1
0
mirror of https://github.com/golang/go synced 2024-11-21 14:24:44 -07:00

image/jpeg: speed up decoding by inlining the clip function and

writing the idct result directly to the image buffer instead of
storing it in an intermediate d.blocks field.

Writing to d.blocks was necessary when decoding to an image.RGBA image,
but now that we decode to a ycbcr.YCbCr we can write each component
directly to the image buffer.

Crude "time ./6.out" scores to decode a specific 2592x1944 JPEG 20
times show a 16% speed-up:

BEFORE

user	0m10.410s
user	0m10.400s
user	0m10.480s
user	0m10.480s
user	0m10.460s

AFTER

user	0m9.050s
user	0m9.050s
user	0m9.050s
user	0m9.070s
user	0m9.020s

R=r
CC=golang-dev
https://golang.org/cl/4523052
This commit is contained in:
Nigel Tao 2011-05-09 17:25:32 -07:00
parent 499ad9448b
commit 4c1e1b815b
2 changed files with 89 additions and 102 deletions

View File

@ -2,6 +2,8 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package jpeg
// This is a Go translation of idct.c from
//
// http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_13818-4_2004_Conformance_Testing/Video/verifier/mpeg2decode_960109.tar.gz
@ -35,8 +37,6 @@
*
*/
package jpeg
const (
w1 = 2841 // 2048*sqrt(2)*cos(1*pi/16)
w2 = 2676 // 2048*sqrt(2)*cos(2*pi/16)
@ -55,41 +55,45 @@ const (
r2 = 181 // 256/sqrt(2)
)
// 2-D Inverse Discrete Cosine Transformation, followed by a +128 level shift.
// idct performs a 2-D Inverse Discrete Cosine Transformation, followed by a
// +128 level shift and a clip to [0, 255], writing the results to dst.
// stride is the number of elements between successive rows of dst.
//
// The input coefficients should already have been multiplied by the appropriate quantization table.
// We use fixed-point computation, with the number of bits for the fractional component varying over the
// intermediate stages. The final values are expected to range within [0, 255], after a +128 level shift.
// The input coefficients should already have been multiplied by the
// appropriate quantization table. We use fixed-point computation, with the
// number of bits for the fractional component varying over the intermediate
// stages.
//
// For more on the actual algorithm, see Z. Wang, "Fast algorithms for the discrete W transform and
// for the discrete Fourier transform", IEEE Trans. on ASSP, Vol. ASSP- 32, pp. 803-816, Aug. 1984.
func idct(b *block) {
// For more on the actual algorithm, see Z. Wang, "Fast algorithms for the
// discrete W transform and for the discrete Fourier transform", IEEE Trans. on
// ASSP, Vol. ASSP- 32, pp. 803-816, Aug. 1984.
func idct(dst []byte, stride int, src *block) {
// Horizontal 1-D IDCT.
for y := 0; y < 8; y++ {
