1
0
mirror of https://github.com/golang/go synced 2024-11-23 01:40:03 -07:00

math/rand/v2: remove bias in ExpFloat64 and NormFloat64

The original implementation of the ziggurat algorithm was designed for
32-bit random integer inputs. This necessitated reusing some low-order
bits for the slice selection and the random coordinate, which introduces
statistical bias. The result is that PractRand consistently fails the
math/rand normal and exponential sequences (transformed to uniform)
within 2 GB of variates.

This change adjusts the ziggurat procedures to use 63-bit random inputs,
so that there is no need to reuse bits between the slice and coordinate.
This is sufficient for the normal sequence to survive to 256 GB of
PractRand testing.

An alternative technique is to recalculate the ziggurats to use 1024
rather than 128 or 256 slices to make full use of 64-bit inputs. This
improves the survival of the normal sequence to far beyond 256 GB and
additionally provides a 6% performance improvement due to the improved
rejection procedure efficiency. However, doing so increases the total
size of the ziggurat tables from 4.5 kB to 48 kB.

goos: linux
goarch: amd64
pkg: math/rand/v2
cpu: AMD Ryzen 9 7950X 16-Core Processor
                        │ 2703446c2e.amd64 │           e1bbe739fb.amd64           │
                        │      sec/op      │    sec/op     vs base                │
SourceUint64-32                1.337n ± 1%    1.316n ± 2%        ~ (p=0.024 n=20)
GlobalInt64-32                 2.225n ± 2%    2.048n ± 1%   -7.93% (p=0.000 n=20)
GlobalInt64Parallel-32        0.1043n ± 2%   0.1037n ± 1%        ~ (p=0.587 n=20)
GlobalUint64-32                2.058n ± 1%    2.039n ± 2%        ~ (p=0.030 n=20)
GlobalUint64Parallel-32       0.1009n ± 1%   0.1013n ± 1%        ~ (p=0.984 n=20)
Int64-32                       1.719n ± 2%    1.692n ± 2%        ~ (p=0.085 n=20)
Uint64-32                      1.669n ± 1%    1.643n ± 2%        ~ (p=0.049 n=20)
GlobalIntN1000-32              3.321n ± 2%    3.287n ± 1%        ~ (p=0.298 n=20)
IntN1000-32                    2.479n ± 1%    2.678n ± 2%   +8.01% (p=0.000 n=20)
Int64N1000-32                  2.477n ± 1%    2.684n ± 2%   +8.38% (p=0.000 n=20)
Int64N1e8-32                   2.490n ± 1%    2.663n ± 2%   +6.99% (p=0.000 n=20)
Int64N1e9-32                   2.458n ± 1%    2.633n ± 1%   +7.12% (p=0.000 n=20)
Int64N2e9-32                   2.486n ± 2%    2.657n ± 1%   +6.90% (p=0.000 n=20)
Int64N1e18-32                  3.215n ± 2%    3.125n ± 2%   -2.78% (p=0.000 n=20)
Int64N2e18-32                  3.588n ± 2%    3.476n ± 1%   -3.15% (p=0.000 n=20)
Int64N4e18-32                  4.938n ± 2%    4.795n ± 1%   -2.91% (p=0.000 n=20)
Int32N1000-32                  2.673n ± 2%    2.485n ± 2%   -7.02% (p=0.000 n=20)
Int32N1e8-32                   2.631n ± 2%    2.457n ± 1%   -6.63% (p=0.000 n=20)
Int32N1e9-32                   2.628n ± 2%    2.452n ± 1%   -6.70% (p=0.000 n=20)
Int32N2e9-32                   2.684n ± 2%    2.453n ± 1%   -8.61% (p=0.000 n=20)
Float32-32                     2.240n ± 2%    2.254n ± 1%        ~ (p=0.878 n=20)
Float64-32                     2.253n ± 1%    2.262n ± 1%        ~ (p=0.963 n=20)
ExpFloat64-32                  3.677n ± 1%    3.777n ± 2%   +2.71% (p=0.004 n=20)
NormFloat64-32                 3.761n ± 1%    3.606n ± 1%   -4.15% (p=0.000 n=20)
Perm3-32                       33.55n ± 2%    33.12n ± 2%        ~ (p=0.402 n=20)
Perm30-32                      173.2n ± 1%    176.1n ± 1%   +1.67% (p=0.000 n=20)
Perm30ViaShuffle-32            115.9n ± 1%    109.3n ± 1%   -5.69% (p=0.000 n=20)
ShuffleOverhead-32             101.9n ± 1%    112.5n ± 1%  +10.35% (p=0.000 n=20)
Concurrent-32                  2.107n ± 6%    2.099n ± 0%        ~ (p=0.051 n=20)

