1
0
mirror of https://github.com/golang/go synced 2024-11-25 06:07:58 -07:00

reflect: more efficient; cannot Set result of NewValue anymore

* Reduces malloc counts during gob encoder/decoder test from 6/6 to 3/5.

The current reflect uses Set to mean two subtly different things.

(1) If you have a reflect.Value v, it might just represent
itself (as in v = reflect.NewValue(42)), in which case calling
v.Set only changed v, not any other data in the program.

(2) If you have a reflect Value v derived from a pointer
or a slice (as in x := []int{42}; v = reflect.NewValue(x).Index(0)),
v represents the value held there.  Changing x[0] affects the
value returned by v.Int(), and calling v.Set affects x[0].

This was not really by design; it just happened that way.

The motivation for the new reflect implementation was
to remove mallocs.  The use case (1) has an implicit malloc
inside it.  If you can do:

       v := reflect.NewValue(0)
       v.Set(42)
       i := v.Int()  // i = 42

then that implies that v is referring to some underlying
chunk of memory in order to remember the 42; that is,
NewValue must have allocated some memory.

Almost all the time you are using reflect the goal is to
inspect or to change other data, not to manipulate data
stored solely inside a reflect.Value.

This CL removes use case (1), so that an assignable
reflect.Value must always refer to some other piece of data
in the program.  Put another way, removing this case would
make

       v := reflect.NewValue(0)
       v.Set(42)

as illegal as

       0 = 42.

It would also make this illegal:

       x := 0
       v := reflect.NewValue(x)
       v.Set(42)

for the same reason.  (Note that right now, v.Set(42) "succeeds"
but does not change the value of x.)

If you really wanted to make v refer to x, you'd start with &x
and dereference it:

       x := 0
       v := reflect.NewValue(&x).Elem()  // v = *&x
       v.Set(42)

It's pretty rare, except in tests, to want to use NewValue and then
call Set to change the Value itself instead of some other piece of
data in the program.  I haven't seen it happen once yet while
making the tree build with this change.

For the same reasons, reflect.Zero (formerly reflect.MakeZero)
would also return an unassignable, unaddressable value.
This invalidates the (awkward) idiom:

       pv := ... some Ptr Value we have ...
       v := reflect.Zero(pv.Type().Elem())
       pv.PointTo(v)

which, when the API changed, turned into:

       pv := ... some Ptr Value we have ...
       v := reflect.Zero(pv.Type().Elem())
       pv.Set(v.Addr())

In both, it is far from clear what the code is trying to do.  Now that
it is possible, this CL adds reflect.New(Type) Value that does the
obvious thing (same as Go's new), so this code would be replaced by:

       pv := ... some Ptr Value we have ...
       pv.Set(reflect.New(pv.Type().Elem()))

The changes just described can be confusing to think about,
but I believe it is because the old API was confusing - it was
conflating two different kinds of Values - and that the new API
by itself is pretty simple: you can only Set (or call Addr on)
a Value if it actually addresses some real piece of data; that is,
only if it is the result of dereferencing a Ptr or indexing a Slice.

If you really want the old behavior, you'd get it by translating:

       v := reflect.NewValue(x)

into

       v := reflect.New(reflect.Typeof(x)).Elem()
       v.Set(reflect.NewValue(x))

Gofix will not be able to help with this, because whether
and how to change the code depends on whether the original
code meant use (1) or use (2), so the developer has to read
and think about the code.

You can see the effect on packages in the tree in
https://golang.org/cl/4423043/.

R=r
CC=golang-dev
https://golang.org/cl/4435042
This commit is contained in:
Russ Cox 2011-04-18 14:35:33 -04:00
parent 6211b596d6
commit 40fccbce6b
10 changed files with 1313 additions and 1140 deletions

