1
0
mirror of https://github.com/golang/go synced 2024-11-18 17:54:57 -07:00

runtime: move write barrier code into mbarrier.go

I also added new comments at the top of mbarrier.go,
but the rest of the code is just copy-and-paste.

Change-Id: Iaeb2b12f8b1eaa33dbff5c2de676ca902bfddf2e
Reviewed-on: https://go-review.googlesource.com/2990
Reviewed-by: Austin Clements <austin@google.com>
This commit is contained in:
Russ Cox 2015-01-14 21:47:49 -05:00
parent 7ef59e4ed8
commit 4d226dfee9
5 changed files with 492 additions and 469 deletions

View File

@ -223,69 +223,6 @@ func mallocinit() {
_g_.m.mcache = allocmcache()
}
func wbshadowinit() {
// Initialize write barrier shadow heap if we were asked for it
// and we have enough address space (not on 32-bit).
if debug.wbshadow == 0 {
return
}
if ptrSize != 8 {
print("runtime: GODEBUG=wbshadow=1 disabled on 32-bit system\n")
return
}
var reserved bool
p1 := sysReserveHigh(mheap_.arena_end-mheap_.arena_start, &reserved)
if p1 == nil {
throw("cannot map shadow heap")
}
mheap_.shadow_heap = uintptr(p1) - mheap_.arena_start
sysMap(p1, mheap_.arena_used-mheap_.arena_start, reserved, &memstats.other_sys)
memmove(p1, unsafe.Pointer(mheap_.arena_start), mheap_.arena_used-mheap_.arena_start)
mheap_.shadow_reserved = reserved
start := ^uintptr(0)
end := uintptr(0)
if start > uintptr(unsafe.Pointer(&noptrdata)) {
start = uintptr(unsafe.Pointer(&noptrdata))
}
if start > uintptr(unsafe.Pointer(&data)) {
start = uintptr(unsafe.Pointer(&data))
}
if start > uintptr(unsafe.Pointer(&noptrbss)) {
start = uintptr(unsafe.Pointer(&noptrbss))
}
if start > uintptr(unsafe.Pointer(&bss)) {
start = uintptr(unsafe.Pointer(&bss))
}
if end < uintptr(unsafe.Pointer(&enoptrdata)) {
end = uintptr(unsafe.Pointer(&enoptrdata))
}
if end < uintptr(unsafe.Pointer(&edata)) {
end = uintptr(unsafe.Pointer(&edata))
}
if end < uintptr(unsafe.Pointer(&enoptrbss)) {
end = uintptr(unsafe.Pointer(&enoptrbss))
}
if end < uintptr(unsafe.Pointer(&ebss)) {
end = uintptr(unsafe.Pointer(&ebss))
}
start &^= _PageSize - 1
end = round(end, _PageSize)
mheap_.data_start = start
mheap_.data_end = end
reserved = false
p1 = sysReserveHigh(end-start, &reserved)
if p1 == nil {
throw("cannot map shadow data")
}
mheap_.shadow_data = uintptr(p1) - start
sysMap(p1, end-start, reserved, &memstats.other_sys)
memmove(p1, unsafe.Pointer(start), end-start)
mheap_.shadow_enabled = true
}
// sysReserveHigh reserves space somewhere high in the address space.
// sysReserve doesn't actually reserve the full amount requested on
// 64-bit systems, because of problems with ulimit. Instead it checks

490
src/runtime/mbarrier.go Normal file
View File

@ -0,0 +1,490 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Garbage collector: write barriers.
//
// For the concurrent garbage collector, the Go compiler implements
// updates to pointer-valued fields that may be in heap objects by
// emitting calls to write barriers. This file contains the actual write barrier
// implementation, markwb, and the various wrappers called by the
// compiler to implement pointer assignment, slice assignment,
// typed memmove, and so on.
//
// To check for missed write barriers, the GODEBUG=wbshadow debugging
// mode allocates a second copy of the heap. Write barrier-based pointer
// updates make changes to both the real heap and the shadow, and both
// the pointer updates and the GC look for inconsistencies between the two,
// indicating pointer writes that bypassed the barrier.
package runtime
import "unsafe"
// markwb is the mark-phase write barrier, the only barrier we have.
// The rest of this file exists only to make calls to this function.
//
// This is the Dijkstra barrier coarsened to always shade the ptr (dst) object.