goos: darwin
goarch: arm64
pkg: math/rand/v2
cpu: Apple M1
                       │ 2703446c2e.arm64 │          e1bbe739fb.arm64           │
                       │      sec/op      │    sec/op     vs base               │
SourceUint64-8                2.275n ± 0%    2.290n ± 1%       ~ (p=0.044 n=20)
GlobalInt64-8                 2.154n ± 1%    2.180n ± 1%       ~ (p=0.068 n=20)
GlobalInt64Parallel-8        0.4298n ± 0%   0.4294n ± 0%       ~ (p=0.079 n=20)
GlobalUint64-8                2.160n ± 1%    2.170n ± 1%       ~ (p=0.129 n=20)
GlobalUint64Parallel-8       0.4286n ± 0%   0.4283n ± 0%       ~ (p=0.350 n=20)
Int64-8                       2.491n ± 1%    2.481n ± 1%       ~ (p=0.330 n=20)
Uint64-8                      2.458n ± 0%    2.464n ± 1%       ~ (p=0.351 n=20)
GlobalIntN1000-8              2.814n ± 2%    2.814n ± 0%       ~ (p=0.325 n=20)
IntN1000-8                    2.933n ± 0%    2.934n ± 2%       ~ (p=0.079 n=20)
Int64N1000-8                  2.962n ± 1%    2.957n ± 1%       ~ (p=0.259 n=20)
Int64N1e8-8                   2.960n ± 1%    2.935n ± 2%       ~ (p=0.276 n=20)
Int64N1e9-8                   2.935n ± 2%    2.935n ± 2%       ~ (p=0.984 n=20)
Int64N2e9-8                   2.934n ± 0%    2.933n ± 4%       ~ (p=0.463 n=20)
Int64N1e18-8                  3.777n ± 1%    3.781n ± 1%       ~ (p=0.516 n=20)
Int64N2e18-8                  4.359n ± 1%    4.362n ± 0%       ~ (p=0.256 n=20)
Int64N4e18-8                  6.536n ± 1%    6.576n ± 1%       ~ (p=0.224 n=20)
Int32N1000-8                  2.937n ± 0%    2.942n ± 2%       ~ (p=0.312 n=20)
Int32N1e8-8                   2.937n ± 1%    2.941n ± 1%       ~ (p=0.463 n=20)
Int32N1e9-8                   2.936n ± 0%    2.938n ± 2%       ~ (p=0.044 n=20)
Int32N2e9-8                   2.938n ± 2%    2.982n ± 2%       ~ (p=0.174 n=20)
Float32-8                     3.441n ± 0%    3.441n ± 0%       ~ (p=0.064 n=20)
Float64-8                     3.441n ± 0%    3.441n ± 0%       ~ (p=0.826 n=20)
ExpFloat64-8                  4.486n ± 0%    4.472n ± 0%  -0.31% (p=0.000 n=20)
NormFloat64-8                 4.721n ± 0%    4.716n ± 0%       ~ (p=0.051 n=20)
Perm3-8                       26.65n ± 0%    26.66n ± 0%       ~ (p=0.080 n=20)
Perm30-8                      143.2n ± 0%    143.3n ± 0%  +0.10% (p=0.000 n=20)
Perm30ViaShuffle-8            143.0n ± 0%    142.9n ± 0%       ~ (p=0.642 n=20)
ShuffleOverhead-8             120.6n ± 1%    121.1n ± 1%  +0.41% (p=0.010 n=20)
Concurrent-8                  2.399n ± 5%    2.379n ± 2%       ~ (p=0.365 n=20)

