1
0
mirror of https://github.com/golang/go synced 2024-11-25 06:07:58 -07:00

exp/regexp/syntax: compiled form

R=r, sam.thorogood, kevlar
CC=golang-dev, rsc
https://golang.org/cl/4636046
This commit is contained in:
Russ Cox 2011-06-27 19:52:59 -04:00
parent ebb1566a46
commit 46e7466080
4 changed files with 539 additions and 0 deletions

View File

@ -6,8 +6,10 @@ include ../../../../Make.inc
TARG=exp/regexp/syntax
GOFILES=\
compile.go\
parse.go\
perl_groups.go\
prog.go\
regexp.go\
include ../../../../Make.pkg

View File

@ -0,0 +1,264 @@
package syntax
import (
"os"
"unicode"
)
// A patchList is a list of instruction pointers that need to be filled in (patched).
// Because the pointers haven't been filled in yet, we can reuse their storage
// to hold the list. It's kind of sleazy, but works well in practice.
// See http://swtch.com/~rsc/regexp/regexp1.html for inspiration.
//
// These aren't really pointers: they're integers, so we can reinterpret them
// this way without using package unsafe. A value l denotes
// p.inst[l>>1].Out (l&1==0) or .Arg (l&1==1).
// l == 0 denotes the empty list, okay because we start every program
// with a fail instruction, so we'll never want to point at its output link.
type patchList uint32
func (l patchList) next(p *Prog) patchList {
i := &p.Inst[l>>1]
if l&1 == 0 {
return patchList(i.Out)
}
return patchList(i.Arg)
}
func (l patchList) patch(p *Prog, val uint32) {
for l != 0 {
i := &p.Inst[l>>1]
if l&1 == 0 {
l = patchList(i.Out)
i.Out = val
} else {
l = patchList(i.Arg)
i.Arg = val
}
}
}
func (l1 patchList) append(p *Prog, l2 patchList) patchList {
if l1 == 0 {
return l2
}
if l2 == 0 {
return l1
}
last := l1
for {
next := last.next(p)
if next == 0 {
break
}
last = next
}
i := &p.Inst[last>>1]
if last&1 == 0 {
i.Out = uint32(l2)
} else {
i.Arg = uint32(l2)
}
return l1
}
// A frag represents a compiled program fragment.
type frag struct {
i uint32 // index of first instruction
out patchList // where to record end instruction
}
type compiler struct {
p *Prog
}
// Compile compiles the regexp into a program to be executed.
func Compile(re *Regexp) (*Prog, os.Error) {
var c compiler
c.init()
f := c.compile(re)
f.out.patch(c.p, c.inst(InstMatch).i)
c.p.Start = int(f.i)
return c.p, nil
}
func (c *compiler) init() {
c.p = new(Prog)
c.inst(InstFail)
}
var anyRuneNotNL = []int{0, '\n' - 1, '\n' - 1, unicode.MaxRune}
var anyRune = []int{0, unicode.MaxRune}
func (c *compiler) compile(re *Regexp) frag {
switch re.Op {
case OpNoMatch:
return c.fail()
case OpEmptyMatch:
return c.nop()
case OpLiteral:
if len(re.Rune) == 0 {
return c.nop()
}
var f frag
for j := range re.Rune {
f1 := c.rune(re.Rune[j : j+1])
if j == 0 {
f = f1
} else {
f = c.cat(f, f1)
}
}
return f
case OpCharClass:
return c.rune(re.Rune)
case OpAnyCharNotNL:
return c.rune(anyRuneNotNL)
case OpAnyChar:
return c.rune(anyRune)
case OpBeginLine:
return c.empty(EmptyBeginLine)
case OpEndLine:
return c.empty(EmptyEndLine)
case OpBeginText:
return c.empty(EmptyBeginText)
case OpEndText:
return c.empty(EmptyEndText)
case OpWordBoundary:
return c.empty(EmptyWordBoundary)
case OpNoWordBoundary:
return c.empty(EmptyNoWordBoundary)
case OpCapture:
bra := c.cap(uint32(re.Cap << 1))
sub := c.compile(re.Sub[0])
ket := c.cap(uint32(re.Cap<<1 | 1))
return c.cat(c.cat(bra, sub), ket)
case OpStar:
return c.star(c.compile(re.Sub[0]), re.Flags&NonGreedy != 0)
case OpPlus:
return c.plus(c.compile(re.Sub[0]), re.Flags&NonGreedy != 0)
case OpQuest:
return c.quest(c.compile(re.Sub[0]), re.Flags&NonGreedy != 0)
case OpConcat:
if len(re.Sub) == 0 {
return c.nop()
}
var f frag
for i, sub := range re.Sub {
if i == 0 {
f = c.compile(sub)
} else {
f = c.cat(f, c.compile(sub))
}
}
return f
case OpAlternate:
var f frag
for _, sub := range re.Sub {
f = c.alt(f, c.compile(sub))
}
return f
}
panic("regexp: unhandled case in compile")
}
func (c *compiler) inst(op InstOp) frag {
// TODO: impose length limit
f := frag{i: uint32(len(c.p.Inst))}
c.p.Inst = append(c.p.Inst, Inst{Op: op})
return f
}
func (c *compiler) nop() frag {
f := c.inst(InstNop)
f.out = patchList(f.i << 1)
return f
}
func (c *compiler) fail() frag {
return frag{}
}
func (c *compiler) cap(arg uint32) frag {
f := c.inst(InstCapture)
f.out = patchList(f.i << 1)
c.p.Inst[f.i].Arg = arg
return f
}
func (c *compiler) cat(f1, f2 frag) frag {
// concat of failure is failure
if f1.i == 0 || f2.i == 0 {
return frag{}
}
// TODO: elide nop
f1.out.patch(c.p, f2.i)
return frag{f1.i, f2.out}
}
func (c *compiler) alt(f1, f2 frag) frag {
// alt of failure is other
if f1.i == 0 {
return f2
}
if f2.i == 0 {
return f1
}
f := c.inst(InstAlt)
i := &c.p.Inst[f.i]
i.Out = f1.i
i.Arg = f2.i
f.out = f1.out.append(c.p, f2.out)
return f
}
func (c *compiler) quest(f1 frag, nongreedy bool) frag {
f := c.inst(InstAlt)
i := &c.p.Inst[f.i]
if nongreedy {
i.Arg = f1.i
f.out = patchList(f.i << 1)
} else {
i.Out = f1.i
f.out = patchList(f.i<<1 | 1)
}
f.out = f.out.append(c.p, f1.out)
return f
}
func (c *compiler) star(f1 frag, nongreedy bool) frag {
f := c.inst(InstAlt)
i := &c.p.Inst[f.i]
if nongreedy {
i.Arg = f1.i
f.out = patchList(f.i << 1)
} else {
i.Out = f1.i
f.out = patchList(f.i<<1 | 1)
}
f1.out.patch(c.p, f.i)
return f
}
func (c *compiler) plus(f1 frag, nongreedy bool) frag {
return frag{f1.i, c.star(f1, nongreedy).out}
}
func (c *compiler) empty(op EmptyOp) frag {
f := c.inst(InstEmptyWidth)
c.p.Inst[f.i].Arg = uint32(op)
f.out = patchList(f.i << 1)
return f
}
func (c *compiler) rune(rune []int) frag {
f := c.inst(InstRune)
c.p.Inst[f.i].Rune = rune
f.out = patchList(f.i << 1)
return f
}

