mirror of
https://github.com/golang/go
synced 2024-11-23 16:40:03 -07:00
math/cmplx: handle special cases
Implement special case handling and testing to ensure conformance with the C99 standard annex G.6 Complex arithmetic. Fixes #29320 Change-Id: Id72eb4c5a35d5a54b4b8690d2f7176ab11028f1b Reviewed-on: https://go-review.googlesource.com/c/go/+/220689 Reviewed-by: Robert Griesemer <gri@golang.org>
This commit is contained in:
parent
da382a3978
commit
4209a9f65a
@ -3,7 +3,8 @@
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package cmplx provides basic constants and mathematical functions for
|
||||
// complex numbers.
|
||||
// complex numbers. Special case handling conforms to the C99 standard
|
||||
// Annex G IEC 60559-compatible complex arithmetic.
|
||||
package cmplx
|
||||
|
||||
import "math"
|
||||
|
@ -49,8 +49,31 @@ import "math"
|
||||
|
||||
// Asin returns the inverse sine of x.
|
||||
func Asin(x complex128) complex128 {
|
||||
if imag(x) == 0 && math.Abs(real(x)) <= 1 {
|
||||
return complex(math.Asin(real(x)), imag(x))
|
||||
switch re, im := real(x), imag(x); {
|
||||
case im == 0 && math.Abs(re) <= 1:
|
||||
return complex(math.Asin(re), im)
|
||||
case re == 0 && math.Abs(im) <= 1:
|
||||
return complex(re, math.Asinh(im))
|
||||
case math.IsNaN(im):
|
||||
switch {
|
||||
case re == 0:
|
||||
return complex(re, math.NaN())
|
||||
case math.IsInf(re, 0):
|
||||
return complex(math.NaN(), re)
|
||||
default:
|
||||
return NaN()
|
||||
}
|
||||
case math.IsInf(im, 0):
|
||||
switch {
|
||||
case math.IsNaN(re):
|
||||
return x
|
||||
case math.IsInf(re, 0):
|
||||
return complex(math.Copysign(math.Pi/4, re), im)
|
||||
default:
|
||||
return complex(math.Copysign(0, re), im)
|
||||
}
|
||||
case math.IsInf(re, 0):
|
||||
return complex(math.Copysign(math.Pi/2, re), math.Copysign(re, im))
|
||||
}
|
||||
ct := complex(-imag(x), real(x)) // i * x
|
||||
xx := x * x
|
||||
@ -62,8 +85,31 @@ func Asin(x complex128) complex128 {
|
||||
|
||||
// Asinh returns the inverse hyperbolic sine of x.
|
||||
func Asinh(x complex128) complex128 {
|
||||
if imag(x) == 0 && math.Abs(real(x)) <= 1 {
|
||||
return complex(math.Asinh(real(x)), imag(x))
|
||||
switch re, im := real(x), imag(x); {
|
||||
case im == 0 && math.Abs(re) <= 1:
|
||||
return complex(math.Asinh(re), im)
|
||||
case re == 0 && math.Abs(im) <= 1:
|
||||
return complex(re, math.Asin(im))
|
||||
case math.IsInf(re, 0):
|
||||
switch {
|
||||
case math.IsInf(im, 0):
|
||||
return complex(re, math.Copysign(math.Pi/4, im))
|
||||
case math.IsNaN(im):
|
||||
return x
|
||||
default:
|
||||
return complex(re, math.Copysign(0.0, im))
|
||||
}
|
||||
case math.IsNaN(re):
|
||||
switch {
|
||||
case im == 0:
|
||||
return x
|
||||
case math.IsInf(im, 0):
|
||||
return complex(im, re)
|
||||
default:
|
||||
return NaN()
|
||||
}
|
||||
case math.IsInf(im, 0):
|
||||
return complex(math.Copysign(im, re), math.Copysign(math.Pi/2, im))
|
||||
}
|
||||
xx := x * x
|
||||
x1 := complex(1+real(xx), imag(xx)) // 1 + x*x
|
||||
@ -91,6 +137,9 @@ func Acos(x complex128) complex128 {
|
||||
|
||||
// Acosh returns the inverse hyperbolic cosine of x.
