorf("#%d: returned nil", i)
continue
}
if uid.Id != test.id {
t.Errorf("#%d: got '%s', want '%s'", i, uid.Id, test.id)
}
}
}
var invalidNewUserIdTests = []struct {
name, comment, email string
}{
{"foo(", "", ""},
{"foo<", "", ""},
{"", "bar)", ""},
{"", "bar<", ""},
{"", "", "baz>"},
{"", "", "baz)"},
{"", "", "baz\x00"},
}
func TestNewUserIdWithInvalidInput(t *testing.T) {
for i, test := range invalidNewUserIdTests {
if uid := NewUserId(test.name, test.comment, test.email); uid != nil {
t.Errorf("#%d: returned non-nil value: %#v", i, uid)
}
}
}

View File

@ -6,15 +6,12 @@ package openpgp
import ( import (
"crypto" "crypto"
"crypto/dsa"
"crypto/openpgp/armor" "crypto/openpgp/armor"
"crypto/openpgp/error" "crypto/openpgp/error"
"crypto/openpgp/packet" "crypto/openpgp/packet"
"crypto/rsa"
_ "crypto/sha256" _ "crypto/sha256"
"io" "io"
"os" "os"
"strconv"
"time" "time"
) )
@ -77,17 +74,7 @@ func detachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.S
} }
io.Copy(wrappedHash, message) io.Copy(wrappedHash, message)
switch signer.PrivateKey.PubKeyAlgo { err = sig.Sign(h, signer.PrivateKey)
case packet.PubKeyAlgoRSA, packet.PubKeyAlgoRSASignOnly:
priv := signer.PrivateKey.PrivateKey.(*rsa.PrivateKey)
err = sig.SignRSA(h, priv)
case packet.PubKeyAlgoDSA:
priv := signer.PrivateKey.PrivateKey.(*dsa.PrivateKey)
err = sig.SignDSA(h, priv)
default:
err = error.UnsupportedError("public key algorithm: " + strconv.Itoa(int(sig.PubKeyAlgo)))
}
if err != nil { if err != nil {
return return
} }

View File

@ -6,7 +6,9 @@ package openpgp
import ( import (
"bytes" "bytes"
"crypto/rand"
"testing" "testing"
"time"
) )
func TestSignDetached(t *testing.T) { func TestSignDetached(t *testing.T) {
@ -44,3 +46,42 @@ func TestSignDetachedDSA(t *testing.T) {
testDetachedSignature(t, kring, out, signedInput, "check", testKey3KeyId) testDetachedSignature(t, kring, out, signedInput, "check", testKey3KeyId)
} }
func TestNewEntity(t *testing.T) {
if testing.Short() {
return
}
e, err := NewEntity(rand.Reader, time.Seconds(), "Test User", "test", "test@example.com")
if err != nil {
t.Errorf("failed to create entity: %s", err)
return
}
w := bytes.NewBuffer(nil)
if err := e.SerializePrivate(w); err != nil {
t.Errorf("failed to serialize entity: %s", err)
return
}
serialized := w.Bytes()
el, err := ReadKeyRing(w)
if err != nil {
t.Errorf("failed to reparse entity: %s", err)
return
}
if len(el) != 1 {
t.Errorf("wrong number of entities found, got %d, want 1", len(el))
}
w = bytes.NewBuffer(nil)
if err := e.SerializePrivate(w); err != nil {
t.Errorf("failed to serialize entity second time: %s", err)
return
}
if !bytes.Equal(w.Bytes(), serialized) {
t.Errorf("results differed")
}
}