// The original Dijkstra barrier only shaded ptrs being placed in black slots.
//
// Shade indicates that it has seen a white pointer by adding the referent
// to wbuf as well as marking it.
//
// slot is the destination (dst) in go code
// ptr is the value that goes into the slot (src) in the go code
//
// Dijkstra pointed out that maintaining the no black to white
// pointers means that white to white pointers not need
// to be noted by the write barrier. Furthermore if either
// white object dies before it is reached by the
// GC then the object can be collected during this GC cycle
// instead of waiting for the next cycle. Unfortunately the cost of
// ensure that the object holding the slot doesn't concurrently
// change to black without the mutator noticing seems prohibitive.
//
// Consider the following example where the mutator writes into
// a slot and then loads the slot's mark bit while the GC thread
// writes to the slot's mark bit and then as part of scanning reads
// the slot.
//
// Initially both [slot] and [slotmark] are 0 (nil)
// Mutator thread GC thread
// st [slot], ptr st [slotmark], 1
//
// ld r1, [slotmark] ld r2, [slot]
//
// This is a classic example of independent reads of independent writes,
// aka IRIW. The question is if r1==r2==0 is allowed and for most HW the
// answer is yes without inserting a memory barriers between the st and the ld.
// These barriers are expensive so we have decided that we will
// always grey the ptr object regardless of the slot's color.
//go:nowritebarrier
func gcmarkwb_m(slot *uintptr, ptr uintptr) {
switch gcphase {
default:
throw("gcphasework in bad gcphase")
case _GCoff, _GCquiesce, _GCstw, _GCsweep, _GCscan:
// ok
case _GCmark, _GCmarktermination:
if ptr != 0 && inheap(ptr) {
shade(ptr)
}
}
}
// needwb reports whether a write barrier is needed now
// (otherwise the write can be made directly).
//go:nosplit
func needwb() bool {
return gcphase == _GCmark || gcphase == _GCmarktermination || mheap_.shadow_enabled
}
//go:nosplit
func writebarrierptr_nostore1(dst *uintptr, src uintptr) {
mp := acquirem()
if mp.inwb || mp.dying > 0 {
releasem(mp)
return
}
mp.inwb = true
systemstack(func() {
gcmarkwb_m(dst, src)
})
mp.inwb = false
releasem(mp)
}
// NOTE: Really dst *unsafe.Pointer, src unsafe.Pointer,
// but if we do that, Go inserts a write barrier on *dst = src.
//go:nosplit
func writebarrierptr(dst *uintptr, src uintptr) {
if !needwb() {
*dst = src
return
}
if src != 0 && (src < _PageSize || src == poisonStack) {
systemstack(func() { throw("bad pointer in write barrier") })
}
if mheap_.shadow_enabled {
systemstack(func() {
addr := uintptr(unsafe.Pointer(dst))
shadow := shadowptr(addr)
if shadow == nil {
return
}
// There is a race here but only if the program is using
// racy writes instead of sync/atomic. In that case we
// don't mind crashing.
if *shadow != *dst && *shadow != noShadow && istrackedptr(*dst) {
mheap_.shadow_enabled = false
print("runtime: write barrier dst=", dst, " old=", hex(*dst), " shadow=", shadow, " old=", hex(*shadow), " new=", hex(src), "\n")
throw("missed write barrier")
}
*shadow = src
})
}
*dst = src
writebarrierptr_nostore1(dst, src)
}
// Like writebarrierptr, but the store has already been applied.
// Do not reapply.
//go:nosplit
func writebarrierptr_nostore(dst *uintptr, src uintptr) {
if !needwb() {
return
}
if src != 0 && (src < _PageSize || src == poisonStack) {
systemstack(func() { throw("bad pointer in write barrier") })
}
// Apply changes to shadow.
// Since *dst has been overwritten already, we cannot check
// whether there were any missed updates, but writebarrierptr_nostore
// is only rarely used.
if mheap_.shadow_enabled {
systemstack(func() {
addr := uintptr(unsafe.Pointer(dst))
shadow := shadowptr(addr)
if shadow == nil {
return
}
*shadow = src
})
}
writebarrierptr_nostore1(dst, src)
}
// writebarrierptr_noshadow records that the value in *dst
// has been written to using an atomic operation and the shadow
// has not been updated. (In general if dst must be manipulated
// atomically we cannot get the right bits for use in the shadow.)
