1
0
mirror of https://github.com/golang/go synced 2024-11-25 09:27:57 -07:00

doc/effective_go.html: unify and expand the discussion of Sprintf and String

It's a common mistake to build a recursive String method; explain it well and
show how to avoid it.

R=golang-dev, bradfitz, adg
CC=golang-dev
https://golang.org/cl/7486049
This commit is contained in:
Rob Pike 2013-03-06 15:47:49 -08:00
parent d07978a0f7
commit 45a3b3714f

View File

@ -1710,10 +1710,45 @@ the receiver for <code>String</code> must be of value type; this example used a
that's more efficient and idiomatic for struct types.
See the section below on <a href="#pointers_vs_values">pointers vs. value receivers</a> for more information.)
</p>
<p>
Our <code>String</code> method is able to call <code>Sprintf</code> because the
print routines are fully reentrant and can be used recursively.
We can even go one step further and pass a print routine's arguments directly to another such routine.
print routines are fully reentrant and can be wrapped this way.
There is one important detail to understand about this approach,
however: don't construct a <code>String</code> method by calling
<code>Sprintf</code> in a way that will recur into your <code>String</code>
method indefinitely. This can happen if the <code>Sprintf</code>
call attempts to print the receiver directly as a string, which in
turn will invoke the method again. It's a common and easy mistake
to make, as this example shows.
</p>
<pre>
type MyString string
func (m MyString) String() string {
return fmt.Sprintf("MyString=%s", m) // Error: will recur forever.
}
</pre>
<p>
It's also easy to fix: convert the argument to the basic string type, which does not have the
method.
</p>
<pre>
type MyString string
func (m MyString) String() string {
return fmt.Sprintf("MyString=%s", string(m)) // OK: note conversion.
}
</pre>
<p>
In the <a href="#initialization">initialization section</a> we'll see another technique that avoids this recursion.
</p>
<p>
Another printing technique is to pass a print routine's arguments directly to another such routine.
The signature of <code>Printf</code> uses the type <code>...interface{}</code>
for its final argument to specify that an arbitrary number of parameters (of arbitrary type)
can appear after the format.
@ -1857,13 +1892,13 @@ while <code>ByteSize(1e13)</code> prints as <code>9.09TB</code>.
</p>
<p>
Note that it's fine to call <code>Sprintf</code> and friends in the
implementation of <code>String</code> methods, but beware of
recurring into the <code>String</code> method through the nested
<code>Sprintf</code> call using a string format
(<code>%s</code>, <code>%q</code>, <code>%v</code>, <code>%x</code> or <code>%X</code>).
The <code>ByteSize</code> implementation of <code>String</code> is safe
because it calls <code>Sprintf</code> with <code>%f</code>.
The use here of <code>Sprintf</code>
to implement <code>ByteSize</code>'s <code>String</code> method is safe
(avoids recurring indefinitely) not because of a conversion but
because it calls <code>Sprintf</code> with <code>%f</code>,
which is not a string format: <code>Sprintf</code> will only call
the <code>String</code> method when it wants a string, and <code>%f</code>
wants a floating-point value.
</p>
<h3 id="variables">Variables</h3>
@ -2022,10 +2057,8 @@ func (s Sequence) String() string {
}
</pre>
<p>
The conversion causes <code>s</code> to be treated as an ordinary slice
and therefore receive the default formatting.
Without the conversion, <code>Sprint</code> would find the
<code>String</code> method of <code>Sequence</code> and recur indefinitely.
This method is another example of the conversion technique for calling
<code>Sprintf</code> safely from a <code>String</code> method.
Because the two types (<code>Sequence</code> and <code>[]int</code>)
are the same if we ignore the type name, it's legal to convert between them.
The conversion doesn't create a new value, it just temporarily acts