goos: linux
goarch: 386
pkg: math/rand/v2
cpu: AMD Ryzen 9 7950X 16-Core Processor
                        │ 2703446c2e.386 │           e1bbe739fb.386            │
                        │     sec/op     │    sec/op     vs base               │
SourceUint64-32             2.072n ±  2%    2.087n ± 1%       ~ (p=0.440 n=20)
GlobalInt64-32              3.546n ± 27%    3.538n ± 2%       ~ (p=0.101 n=20)
GlobalInt64Parallel-32     0.3211n ±  0%   0.3207n ± 1%       ~ (p=0.753 n=20)
GlobalUint64-32             3.522n ±  2%    3.543n ± 1%       ~ (p=0.071 n=20)
GlobalUint64Parallel-32    0.3172n ±  0%   0.3170n ± 0%       ~ (p=0.507 n=20)
Int64-32                    2.520n ±  2%    2.548n ± 1%       ~ (p=0.267 n=20)
Uint64-32                   2.581n ±  1%    2.565n ± 2%       ~ (p=0.143 n=20)
GlobalIntN1000-32           6.171n ±  1%    6.300n ± 1%       ~ (p=0.037 n=20)
IntN1000-32                 4.752n ±  2%    4.750n ± 0%       ~ (p=0.984 n=20)
Int64N1000-32               5.429n ±  1%    5.515n ± 2%       ~ (p=0.292 n=20)
Int64N1e8-32                5.469n ±  2%    5.527n ± 0%       ~ (p=0.013 n=20)
Int64N1e9-32                5.489n ±  2%    5.531n ± 2%       ~ (p=0.256 n=20)
Int64N2e9-32                5.492n ±  2%    5.514n ± 2%       ~ (p=0.606 n=20)
Int64N1e18-32               8.927n ±  1%    9.059n ± 1%       ~ (p=0.229 n=20)
Int64N2e18-32               9.622n ±  1%    9.594n ± 1%       ~ (p=0.703 n=20)
Int64N4e18-32               12.03n ±  1%    12.05n ± 2%       ~ (p=0.733 n=20)
Int32N1000-32               4.817n ±  1%    4.840n ± 2%       ~ (p=0.941 n=20)
Int32N1e8-32                4.801n ±  1%    4.832n ± 2%       ~ (p=0.228 n=20)
Int32N1e9-32                4.798n ±  1%    4.815n ± 2%       ~ (p=0.560 n=20)
Int32N2e9-32                4.840n ±  1%    4.813n ± 1%       ~ (p=0.015 n=20)
Float32-32                  10.51n ±  4%    10.90n ± 2%  +3.71% (p=0.007 n=20)
Float64-32                  20.33n ±  3%    20.32n ± 4%       ~ (p=0.566 n=20)
ExpFloat64-32               12.59n ±  2%    12.95n ± 3%  +2.86% (p=0.002 n=20)
NormFloat64-32              7.350n ±  2%    7.570n ± 1%  +2.99% (p=0.007 n=20)
Perm3-32                    39.29n ±  2%    37.80n ± 2%  -3.79% (p=0.000 n=20)
Perm30-32                   219.1n ±  2%    214.0n ± 1%  -2.33% (p=0.002 n=20)
Perm30ViaShuffle-32         189.8n ±  2%    188.7n ± 2%       ~ (p=0.147 n=20)
ShuffleOverhead-32          158.9n ±  2%    160.8n ± 1%       ~ (p=0.176 n=20)
Concurrent-32               3.306n ±  3%    3.288n ± 0%  -0.54% (p=0.005 n=20)

For #61716.