//go:nosplit
func writebarrierptr_noshadow(dst *uintptr) {
addr := uintptr(unsafe.Pointer(dst))
shadow := shadowptr(addr)
if shadow == nil {
return
}
*shadow = noShadow
}
//go:nosplit
func writebarrierstring(dst *[2]uintptr, src [2]uintptr) {
writebarrierptr(&dst[0], src[0])
dst[1] = src[1]
}
//go:nosplit
func writebarrierslice(dst *[3]uintptr, src [3]uintptr) {
writebarrierptr(&dst[0], src[0])
dst[1] = src[1]
dst[2] = src[2]
}
//go:nosplit
func writebarrieriface(dst *[2]uintptr, src [2]uintptr) {
writebarrierptr(&dst[0], src[0])
writebarrierptr(&dst[1], src[1])
}
//go:generate go run wbfat_gen.go -- wbfat.go
//
// The above line generates multiword write barriers for
// all the combinations of ptr+scalar up to four words.
// The implementations are written to wbfat.go.
// typedmemmove copies a value of type t to dst from src.
//go:nosplit
func typedmemmove(typ *_type, dst, src unsafe.Pointer) {
if !needwb() || (typ.kind&kindNoPointers) != 0 {
memmove(dst, src, typ.size)
return
}
systemstack(func() {
mask := loadPtrMask(typ)
nptr := typ.size / ptrSize
for i := uintptr(0); i < nptr; i += 2 {
bits := mask[i/2]
if (bits>>2)&_BitsMask == _BitsPointer {
writebarrierptr((*uintptr)(dst), *(*uintptr)(src))
} else {
*(*uintptr)(dst) = *(*uintptr)(src)
}
// TODO(rsc): The noescape calls should be unnecessary.
dst = add(noescape(dst), ptrSize)
src = add(noescape(src), ptrSize)
if i+1 == nptr {
break
}
bits >>= 4
if (bits>>2)&_BitsMask == _BitsPointer {
writebarrierptr((*uintptr)(dst), *(*uintptr)(src))
} else {
*(*uintptr)(dst) = *(*uintptr)(src)
}
dst = add(noescape(dst), ptrSize)
src = add(noescape(src), ptrSize)
}
})
}
//go:linkname reflect_typedmemmove reflect.typedmemmove
func reflect_typedmemmove(typ *_type, dst, src unsafe.Pointer) {
typedmemmove(typ, dst, src)
}
// typedmemmovepartial is like typedmemmove but assumes that
// dst and src point off bytes into the value and only copies size bytes.
//go:linkname reflect_typedmemmovepartial reflect.typedmemmovepartial
func reflect_typedmemmovepartial(typ *_type, dst, src unsafe.Pointer, off, size uintptr) {
if !needwb() || (typ.kind&kindNoPointers) != 0 || size < ptrSize {
memmove(dst, src, size)
return
}
if off&(ptrSize-1) != 0 {
frag := -off & (ptrSize - 1)
// frag < size, because size >= ptrSize, checked above.
memmove(dst, src, frag)
size -= frag
dst = add(noescape(dst), frag)
src = add(noescape(src), frag)
off += frag
}
mask := loadPtrMask(typ)
nptr := (off + size) / ptrSize
for i := uintptr(off / ptrSize); i < nptr; i++ {
bits := mask[i/2] >> ((i & 1) << 2)
if (bits>>2)&_BitsMask == _BitsPointer {
writebarrierptr((*uintptr)(dst), *(*uintptr)(src))
} else {
*(*uintptr)(dst) = *(*uintptr)(src)
}
// TODO(rsc): The noescape calls should be unnecessary.
dst = add(noescape(dst), ptrSize)
src = add(noescape(src), ptrSize)
}
size &= ptrSize - 1
if size > 0 {
memmove(dst, src, size)
}
}
// callwritebarrier is invoked at the end of reflectcall, to execute
// write barrier operations to record the fact that a call's return
// values have just been copied to frame, starting at retoffset
// and continuing to framesize. The entire frame (not just the return
// values) is described by typ. Because the copy has already
// happened, we call writebarrierptr_nostore, and we must be careful
// not to be preempted before the write barriers have been run.