View File

@ -10,6 +10,7 @@ import (
"io"
"os"
. "reflect"
"runtime"
"testing"
"unsafe"
)
@ -155,45 +156,45 @@ var typeTests = []pair{
}
var valueTests = []pair{
{(int8)(0), "8"},
{(int16)(0), "16"},
{(int32)(0), "32"},
{(int64)(0), "64"},
{(uint8)(0), "8"},
{(uint16)(0), "16"},
{(uint32)(0), "32"},
{(uint64)(0), "64"},
{(float32)(0), "256.25"},
{(float64)(0), "512.125"},
{(string)(""), "stringy cheese"},
{(bool)(false), "true"},
{(*int8)(nil), "*int8(0)"},
{(**int8)(nil), "**int8(0)"},
{[5]int32{}, "[5]int32{0, 0, 0, 0, 0}"},
{(**integer)(nil), "**reflect_test.integer(0)"},
{(map[string]int32)(nil), "map[string] int32{<can't iterate on maps>}"},
{(chan<- string)(nil), "chan<- string"},
{struct {
{new(int8), "8"},
{new(int16), "16"},
{new(int32), "32"},
{new(int64), "64"},
{new(uint8), "8"},
{new(uint16), "16"},
{new(uint32), "32"},
{new(uint64), "64"},
{new(float32), "256.25"},
{new(float64), "512.125"},
{new(string), "stringy cheese"},
{new(bool), "true"},
{new(*int8), "*int8(0)"},
{new(**int8), "**int8(0)"},
{new([5]int32), "[5]int32{0, 0, 0, 0, 0}"},
{new(**integer), "**reflect_test.integer(0)"},
{new(map[string]int32), "map[string] int32{<can't iterate on maps>}"},
{new(chan<- string), "chan<- string"},
{new(func(a int8, b int32)), "func(int8, int32)(0)"},
{new(struct {
c chan *int32
d float32
}{},
}),
"struct { c chan *int32; d float32 }{chan *int32, 0}",
},
{(func(a int8, b int32))(nil), "func(int8, int32)(0)"},
{struct{ c func(chan *integer, *int8) }{},
{new(struct{ c func(chan *integer, *int8) }),
"struct { c func(chan *reflect_test.integer, *int8) }{func(chan *reflect_test.integer, *int8)(0)}",
},
{struct {
{new(struct {
a int8
b int32
}{},
}),
"struct { a int8; b int32 }{0, 0}",
},
{struct {
{new(struct {
a int8
b int8
c int32
}{},
}),
"struct { a int8; b int8; c int32 }{0, 0, 0}",
},
}
@ -213,7 +214,7 @@ func TestTypes(t *testing.T) {
func TestSet(t *testing.T) {
for i, tt := range valueTests {
v := NewValue(tt.i)
v := NewValue(tt.i).Elem()
switch v.Kind() {
case Int:
v.SetInt(132)
@ -257,7 +258,7 @@ func TestSet(t *testing.T) {
func TestSetValue(t *testing.T) {
for i, tt := range valueTests {
v := NewValue(tt.i)
v := NewValue(tt.i).Elem()
switch v.Kind() {
case Int:
v.Set(NewValue(int(132)))
@ -324,7 +325,7 @@ func TestValueToString(t *testing.T) {
}
func TestArrayElemSet(t *testing.T) {
v := NewValue([10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})
v := NewValue(&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}).Elem()
v.Index(4).SetInt(123)
s := valueToString(v)
const want = "[10]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}"
@ -345,14 +346,14 @@ func TestPtrPointTo(t *testing.T) {
var ip *int32
var i int32 = 1234
vip := NewValue(&ip)
vi := NewValue(i)
vi := NewValue(&i).Elem()
vip.Elem().Set(vi.Addr())
if *ip != 1234 {
t.Errorf("got %d, want 1234", *ip)
}
ip = nil
vp := NewValue(ip)
vp := NewValue(&ip).Elem()
vp.Set(Zero(vp.Type()))
if ip != nil {
t.Errorf("got non-nil (%p), want nil", ip)
@ -428,9 +429,9 @@ func TestAll(t *testing.T) {
func TestInterfaceGet(t *testing.T) {
var inter struct {
e interface{}
E interface{}
}
inter.e = 123.456
inter.E = 123.456
v1 := NewValue(&inter)
v2 := v1.Elem().Field(0)
assert(t, v2.Type().String(), "interface { }")
@ -441,9 +442,9 @@ func TestInterfaceGet(t *testing.T) {
func TestInterfaceValue(t *testing.T) {
var inter struct {
e interface{}
E interface{}
}
inter.e = 123.456
inter.E = 123.456
v1 := NewValue(&inter)
v2 := v1.Elem().Field(0)
assert(t, v2.Type().String(), "interface { }")
@ -457,8 +458,9 @@ func TestInterfaceValue(t *testing.T) {
}
func TestFunctionValue(t *testing.T) {
v := NewValue(func() {})
if v.Interface() != v.Interface() {
var x interface{} = func() {}
v := NewValue(x)
if v.Interface() != v.Interface() || v.Interface() != x {
t.Fatalf("TestFunction != itself")
}
assert(t, v.Type().String(), "func()")
@ -471,6 +473,18 @@ var appendTests = []struct {
{make([]int, 2, 4), []int{22, 33, 44}},
}
func sameInts(x, y []int) bool {
if len(x) != len(y) {
return false
}
for i, xx := range x {
if xx != y[i] {
return false
}
}
return true
}
func TestAppend(t *testing.T) {
for i, test := range appendTests {