Change-Id: I4c5fe710b310dc075ae21c97d1805bcc20db5050
Reviewed-on: https://go-review.googlesource.com/c/go/+/516275
Auto-Submit: Russ Cox <rsc@golang.org>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Dmitri Shuralyov <dmitshur@google.com>
Reviewed-by: Rob Pike <r@golang.org>
This commit is contained in:
Branden Brown 2023-08-05 09:24:57 -04:00 committed by Gopher Robot
parent ecda959b99
commit 488e2a56b9
4 changed files with 57 additions and 55 deletions

View File

@ -83,17 +83,17 @@ func Example_rand() {
// Perm generates a random permutation of the numbers [0, n).
show("Perm", r.Perm(5), r.Perm(5), r.Perm(5))
// Output:
// Float32 0.73793465 0.38461488 0.9940225
// Float64 0.6919607852308565 0.29140004584133117 0.2262092163027547
// ExpFloat64 0.10400903165715357 0.28855743344575835 0.20489656480442942
// NormFloat64 -0.5602299711828513 -0.9211692958208376 -1.4262061075859056
// Int32 1817075958 91420417 1486590581
// Int64 5724354148158589552 5239846799706671610 5927547564735367388
// Uint32 2295813601 961197529 3493134579
// IntN(10) 4 5 1
// Int32N(10) 8 5 4
// Int64N(10) 2 6 3
// Perm [3 4 2 1 0] [4 1 2 0 3] [0 2 1 3 4]
// Float32 0.73793465 0.38461488 0.9940225
// Float64 0.6919607852308565 0.29140004584133117 0.2262092163027547
// ExpFloat64 0.27263589649304043 1.3214739789908194 2.223639057715668
// NormFloat64 -0.09361151905162404 -1.3531915625472757 0.03212053591352371
// Int32 1824388269 1817075958 91420417
// Int64 3546343826724305832 5724354148158589552 5239846799706671610
// Uint32 1380114714 2295813601 961197529
// IntN(10) 8 4 5
// Int32N(10) 1 8 5
// Int64N(10) 4 2 6
// Perm [0 4 1 3 2] [4 0 1 3 2] [4 1 3 0 2]
}
func ExamplePerm() {

View File

@ -29,8 +29,9 @@ const (
// sample = ExpFloat64() / desiredRateParameter
func (r *Rand) ExpFloat64() float64 {
for {
j := r.Uint32()
i := j & 0xFF
u := r.Uint64()
j := uint32(u)
i := uint8(u >> 32)
x := float64(j) * float64(we[i])
if j < ke[i] {
return x

View File

@ -36,8 +36,9 @@ func absInt32(i int32) uint32 {
// sample = NormFloat64() * desiredStdDev + desiredMean
func (r *Rand) NormFloat64() float64 {
for {
j := int32(r.Uint32()) // Possibly negative
i := j & 0x7F
u := r.Uint64()
j := int32(u) // Possibly negative
i := u >> 32 & 0x7F
x := float64(j) * float64(wn[i])
if absInt32(j) < kn[i] {
// This case should be hit better than 99% of the time.