//go:nosplit
func callwritebarrier(typ *_type, frame unsafe.Pointer, framesize, retoffset uintptr) {
if !needwb() || typ == nil || (typ.kind&kindNoPointers) != 0 || framesize-retoffset < ptrSize {
return
}
systemstack(func() {
mask := loadPtrMask(typ)
// retoffset is known to be pointer-aligned (at least).
// TODO(rsc): The noescape call should be unnecessary.
dst := add(noescape(frame), retoffset)
nptr := framesize / ptrSize
for i := uintptr(retoffset / ptrSize); i < nptr; i++ {
bits := mask[i/2] >> ((i & 1) << 2)
if (bits>>2)&_BitsMask == _BitsPointer {
writebarrierptr_nostore((*uintptr)(dst), *(*uintptr)(dst))
}
// TODO(rsc): The noescape call should be unnecessary.
dst = add(noescape(dst), ptrSize)
}
})
}
//go:nosplit
func typedslicecopy(typ *_type, dst, src slice) int {
n := dst.len
if n > src.len {
n = src.len
}
if n == 0 {
return 0
}
dstp := unsafe.Pointer(dst.array)
srcp := unsafe.Pointer(src.array)
if !needwb() {
memmove(dstp, srcp, uintptr(n)*typ.size)
return int(n)
}
systemstack(func() {
if uintptr(srcp) < uintptr(dstp) && uintptr(srcp)+uintptr(n)*typ.size > uintptr(dstp) {
// Overlap with src before dst.
// Copy backward, being careful not to move dstp/srcp
// out of the array they point into.
dstp = add(dstp, uintptr(n-1)*typ.size)
srcp = add(srcp, uintptr(n-1)*typ.size)
i := uint(0)
for {
typedmemmove(typ, dstp, srcp)
if i++; i >= n {
break
}
dstp = add(dstp, -typ.size)
srcp = add(srcp, -typ.size)
}
} else {
// Copy forward, being careful not to move dstp/srcp
// out of the array they point into.
i := uint(0)
for {
typedmemmove(typ, dstp, srcp)
if i++; i >= n {
break
}
dstp = add(dstp, typ.size)
srcp = add(srcp, typ.size)
}
}
})
return int(n)
}
//go:linkname reflect_typedslicecopy reflect.typedslicecopy
func reflect_typedslicecopy(elemType *_type, dst, src slice) int {
return typedslicecopy(elemType, dst, src)
}
// Shadow heap for detecting missed write barriers.
// noShadow is stored in as the shadow pointer to mark that there is no
// shadow word recorded. It matches any actual pointer word.
// noShadow is used when it is impossible to know the right word
// to store in the shadow heap, such as when the real heap word
// is being manipulated atomically.
const noShadow uintptr = 1
func wbshadowinit() {
// Initialize write barrier shadow heap if we were asked for it
// and we have enough address space (not on 32-bit).
if debug.wbshadow == 0 {
return
}
if ptrSize != 8 {
print("runtime: GODEBUG=wbshadow=1 disabled on 32-bit system\n")
return
}
var reserved bool
p1 := sysReserveHigh(mheap_.arena_end-mheap_.arena_start, &reserved)
if p1 == nil {
throw("cannot map shadow heap")
}
mheap_.shadow_heap = uintptr(p1) - mheap_.arena_start
sysMap(p1, mheap_.arena_used-mheap_.arena_start, reserved, &memstats.other_sys)
memmove(p1, unsafe.Pointer(mheap_.arena_start), mheap_.arena_used-mheap_.arena_start)
mheap_.shadow_reserved = reserved
start := ^uintptr(0)
end := uintptr(0)
if start > uintptr(unsafe.Pointer(&noptrdata)) {
start = uintptr(unsafe.Pointer(&noptrdata))
}
if start > uintptr(unsafe.Pointer(&data)) {
start = uintptr(unsafe.Pointer(&data))
}
if start > uintptr(unsafe.Pointer(&noptrbss)) {
start = uintptr(unsafe.Pointer(&noptrbss))
}
if start > uintptr(unsafe.Pointer(&bss)) {
start = uintptr(unsafe.Pointer(&bss))
}
if end < uintptr(unsafe.Pointer(&enoptrdata)) {
end = uintptr(unsafe.Pointer(&enoptrdata))
}
if end < uintptr(unsafe.Pointer(&edata)) {
end = uintptr(unsafe.Pointer(&edata))
}
if end < uintptr(unsafe.Pointer(&enoptrbss)) {
end = uintptr(unsafe.Pointer(&enoptrbss))
}
if end < uintptr(unsafe.Pointer(&ebss)) {
end = uintptr(unsafe.Pointer(&ebss))
}
start &^= _PageSize - 1
end = round(end, _PageSize)
mheap_.data_start = start
mheap_.data_end = end
reserved = false
p1 = sysReserveHigh(end-start, &reserved)
if p1 == nil {
throw("cannot map shadow data")
}
mheap_.shadow_data = uintptr(p1) - start
sysMap(p1, end-start, reserved, &memstats.other_sys)
memmove(p1, unsafe.Pointer(start), end-start)
mheap_.shadow_enabled = true
}
// shadowptr returns a pointer to the shadow value for addr.