origLen, extraLen := len(test.orig), len(test.extra)
@ -485,8 +499,8 @@ func TestAppend(t *testing.T) {
// Test Append.
a0 := NewValue(test.orig)
have0 := Append(a0, e0...).Interface().([]int)
if !DeepEqual(have0, want) {
t.Errorf("Append #%d: have %v, want %v", i, have0, want)
if !sameInts(have0, want) {
t.Errorf("Append #%d: have %v, want %v (%p %p)", i, have0, want, test.orig, have0)
}
// Check that the orig and extra slices were not modified.
if len(test.orig) != origLen {
@ -498,7 +512,7 @@ func TestAppend(t *testing.T) {
// Test AppendSlice.
a1 := NewValue(test.orig)
have1 := AppendSlice(a1, e1).Interface().([]int)
if !DeepEqual(have1, want) {
if !sameInts(have1, want) {
t.Errorf("AppendSlice #%d: have %v, want %v", i, have1, want)
}
// Check that the orig and extra slices were not modified.
@ -520,8 +534,10 @@ func TestCopy(t *testing.T) {
t.Fatalf("b != c before test")
}
}
aa := NewValue(a)
ab := NewValue(b)
a1 := a
b1 := b
aa := NewValue(&a1).Elem()
ab := NewValue(&b1).Elem()
for tocopy := 1; tocopy <= 7; tocopy++ {
aa.SetLen(tocopy)
Copy(ab, aa)
@ -809,34 +825,6 @@ func TestInterfaceExtraction(t *testing.T) {
}
}
func TestInterfaceEditing(t *testing.T) {
// strings are bigger than one word,
// so the interface conversion allocates
// memory to hold a string and puts that
// pointer in the interface.
var i interface{} = "hello"
// if i pass the interface value by value
// to NewValue, i should get a fresh copy
// of the value.
v := NewValue(i)
// and setting that copy to "bye" should
// not change the value stored in i.
v.SetString("bye")
if i.(string) != "hello" {
t.Errorf(`Set("bye") changed i to %s`, i.(string))
}
// the same should be true of smaller items.
i = 123
v = NewValue(i)
v.SetInt(234)
if i.(int) != 123 {
t.Errorf("Set(234) changed i to %d", i.(int))
}
}
func TestNilPtrValueSub(t *testing.T) {
var pi *int
if pv := NewValue(pi); pv.Elem().IsValid() {
@ -983,7 +971,7 @@ func TestChan(t *testing.T) {
t.Errorf("TrySend on sync chan succeeded")
}
if v, ok := cv.TryRecv(); v.IsValid() || ok {
t.Errorf("TryRecv on sync chan succeeded")
t.Errorf("TryRecv on sync chan succeeded: isvalid=%v ok=%v", v.IsValid(), ok)
}
// len/cap
@ -1022,7 +1010,10 @@ type Point struct {
x, y int
}
func (p Point) Dist(scale int) int { return p.x*p.x*scale + p.y*p.y*scale }
func (p Point) Dist(scale int) int {
// println("Point.Dist", p.x, p.y, scale)
return p.x*p.x*scale + p.y*p.y*scale
}
func TestMethod(t *testing.T) {
// Non-curried method of type.
@ -1049,18 +1040,12 @@ func TestMethod(t *testing.T) {
t.Errorf("Value Method returned %d; want 250", i)
}
// Curried method of pointer to value.
i = NewValue(p).Addr().Method(0).Call([]Value{NewValue(10)})[0].Int()
if i != 250 {
t.Errorf("Value Method returned %d; want 250", i)
}
// Curried method of interface value.
// Have to wrap interface value in a struct to get at it.
// Passing it to NewValue directly would
// access the underlying Point, not the interface.
var s = struct {
x interface {
X interface {
Dist(int) int
}
}{p}
@ -1385,7 +1370,8 @@ func TestAddr(t *testing.T) {
// Again but take address of the NewValue value.
// Exercises generation of PtrTypes not present in the binary.
v = NewValue(&p)
q := &p
v = NewValue(&q).Elem()
v = v.Addr()
v = v.Elem()
v = v.Elem()
@ -1399,7 +1385,8 @@ func TestAddr(t *testing.T) {
// Starting without pointer we should get changed value
// in interface.
v = NewValue(p)
qq := p
v = NewValue(&qq).Elem()
v0 := v
v = v.Addr()
v = v.Elem()
@ -1415,3 +1402,36 @@ func TestAddr(t *testing.T) {
t.Errorf("Addr.Elem.Set valued to set value in top value")
}
}
func noAlloc(t *testing.T, n int, f func(int)) {
// once to prime everything
f(-1)
runtime.MemStats.Mallocs = 0
for j := 0; j < n; j++ {
f(j)
}
if runtime.MemStats.Mallocs != 0 {
t.Fatalf("%d mallocs after %d iterations", runtime.MemStats.Mallocs, n)
}
}
func TestAllocations(t *testing.T) {
noAlloc(t, 100, func(j int) {
var i interface{}
var v Value
i = 42 + j
v = NewValue(i)
if int(v.Int()) != 42+j {
panic("wrong int")
}
})
}
func TestSmallNegativeInt(t *testing.T) {
i := int16(-1)
v := NewValue(i)
if v.Int() != -1 {
t.Errorf("int16(-1).Int() returned %v", v.Int())
}
}