View File

@ -225,26 +225,26 @@ func replace(t *testing.T, file string, new []byte) {
}
var regressGolden = []any{
float64(0.1835616265352068), // ExpFloat64()
float64(0.1747899228736829), // ExpFloat64()
float64(2.369801563222863), // ExpFloat64()
float64(1.8580757676846802), // ExpFloat64()
float64(0.35731123690292155), // ExpFloat64()
float64(0.5998175837039783), // ExpFloat64()
float64(0.466149534807967), // ExpFloat64()
float64(1.333748223451787), // ExpFloat64()
float64(0.05019983258513916), // ExpFloat64()
float64(1.4143832256421573), // ExpFloat64()
float64(0.7274094466687158), // ExpFloat64()
float64(0.9595398235158843), // ExpFloat64()
float64(1.3010086894917756), // ExpFloat64()
float64(0.8678483737499929), // ExpFloat64()
float64(0.7958895614497015), // ExpFloat64()
float64(0.12235329704897674), // ExpFloat64()
float64(1.1625413819613253), // ExpFloat64()
float64(1.2603945934386542), // ExpFloat64()
float64(0.22199446394172706), // ExpFloat64()
float64(2.248962105270165), // ExpFloat64()
float64(0.018945741402288857), // ExpFloat64()
float64(0.13829043737893842), // ExpFloat64()
float64(1.1409883497761604), // ExpFloat64()
float64(1.2449542292186253), // ExpFloat64()
float64(0.4849966704675476), // ExpFloat64()
float64(0.08948056191408837), // ExpFloat64()
float64(0.41380878045769276), // ExpFloat64()
float64(0.31325729628567145), // ExpFloat64()
float64(0.23118058048615886), // ExpFloat64()
float64(0.2090943007446), // ExpFloat64()
float64(2.6861652769471456), // ExpFloat64()
float64(1.3811947596783387), // ExpFloat64()
float64(1.5595976199841015), // ExpFloat64()
float64(2.3469708688771744), // ExpFloat64()
float64(0.5882760784580738), // ExpFloat64()
float64(0.33463787922271115), // ExpFloat64()
float64(0.8799304551478242), // ExpFloat64()
float64(1.616532211418378), // ExpFloat64()
float64(0.09548420514080316), // ExpFloat64()
float64(2.448910012295588), // ExpFloat64()
float32(0.39651686), // Float32()
float32(0.38516325), // Float32()
@ -414,26 +414,26 @@ var regressGolden = []any{
int64(339542337), // IntN(1000000000)
int64(701992307), // IntN(1073741824)
float64(0.6694336828657225), // NormFloat64()
float64(0.7506128421991493), // NormFloat64()
float64(-0.5466367925077582), // NormFloat64()
float64(-0.8240444698703802), // NormFloat64()
float64(0.11563765115029284), // NormFloat64()
float64(-1.3442355710948637), // NormFloat64()
float64(-1.0654999977586854), // NormFloat64()
float64(0.15938628997241455), // NormFloat64()
float64(-0.8046314635002316), // NormFloat64()
float64(0.8323920113630076), // NormFloat64()
float64(1.0611019472659846), // NormFloat64()
float64(-0.8814992544664111), // NormFloat64()
float64(0.9236344788106081), // NormFloat64()
float64(-1.2854378982224413), // NormFloat64()
float64(0.4683572952232405), // NormFloat64()
float64(-0.5065217527091702), // NormFloat64()
float64(-0.6460803205194869), // NormFloat64()
float64(0.7913615856789362), // NormFloat64()
float64(-1.6119549224461807), // NormFloat64()
float64(0.16216183438701695), // NormFloat64()
float64(0.06909351197715208), // NormFloat64()
float64(0.5938704963270934), // NormFloat64()
float64(1.306028863617345), // NormFloat64()
float64(1.4117443127537266), // NormFloat64()
float64(0.15696085092285333), // NormFloat64()
float64(1.360954184661658), // NormFloat64()
float64(0.34312984093649135), // NormFloat64()
float64(0.7340067314938814), // NormFloat64()
float64(0.22135434353553696), // NormFloat64()
float64(-0.15741313389982836), // NormFloat64()
float64(-1.080896970111088), // NormFloat64()
float64(-0.6107370548788273), // NormFloat64()
float64(-2.3550050260853643), // NormFloat64()
float64(1.8363976597396832), // NormFloat64()
float64(-0.7167650947520989), // NormFloat64()
float64(0.6860847654927735), // NormFloat64()
float64(0.3403802538398155), // NormFloat64()
float64(-1.3884780626234523), // NormFloat64()
float64(0.14097321427512907), // NormFloat64()
float64(-1.032800550788109), // NormFloat64()
[]int{}, // Perm(0)
[]int{0}, // Perm(1)