//go:nosplit
func shadowptr(addr uintptr) *uintptr {
var shadow *uintptr
if mheap_.data_start <= addr && addr < mheap_.data_end {
shadow = (*uintptr)(unsafe.Pointer(addr + mheap_.shadow_data))
} else if inheap(addr) {
shadow = (*uintptr)(unsafe.Pointer(addr + mheap_.shadow_heap))
}
return shadow
}
// istrackedptr reports whether the pointer value p requires a write barrier
// when stored into the heap.
func istrackedptr(p uintptr) bool {
return inheap(p)
}
// checkwbshadow checks that p matches its shadow word.
// The garbage collector calls checkwbshadow for each pointer during the checkmark phase.
// It is only called when mheap_.shadow_enabled is true.
func checkwbshadow(p *uintptr) {
addr := uintptr(unsafe.Pointer(p))
shadow := shadowptr(addr)
if shadow == nil {
return
}
// There is no race on the accesses here, because the world is stopped,
// but there may be racy writes that lead to the shadow and the
// heap being inconsistent. If so, we will detect that here as a
// missed write barrier and crash. We don't mind.
// Code should use sync/atomic instead of racy pointer writes.
if *shadow != *p && *shadow != noShadow && istrackedptr(*p) {
mheap_.shadow_enabled = false
print("runtime: checkwritebarrier p=", p, " *p=", hex(*p), " shadow=", shadow, " *shadow=", hex(*shadow), "\n")
throw("missed write barrier")
}
}
// clearshadow clears the shadow copy associated with the n bytes of memory at addr.
func clearshadow(addr, n uintptr) {
if !mheap_.shadow_enabled {
return
}
p := shadowptr(addr)
if p == nil || n <= ptrSize {
return
}
memclr(unsafe.Pointer(p), n)
}

View File

@ -1064,56 +1064,6 @@ func shade(b uintptr) {
putpartial(wbuf)
}
// This is the Dijkstra barrier coarsened to always shade the ptr (dst) object.
// The original Dijkstra barrier only shaded ptrs being placed in black slots.
//
// Shade indicates that it has seen a white pointer by adding the referent
// to wbuf as well as marking it.
//
// slot is the destination (dst) in go code
// ptr is the value that goes into the slot (src) in the go code
//
// Dijkstra pointed out that maintaining the no black to white
// pointers means that white to white pointers not need
// to be noted by the write barrier. Furthermore if either
// white object dies before it is reached by the
// GC then the object can be collected during this GC cycle
// instead of waiting for the next cycle. Unfortunately the cost of
// ensure that the object holding the slot doesn't concurrently
// change to black without the mutator noticing seems prohibitive.
//
// Consider the following example where the mutator writes into
// a slot and then loads the slot's mark bit while the GC thread
// writes to the slot's mark bit and then as part of scanning reads
// the slot.
//
// Initially both [slot] and [slotmark] are 0 (nil)
// Mutator thread GC thread
// st [slot], ptr st [slotmark], 1
//
// ld r1, [slotmark] ld r2, [slot]
//
// This is a classic example of independent reads of independent writes,
// aka IRIW. The question is if r1==r2==0 is allowed and for most HW the
// answer is yes without inserting a memory barriers between the st and the ld.
// These barriers are expensive so we have decided that we will
// always grey the ptr object regardless of the slot's color.
//go:nowritebarrier
func gcmarkwb_m(slot *uintptr, ptr uintptr) {
switch gcphase {
default:
throw("gcphasework in bad gcphase")
case _GCoff, _GCquiesce, _GCstw, _GCsweep, _GCscan:
// ok
case _GCmark, _GCmarktermination:
if ptr != 0 && inheap(ptr) {
shade(ptr)
}
}
}
// gchelpwork does a small bounded amount of gc work. The purpose is to
// shorten the time (as measured by allocations) spent doing a concurrent GC.