View File

@ -0,0 +1,182 @@
package syntax
import (
"bytes"
"strconv"
)
// Compiled program.
// May not belong in this package, but convenient for now.
// A Prog is a compiled regular expression program.
type Prog struct {
Inst []Inst
Start int // index of start instruction
}
// An InstOp is an instruction opcode.
type InstOp uint8
const (
InstAlt InstOp = iota
InstAltMatch
InstCapture
InstEmptyWidth
InstMatch
InstFail
InstNop
InstRune
)
// An EmptyOp specifies a kind or mixture of zero-width assertions.
type EmptyOp uint8
const (
EmptyBeginLine EmptyOp = 1 << iota
EmptyEndLine
EmptyBeginText
EmptyEndText
EmptyWordBoundary
EmptyNoWordBoundary
)
// An Inst is a single instruction in a regular expression program.
type Inst struct {
Op InstOp
Out uint32 // all but InstMatch, InstFail
Arg uint32 // InstAlt, InstAltMatch, InstCapture, InstEmptyWidth
Rune []int
}
func (p *Prog) String() string {
var b bytes.Buffer
dumpProg(&b, p)
return b.String()
}
// MatchRune returns true if the instruction matches (and consumes) r.
// It should only be called when i.Op == InstRune.
func (i *Inst) MatchRune(r int) bool {
rune := i.Rune
// Special case: single-rune slice is from literal string, not char class.
// TODO: Case folding.
if len(rune) == 1 {
return r == rune[0]
}
// Peek at the first few pairs.
// Should handle ASCII well.
for j := 0; j < len(rune) && j <= 8; j += 2 {
if r < rune[j] {
return false
}
if r <= rune[j+1] {
return true
}
}
// Otherwise binary search.
lo := 0
hi := len(rune) / 2
for lo < hi {
m := lo + (hi-lo)/2
if c := rune[2*m]; c <= r {
if r <= rune[2*m+1] {
return true
}
lo = m + 1
} else {
hi = m
}
}
return false
}
// As per re2's Prog::IsWordChar. Determines whether rune is an ASCII word char.
// Since we act on runes, it would be easy to support Unicode here.
func wordRune(rune int) bool {
return rune == '_' ||
('A' <= rune && rune <= 'Z') ||
('a' <= rune && rune <= 'z') ||
('0' <= rune && rune <= '9')
}
// MatchEmptyWidth returns true if the instruction matches
// an empty string between the runes before and after.
// It should only be called when i.Op == InstEmptyWidth.
func (i *Inst) MatchEmptyWidth(before int, after int) bool {
switch EmptyOp(i.Arg) {
case EmptyBeginLine:
return before == '\n' || before == -1
case EmptyEndLine:
return after == '\n' || after == -1
case EmptyBeginText:
return before == -1
case EmptyEndText:
return after == -1
case EmptyWordBoundary:
return wordRune(before) != wordRune(after)
case EmptyNoWordBoundary:
return wordRune(before) == wordRune(after)
}
panic("unknown empty width arg")
}
func (i *Inst) String() string {
var b bytes.Buffer
dumpInst(&b, i)
return b.String()
}
func bw(b *bytes.Buffer, args ...string) {
for _, s := range args {
b.WriteString(s)
}
}
func dumpProg(b *bytes.Buffer, p *Prog) {
for j := range p.Inst {
i := &p.Inst[j]
pc := strconv.Itoa(j)
if len(pc) < 3 {
b.WriteString(" "[len(pc):])
}
if j == p.Start {
pc += "*"
}
bw(b, pc, "\t")
dumpInst(b, i)
bw(b, "\n")
}
}
func u32(i uint32) string {
return strconv.Uitoa64(uint64(i))
}
func dumpInst(b *bytes.Buffer, i *Inst) {
switch i.Op {
case InstAlt:
bw(b, "alt -> ", u32(i.Out), ", ", u32(i.Arg))
case InstAltMatch:
bw(b, "altmatch -> ", u32(i.Out), ", ", u32(i.Arg))
case InstCapture:
bw(b, "cap ", u32(i.Arg), " -> ", u32(i.Out))
case InstEmptyWidth:
bw(b, "empty ", u32(i.Arg), " -> ", u32(i.Out))
case InstMatch:
bw(b, "match")
case InstFail:
bw(b, "fail")
case InstNop:
bw(b, "nop -> ", u32(i.Out))
case InstRune:
if i.Rune == nil {
// shouldn't happen
bw(b, "rune <nil>")
}
bw(b, "rune ", strconv.QuoteToASCII(string(i.Rune)), " -> ", u32(i.Out))
}
}

View File

@ -0,0 +1,91 @@
package syntax
import (
"testing"
)
var compileTests = []struct {
Regexp string
Prog string
}{
{"a", ` 0 fail
1* rune "a" -> 2
2 match
`},
{"[A-M][n-z]", ` 0 fail
1* rune "AM" -> 2
2 rune "nz" -> 3
3 match
`},
{"", ` 0 fail
1* nop -> 2
2 match
`},
{"a?", ` 0 fail
1 rune "a" -> 3
2* alt -> 1, 3
3 match
`},
{"a??", ` 0 fail
1 rune "a" -> 3
2* alt -> 3, 1
3 match
`},
{"a+", ` 0 fail
1* rune "a" -> 2
2 alt -> 1, 3
3 match
`},
{"a+?", ` 0 fail
1* rune "a" -> 2
2 alt -> 3, 1
3 match
`},
{"a*", ` 0 fail
1 rune "a" -> 2
2* alt -> 1, 3
3 match
`},
{"a*?", ` 0 fail
1 rune "a" -> 2
2* alt -> 3, 1
3 match
`},
{"a+b+", ` 0 fail
1* rune "a" -> 2
2 alt -> 1, 3
3 rune "b" -> 4
4 alt -> 3, 5
5 match
`},
{"(a+)(b+)", ` 0 fail
1* cap 2 -> 2
2 rune "a" -> 3
3 alt -> 2, 4
4 cap 3 -> 5
5 cap 4 -> 6
6 rune "b" -> 7
7 alt -> 6, 8
8 cap 5 -> 9
9 match
`},
{"a+|b+", ` 0 fail
1 rune "a" -> 2
2 alt -> 1, 6
3 rune "b" -> 4
4 alt -> 3, 6
5* alt -> 1, 3
6 match
`},
}
func TestCompile(t *testing.T) {
for _, tt := range compileTests {
re, _ := Parse(tt.Regexp, Perl)
p, _ := Compile(re)
s := p.String()
if s != tt.Prog {
t.Errorf("compiled %#q:\n--- have\n%s---\n--- want\n%s---", tt.Regexp, s, tt.Prog)
}
}
}