// If all the AC components are zero, then the IDCT is trivial.
if b[y*8+1] == 0 && b[y*8+2] == 0 && b[y*8+3] == 0 &&
b[y*8+4] == 0 && b[y*8+5] == 0 && b[y*8+6] == 0 && b[y*8+7] == 0 {
dc := b[y*8+0] << 3
b[y*8+0] = dc
b[y*8+1] = dc
b[y*8+2] = dc
b[y*8+3] = dc
b[y*8+4] = dc
b[y*8+5] = dc
b[y*8+6] = dc
b[y*8+7] = dc
if src[y*8+1] == 0 && src[y*8+2] == 0 && src[y*8+3] == 0 &&
src[y*8+4] == 0 && src[y*8+5] == 0 && src[y*8+6] == 0 && src[y*8+7] == 0 {
dc := src[y*8+0] << 3
src[y*8+0] = dc
src[y*8+1] = dc
src[y*8+2] = dc
src[y*8+3] = dc
src[y*8+4] = dc
src[y*8+5] = dc
src[y*8+6] = dc
src[y*8+7] = dc
continue
}
// Prescale.
x0 := (b[y*8+0] << 11) + 128
x1 := b[y*8+4] << 11
x2 := b[y*8+6]
x3 := b[y*8+2]
x4 := b[y*8+1]
x5 := b[y*8+7]
x6 := b[y*8+5]
x7 := b[y*8+3]
x0 := (src[y*8+0] << 11) + 128
x1 := src[y*8+4] << 11
x2 := src[y*8+6]
x3 := src[y*8+2]
x4 := src[y*8+1]
x5 := src[y*8+7]
x6 := src[y*8+5]
x7 := src[y*8+3]
// Stage 1.
x8 := w7 * (x4 + x5)
@ -119,14 +123,14 @@ func idct(b *block) {
x4 = (r2*(x4-x5) + 128) >> 8
// Stage 4.
b[8*y+0] = (x7 + x1) >> 8
b[8*y+1] = (x3 + x2) >> 8
b[8*y+2] = (x0 + x4) >> 8
b[8*y+3] = (x8 + x6) >> 8
b[8*y+4] = (x8 - x6) >> 8
b[8*y+5] = (x0 - x4) >> 8
b[8*y+6] = (x3 - x2) >> 8
b[8*y+7] = (x7 - x1) >> 8
src[8*y+0] = (x7 + x1) >> 8
src[8*y+1] = (x3 + x2) >> 8
src[8*y+2] = (x0 + x4) >> 8
src[8*y+3] = (x8 + x6) >> 8
src[8*y+4] = (x8 - x6) >> 8
src[8*y+5] = (x0 - x4) >> 8
src[8*y+6] = (x3 - x2) >> 8
src[8*y+7] = (x7 - x1) >> 8
}
// Vertical 1-D IDCT.
@ -136,14 +140,14 @@ func idct(b *block) {
// we do not bother to check for the all-zero case.
// Prescale.
y0 := (b[8*0+x] << 8) + 8192
y1 := b[8*4+x] << 8
y2 := b[8*6+x]
y3 := b[8*2+x]
y4 := b[8*1+x]
y5 := b[8*7+x]
y6 := b[8*5+x]
y7 := b[8*3+x]
y0 := (src[8*0+x] << 8) + 8192
y1 := src[8*4+x] << 8
y2 := src[8*6+x]
y3 := src[8*2+x]
y4 := src[8*1+x]
y5 := src[8*7+x]
y6 := src[8*5+x]
y7 := src[8*3+x]
// Stage 1.
y8 := w7*(y4+y5) + 4
@ -173,18 +177,28 @@ func idct(b *block) {
y4 = (r2*(y4-y5) + 128) >> 8
// Stage 4.
b[8*0+x] = (y7 + y1) >> 14
b[8*1+x] = (y3 + y2) >> 14
b[8*2+x] = (y0 + y4) >> 14
b[8*3+x] = (y8 + y6) >> 14
b[8*4+x] = (y8 - y6) >> 14
b[8*5+x] = (y0 - y4) >> 14
b[8*6+x] = (y3 - y2) >> 14
b[8*7+x] = (y7 - y1) >> 14
src[8*0+x] = (y7 + y1) >> 14
src[8*1+x] = (y3 + y2) >> 14
src[8*2+x] = (y0 + y4) >> 14
src[8*3+x] = (y8 + y6) >> 14
src[8*4+x] = (y8 - y6) >> 14
src[8*5+x] = (y0 - y4) >> 14
src[8*6+x] = (y3 - y2) >> 14
src[8*7+x] = (y7 - y1) >> 14
}
// Level shift.
for i := range *b {
b[i] += 128
// Level shift by +128, clip to [0, 255], and write to dst.
for y := 0; y < 8; y++ {
for x := 0; x < 8; x++ {
c := src[y*8+x]
if c < -128 {
c = 0
} else if c > 127 {
c = 255
} else {
c += 128
}
dst[y*stride+x] = uint8(c)
}
}
}