// The number of mutator calls is roughly propotional to the number of allocations

View File

@ -4,7 +4,7 @@
package runtime
import "unsafe"
import _ "unsafe" // for go:linkname
//go:linkname runtime_debug_freeOSMemory runtime/debug.freeOSMemory
func runtime_debug_freeOSMemory() {
@ -91,356 +91,3 @@ func bgsweep() {
goparkunlock(&gclock, "GC sweep wait")
}
}
const (
_PoisonGC = 0xf969696969696969 & (1<<(8*ptrSize) - 1)
_PoisonStack = 0x6868686868686868 & (1<<(8*ptrSize) - 1)
)
//go:nosplit
func needwb() bool {
return gcphase == _GCmark || gcphase == _GCmarktermination || mheap_.shadow_enabled
}
// shadowptr returns a pointer to the shadow value for addr.
//go:nosplit
func shadowptr(addr uintptr) *uintptr {
var shadow *uintptr
if mheap_.data_start <= addr && addr < mheap_.data_end {
shadow = (*uintptr)(unsafe.Pointer(addr + mheap_.shadow_data))
} else if inheap(addr) {
shadow = (*uintptr)(unsafe.Pointer(addr + mheap_.shadow_heap))
}
return shadow
}
// clearshadow clears the shadow copy associated with the n bytes of memory at addr.
func clearshadow(addr, n uintptr) {
if !mheap_.shadow_enabled {
return
}
p := shadowptr(addr)
if p == nil || n <= ptrSize {
return
}
memclr(unsafe.Pointer(p), n)
}
// NOTE: Really dst *unsafe.Pointer, src unsafe.Pointer,
// but if we do that, Go inserts a write barrier on *dst = src.
//go:nosplit
func writebarrierptr(dst *uintptr, src uintptr) {
if !needwb() {
*dst = src
return
}
if src != 0 && (src < _PageSize || src == _PoisonGC || src == _PoisonStack) {
systemstack(func() { throw("bad pointer in write barrier") })
}
if mheap_.shadow_enabled {
systemstack(func() {
addr := uintptr(unsafe.Pointer(dst))
shadow := shadowptr(addr)
if shadow == nil {
return
}
// There is a race here but only if the program is using
// racy writes instead of sync/atomic. In that case we
// don't mind crashing.
if *shadow != *dst && *shadow != noShadow && istrackedptr(*dst) {
mheap_.shadow_enabled = false
print("runtime: write barrier dst=", dst, " old=", hex(*dst), " shadow=", shadow, " old=", hex(*shadow), " new=", hex(src), "\n")
throw("missed write barrier")
}
*shadow = src
})
}
*dst = src
writebarrierptr_nostore1(dst, src)
}
// istrackedptr reports whether the pointer value p requires a write barrier
// when stored into the heap.
func istrackedptr(p uintptr) bool {
return inheap(p)
}
// checkwbshadow checks that p matches its shadow word.
// The garbage collector calls checkwbshadow for each pointer during the checkmark phase.
// It is only called when mheap_.shadow_enabled is true.
func checkwbshadow(p *uintptr) {
addr := uintptr(unsafe.Pointer(p))
shadow := shadowptr(addr)
if shadow == nil {
return
}
// There is no race on the accesses here, because the world is stopped,
// but there may be racy writes that lead to the shadow and the
// heap being inconsistent. If so, we will detect that here as a
// missed write barrier and crash. We don't mind.
// Code should use sync/atomic instead of racy pointer writes.
if *shadow != *p && *shadow != noShadow && istrackedptr(*p) {
mheap_.shadow_enabled = false
print("runtime: checkwritebarrier p=", p, " *p=", hex(*p), " shadow=", shadow, " *shadow=", hex(*shadow), "\n")
throw("missed write barrier")
}
}
// noShadow is stored in as the shadow pointer to mark that there is no
// shadow word recorded. It matches any actual pointer word.
// noShadow is used when it is impossible to know the right word
// to store in the shadow heap, such as when the real heap word
// is being manipulated atomically.
const noShadow uintptr = 1
// writebarrierptr_noshadow records that the value in *dst
// has been written to using an atomic operation and the shadow
// has not been updated. (In general if dst must be manipulated
// atomically we cannot get the right bits for use in the shadow.)