|
||||
func Acosh(x complex128) complex128 {
|
||||
if x == 0 {
|
||||
return complex(0, math.Copysign(math.Pi/2, imag(x)))
|
||||
}
|
||||
w := Acos(x)
|
||||
if imag(w) <= 0 {
|
||||
return complex(-imag(w), real(w)) // i * w
|
||||
@ -133,6 +182,19 @@ func Acosh(x complex128) complex128 {
|
||||
|
||||
// Atan returns the inverse tangent of x.
|
||||
func Atan(x complex128) complex128 {
|
||||
switch re, im := real(x), imag(x); {
|
||||
case im == 0:
|
||||
return complex(math.Atan(re), im)
|
||||
case re == 0 && math.Abs(im) <= 1:
|
||||
return complex(re, math.Atanh(im))
|
||||
case math.IsInf(im, 0) || math.IsInf(re, 0):
|
||||
if math.IsNaN(re) {
|
||||
return complex(math.NaN(), math.Copysign(0, im))
|
||||
}
|
||||
return complex(math.Copysign(math.Pi/2, re), math.Copysign(0, im))
|
||||
case math.IsNaN(re) || math.IsNaN(im):
|
||||
return NaN()
|
||||
}
|
||||
x2 := real(x) * real(x)
|
||||
a := 1 - x2 - imag(x)*imag(x)
|
||||
if a == 0 {
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -49,6 +49,23 @@ import "math"
|
||||
|
||||
// Exp returns e**x, the base-e exponential of x.
|
||||
func Exp(x complex128) complex128 {
|
||||
switch re, im := real(x), imag(x); {
|
||||
case math.IsInf(re, 0):
|
||||
switch {
|
||||
case re > 0 && im == 0:
|
||||
return x
|
||||
case math.IsInf(im, 0) || math.IsNaN(im):
|
||||
if re < 0 {
|
||||
return complex(0, math.Copysign(0, im))
|
||||
} else {
|
||||
return complex(math.Inf(1.0), math.NaN())
|
||||
}
|
||||
}
|
||||
case math.IsNaN(re):
|
||||
if im == 0 {
|
||||
return complex(math.NaN(), im)
|
||||
}
|
||||
}
|
||||
r := math.Exp(real(x))
|
||||
s, c := math.Sincos(imag(x))
|
||||
return complex(r*c, r*s)
|
||||
|
@ -60,5 +60,6 @@ func Log(x complex128) complex128 {
|
||||
|
||||
// Log10 returns the decimal logarithm of x.
|
||||
func Log10(x complex128) complex128 {
|
||||
return math.Log10E * Log(x)
|
||||
z := Log(x)
|
||||
return complex(math.Log10E*real(z), math.Log10E*imag(z))
|
||||
}
|
||||
|
@ -51,6 +51,19 @@ import "math"
|
||||
|
||||
// Sin returns the sine of x.
|
||||
func Sin(x complex128) complex128 {
|
||||
switch re, im := real(x), imag(x); {
|
||||
case im == 0 && (math.IsInf(re, 0) || math.IsNaN(re)):
|
||||
return complex(math.NaN(), im)
|
||||
case math.IsInf(im, 0):
|
||||
switch {
|
||||
case re == 0:
|
||||
return x
|
||||
case math.IsInf(re, 0) || math.IsNaN(re):
|
||||
return complex(math.NaN(), im)
|
||||
}
|
||||
case re == 0 && math.IsNaN(im):
|
||||
return x
|
||||
}
|
||||
s, c := math.Sincos(real(x))
|
||||
sh, ch := sinhcosh(imag(x))
|
||||
return complex(s*ch, c*sh)
|
||||
@ -71,6 +84,19 @@ func Sin(x complex128) complex128 {
|
||||
|
||||
// Sinh returns the hyperbolic sine of x.
|
||||
func Sinh(x complex128) complex128 {
|
||||
switch re, im := real(x), imag(x); {
|
||||
case re == 0 && (math.IsInf(im, 0) || math.IsNaN(im)):
|
||||
return complex(re, math.NaN())
|
||||
case math.IsInf(re, 0):
|
||||
switch {
|
||||
case im == 0:
|
||||
return complex(re, im)
|
||||
case math.IsInf(im, 0) || math.IsNaN(im):
|
||||
return complex(re, math.NaN())
|
||||
}
|
||||
case im == 0 && math.IsNaN(re):
|
||||
return complex(math.NaN(), im)
|
||||
}
|
||||
s, c := math.Sincos(imag(x))
|
||||
sh, ch := sinhcosh(real(x))
|
||||
return complex(c*sh, s*ch)
|
||||
@ -96,6 +122,19 @@ func Sinh(x complex128) complex128 {
|
||||
|
||||
// Cos returns the cosine of x.