View File

@ -96,7 +96,6 @@ type decoder struct {
huff [maxTc + 1][maxTh + 1]huffman
quant [maxTq + 1]block
b bits
blocks [nComponent][maxH * maxV]block
tmp [1024]byte
}
@ -182,45 +181,6 @@ func (d *decoder) processDQT(n int) os.Error {
return nil
}
// Clip x to the range [0, 255] inclusive.
func clip(x int) uint8 {
if x < 0 {
return 0
}
if x > 255 {
return 255
}
return uint8(x)
}
// Store the MCU to the image.
func (d *decoder) storeMCU(mx, my int) {
h0, v0 := d.comps[0].h, d.comps[0].v
// Store the luma blocks.
for v := 0; v < v0; v++ {
for h := 0; h < h0; h++ {
p := 8 * ((v0*my+v)*d.img.YStride + (h0*mx + h))
for y := 0; y < 8; y++ {
for x := 0; x < 8; x++ {
d.img.Y[p] = clip(d.blocks[0][h0*v+h][8*y+x])
p++
}
p += d.img.YStride - 8
}
}
}
// Store the chroma blocks.
p := 8 * (my*d.img.CStride + mx)
for y := 0; y < 8; y++ {
for x := 0; x < 8; x++ {
d.img.Cb[p] = clip(d.blocks[1][0][8*y+x])
d.img.Cr[p] = clip(d.blocks[2][0][8*y+x])
p++
}
p += d.img.CStride - 8
}
}
// Specified in section B.2.3.
func (d *decoder) processSOS(n int) os.Error {
if n != 4+2*nComponent {
@ -275,14 +235,18 @@ func (d *decoder) processSOS(n int) os.Error {
}
mcu, expectedRST := 0, uint8(rst0Marker)
var allZeroes block
var dc [nComponent]int
var (
allZeroes, b block
dc [nComponent]int
)
for my := 0; my < myy; my++ {
for mx := 0; mx < mxx; mx++ {
for i := 0; i < nComponent; i++ {
qt := &d.quant[d.comps[i].tq]
for j := 0; j < d.comps[i].h*d.comps[i].v; j++ {
d.blocks[i][j] = allZeroes
// TODO(nigeltao): make this a "var b block" once the compiler's escape
// analysis is good enough to allocate it on the stack, not the heap.
b = allZeroes
// Decode the DC coefficient, as specified in section F.2.2.1.
value, err := d.decodeHuffman(&d.huff[dcTableClass][scanComps[i].td])
@ -297,7 +261,7 @@ func (d *decoder) processSOS(n int) os.Error {
return err
}
dc[i] += dcDelta
d.blocks[i][j][0] = dc[i] * qt[0]
b[0] = dc[i] * qt[0]
// Decode the AC coefficients, as specified in section F.2.2.2.
for k := 1; k < blockSize; k++ {
@ -316,7 +280,7 @@ func (d *decoder) processSOS(n int) os.Error {
if err != nil {
return err
}
d.blocks[i][j][unzig[k]] = ac * qt[k]
b[unzig[k]] = ac * qt[k]
} else {
if val0 != 0x0f {
break
@ -325,10 +289,19 @@ func (d *decoder) processSOS(n int) os.Error {
}
}
idct(&d.blocks[i][j])
// Perform the inverse DCT and store the MCU component to the image.
switch i {
case 0:
mx0 := h0*mx + (j % 2)
my0 := v0*my + (j / 2)
idct(d.img.Y[8*(my0*d.img.YStride+mx0):], d.img.YStride, &b)
case 1:
idct(d.img.Cb[8*(my*d.img.CStride+mx):], d.img.CStride, &b)
case 2:
idct(d.img.Cr[8*(my*d.img.CStride+mx):], d.img.CStride, &b)
}
} // for j
} // for i
d.storeMCU(mx, my)
mcu++
if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy {
// A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input,