//go:nosplit
func writebarrierptr_noshadow(dst *uintptr) {
addr := uintptr(unsafe.Pointer(dst))
shadow := shadowptr(addr)
if shadow == nil {
return
}
*shadow = noShadow
}
// Like writebarrierptr, but the store has already been applied.
// Do not reapply.
//go:nosplit
func writebarrierptr_nostore(dst *uintptr, src uintptr) {
if !needwb() {
return
}
if src != 0 && (src < _PageSize || src == _PoisonGC || src == _PoisonStack) {
systemstack(func() { throw("bad pointer in write barrier") })
}
// Apply changes to shadow.
// Since *dst has been overwritten already, we cannot check
// whether there were any missed updates, but writebarrierptr_nostore
// is only rarely used.
if mheap_.shadow_enabled {
systemstack(func() {
addr := uintptr(unsafe.Pointer(dst))
shadow := shadowptr(addr)
if shadow == nil {
return
}
*shadow = src
})
}
writebarrierptr_nostore1(dst, src)
}
//go:nosplit
func writebarrierptr_nostore1(dst *uintptr, src uintptr) {
mp := acquirem()
if mp.inwb || mp.dying > 0 {
releasem(mp)
return
}
mp.inwb = true
systemstack(func() {
gcmarkwb_m(dst, src)
})
mp.inwb = false
releasem(mp)
}
//go:nosplit
func writebarrierstring(dst *[2]uintptr, src [2]uintptr) {
writebarrierptr(&dst[0], src[0])
dst[1] = src[1]
}
//go:nosplit
func writebarrierslice(dst *[3]uintptr, src [3]uintptr) {
writebarrierptr(&dst[0], src[0])
dst[1] = src[1]
dst[2] = src[2]
}
//go:nosplit
func writebarrieriface(dst *[2]uintptr, src [2]uintptr) {
writebarrierptr(&dst[0], src[0])
writebarrierptr(&dst[1], src[1])
}
//go:generate go run wbfat_gen.go -- wbfat.go
//
// The above line generates multiword write barriers for
// all the combinations of ptr+scalar up to four words.
// The implementations are written to wbfat.go.
//go:linkname reflect_typedmemmove reflect.typedmemmove
func reflect_typedmemmove(typ *_type, dst, src unsafe.Pointer) {
typedmemmove(typ, dst, src)
}
// typedmemmove copies a value of type t to dst from src.
//go:nosplit
func typedmemmove(typ *_type, dst, src unsafe.Pointer) {
if !needwb() || (typ.kind&kindNoPointers) != 0 {
memmove(dst, src, typ.size)
return
}
systemstack(func() {
mask := loadPtrMask(typ)
nptr := typ.size / ptrSize
for i := uintptr(0); i < nptr; i += 2 {
bits := mask[i/2]
if (bits>>2)&_BitsMask == _BitsPointer {
writebarrierptr((*uintptr)(dst), *(*uintptr)(src))
} else {
*(*uintptr)(dst) = *(*uintptr)(src)
}
// TODO(rsc): The noescape calls should be unnecessary.
dst = add(noescape(dst), ptrSize)
src = add(noescape(src), ptrSize)
if i+1 == nptr {
break
}
bits >>= 4
if (bits>>2)&_BitsMask == _BitsPointer {
writebarrierptr((*uintptr)(dst), *(*uintptr)(src))
} else {
*(*uintptr)(dst) = *(*uintptr)(src)
}
dst = add(noescape(dst), ptrSize)
src = add(noescape(src), ptrSize)
}
})
}
// typedmemmovepartial is like typedmemmove but assumes that
// dst and src point off bytes into the value and only copies size bytes.