|
||||
func Cos(x complex128) complex128 {
|
||||
switch re, im := real(x), imag(x); {
|
||||
case im == 0 && (math.IsInf(re, 0) || math.IsNaN(re)):
|
||||
return complex(math.NaN(), -im*math.Copysign(0, re))
|
||||
case math.IsInf(im, 0):
|
||||
switch {
|
||||
case re == 0:
|
||||
return complex(math.Inf(1), -re*math.Copysign(0, im))
|
||||
case math.IsInf(re, 0) || math.IsNaN(re):
|
||||
return complex(math.Inf(1), math.NaN())
|
||||
}
|
||||
case re == 0 && math.IsNaN(im):
|
||||
return complex(math.NaN(), 0)
|
||||
}
|
||||
s, c := math.Sincos(real(x))
|
||||
sh, ch := sinhcosh(imag(x))
|
||||
return complex(c*ch, -s*sh)
|
||||
@ -115,6 +154,19 @@ func Cos(x complex128) complex128 {
|
||||
|
||||
// Cosh returns the hyperbolic cosine of x.
|
||||
func Cosh(x complex128) complex128 {
|
||||
switch re, im := real(x), imag(x); {
|
||||
case re == 0 && (math.IsInf(im, 0) || math.IsNaN(im)):
|
||||
return complex(math.NaN(), re*math.Copysign(0, im))
|
||||
case math.IsInf(re, 0):
|
||||
switch {
|
||||
case im == 0:
|
||||
return complex(math.Inf(1), im*math.Copysign(0, re))
|
||||
case math.IsInf(im, 0) || math.IsNaN(im):
|
||||
return complex(math.Inf(1), math.NaN())
|
||||
}
|
||||
case im == 0 && math.IsNaN(re):
|
||||
return complex(math.NaN(), im)
|
||||
}
|
||||
s, c := math.Sincos(imag(x))
|
||||
sh, ch := sinhcosh(real(x))
|
||||
return complex(c*ch, s*sh)
|
||||
|
@ -65,6 +65,8 @@ func Sqrt(x complex128) complex128 {
|
||||
return complex(0, math.Copysign(math.Sqrt(-real(x)), imag(x)))
|
||||
}
|
||||
return complex(math.Sqrt(real(x)), imag(x))
|
||||
} else if math.IsInf(imag(x), 0) {
|
||||
return complex(math.Inf(1.0), imag(x))
|
||||
}
|
||||
if real(x) == 0 {
|
||||
if imag(x) < 0 {
|
||||
|
@ -60,6 +60,16 @@ import (
|
||||
|
||||
// Tan returns the tangent of x.
|
||||
func Tan(x complex128) complex128 {
|
||||
switch re, im := real(x), imag(x); {
|
||||
case math.IsInf(im, 0):
|
||||
switch {
|
||||
case math.IsInf(re, 0) || math.IsNaN(re):
|
||||
return complex(math.Copysign(0, re), math.Copysign(1, im))
|
||||
}
|
||||
return complex(math.Copysign(0, math.Sin(2*re)), math.Copysign(1, im))
|
||||
case re == 0 && math.IsNaN(im):
|
||||
return x
|
||||
}
|
||||
d := math.Cos(2*real(x)) + math.Cosh(2*imag(x))
|
||||
if math.Abs(d) < 0.25 {
|
||||
d = tanSeries(x)
|
||||
@ -84,6 +94,16 @@ func Tan(x complex128) complex128 {
|
||||
|
||||
// Tanh returns the hyperbolic tangent of x.
|
||||
func Tanh(x complex128) complex128 {
|
||||
switch re, im := real(x), imag(x); {
|
||||
case math.IsInf(re, 0):
|
||||
switch {
|
||||
case math.IsInf(im, 0) || math.IsNaN(im):
|
||||
return complex(math.Copysign(1, re), math.Copysign(0, im))
|
||||
}
|
||||
return complex(math.Copysign(1, re), math.Copysign(0, math.Sin(2*im)))
|
||||
case im == 0 && math.IsNaN(re):
|
||||
return x
|
||||
}
|
||||
d := math.Cosh(2*real(x)) + math.Cos(2*imag(x))
|
||||
if d == 0 {
|
||||
return Inf()
|
||||
|
Loading…
Reference in New Issue
Block a user