//go:linkname reflect_typedmemmovepartial reflect.typedmemmovepartial
func reflect_typedmemmovepartial(typ *_type, dst, src unsafe.Pointer, off, size uintptr) {
if !needwb() || (typ.kind&kindNoPointers) != 0 || size < ptrSize {
memmove(dst, src, size)
return
}
if off&(ptrSize-1) != 0 {
frag := -off & (ptrSize - 1)
// frag < size, because size >= ptrSize, checked above.
memmove(dst, src, frag)
size -= frag
dst = add(noescape(dst), frag)
src = add(noescape(src), frag)
off += frag
}
mask := loadPtrMask(typ)
nptr := (off + size) / ptrSize
for i := uintptr(off / ptrSize); i < nptr; i++ {
bits := mask[i/2] >> ((i & 1) << 2)
if (bits>>2)&_BitsMask == _BitsPointer {
writebarrierptr((*uintptr)(dst), *(*uintptr)(src))
} else {
*(*uintptr)(dst) = *(*uintptr)(src)
}
// TODO(rsc): The noescape calls should be unnecessary.
dst = add(noescape(dst), ptrSize)
src = add(noescape(src), ptrSize)
}
size &= ptrSize - 1
if size > 0 {
memmove(dst, src, size)
}
}
// callwritebarrier is invoked at the end of reflectcall, to execute
// write barrier operations to record the fact that a call's return
// values have just been copied to frame, starting at retoffset
// and continuing to framesize. The entire frame (not just the return
// values) is described by typ. Because the copy has already
// happened, we call writebarrierptr_nostore, and we must be careful
// not to be preempted before the write barriers have been run.
//go:nosplit
func callwritebarrier(typ *_type, frame unsafe.Pointer, framesize, retoffset uintptr) {
if !needwb() || typ == nil || (typ.kind&kindNoPointers) != 0 || framesize-retoffset < ptrSize {
return
}
systemstack(func() {
mask := loadPtrMask(typ)
// retoffset is known to be pointer-aligned (at least).
// TODO(rsc): The noescape call should be unnecessary.
dst := add(noescape(frame), retoffset)
nptr := framesize / ptrSize
for i := uintptr(retoffset / ptrSize); i < nptr; i++ {
bits := mask[i/2] >> ((i & 1) << 2)
if (bits>>2)&_BitsMask == _BitsPointer {
writebarrierptr_nostore((*uintptr)(dst), *(*uintptr)(dst))
}
// TODO(rsc): The noescape call should be unnecessary.
dst = add(noescape(dst), ptrSize)
}
})
}
//go:linkname reflect_typedslicecopy reflect.typedslicecopy
func reflect_typedslicecopy(elemType *_type, dst, src slice) int {
return typedslicecopy(elemType, dst, src)
}
//go:nosplit
func typedslicecopy(typ *_type, dst, src slice) int {
n := dst.len
if n > src.len {
n = src.len
}
if n == 0 {
return 0
}
dstp := unsafe.Pointer(dst.array)
srcp := unsafe.Pointer(src.array)
if !needwb() {
memmove(dstp, srcp, uintptr(n)*typ.size)
return int(n)
}
systemstack(func() {
if uintptr(srcp) < uintptr(dstp) && uintptr(srcp)+uintptr(n)*typ.size > uintptr(dstp) {
// Overlap with src before dst.
// Copy backward, being careful not to move dstp/srcp
// out of the array they point into.
dstp = add(dstp, uintptr(n-1)*typ.size)
srcp = add(srcp, uintptr(n-1)*typ.size)
i := uint(0)
for {
typedmemmove(typ, dstp, srcp)
if i++; i >= n {
break
}
dstp = add(dstp, -typ.size)
srcp = add(srcp, -typ.size)
}
} else {
// Copy forward, being careful not to move dstp/srcp
// out of the array they point into.
i := uint(0)
for {
typedmemmove(typ, dstp, srcp)
if i++; i >= n {
break
}
dstp = add(dstp, typ.size)
srcp = add(srcp, typ.size)
}
}
})
return int(n)
}

View File

@ -22,7 +22,6 @@ const (
const (
uintptrMask = 1<<(8*ptrSize) - 1
poisonGC = uintptrMask & 0xf969696969696969
poisonStack = uintptrMask & 0x6868686868686868
// Goroutine preemption request.
@ -389,7 +388,7 @@ func adjustpointers(scanp unsafe.Pointer, cbv *bitvector, adjinfo *adjustinfo, f
case _BitsPointer:
p := *(*unsafe.Pointer)(add(scanp, i*ptrSize))
up := uintptr(p)
if f != nil && 0 < up && up < _PageSize && debug.invalidptr != 0 || up == poisonGC || up == poisonStack {
if f != nil && 0 < up && up < _PageSize && debug.invalidptr != 0 || up == poisonStack {
// Looks like a junk value in a pointer slot.
// Live analysis wrong?
getg().m.traceback = 2