View File

@ -6,7 +6,6 @@
package reflect
// During deepValueEqual, must keep track of checks that are
// in progress. The comparison algorithm assumes that all
// checks in progress are true when it reencounters them.
@ -21,7 +20,7 @@ type visit struct {
// Tests for deep equality using reflected types. The map argument tracks
// comparisons that have already been seen, which allows short circuiting on
// recursive types.
func deepValueEqual(v1, v2 Value, visited map[uintptr]*visit, depth int) bool {
func deepValueEqual(v1, v2 Value, visited map[uintptr]*visit, depth int) (b bool) {
if !v1.IsValid() || !v2.IsValid() {
return v1.IsValid() == v2.IsValid()
}
@ -31,30 +30,32 @@ func deepValueEqual(v1, v2 Value, visited map[uintptr]*visit, depth int) bool {
// if depth > 10 { panic("deepValueEqual") } // for debugging
addr1 := v1.UnsafeAddr()
addr2 := v2.UnsafeAddr()
if addr1 > addr2 {
// Canonicalize order to reduce number of entries in visited.
addr1, addr2 = addr2, addr1
}
if v1.CanAddr() && v2.CanAddr() {
addr1 := v1.UnsafeAddr()
addr2 := v2.UnsafeAddr()
if addr1 > addr2 {
// Canonicalize order to reduce number of entries in visited.
addr1, addr2 = addr2, addr1
}
// Short circuit if references are identical ...
if addr1 == addr2 {
return true
}
// ... or already seen
h := 17*addr1 + addr2
seen := visited[h]
typ := v1.Type()
for p := seen; p != nil; p = p.next {
if p.a1 == addr1 && p.a2 == addr2 && p.typ == typ {
// Short circuit if references are identical ...
if addr1 == addr2 {
return true
}
}
// Remember for later.
visited[h] = &visit{addr1, addr2, typ, seen}
// ... or already seen
h := 17*addr1 + addr2
seen := visited[h]
typ := v1.Type()
for p := seen; p != nil; p = p.next {
if p.a1 == addr1 && p.a2 == addr2 && p.typ == typ {
return true
}
}
// Remember for later.
visited[h] = &visit{addr1, addr2, typ, seen}
}
switch v1.Kind() {
case Array:

View File

@ -47,7 +47,7 @@ type Type interface {
// method signature, without a receiver, and the Func field is nil.
Method(int) Method
// NumMethods returns the number of methods in the type's method set.
// NumMethod returns the number of methods in the type's method set.
NumMethod() int
// Name returns the type's name within its package.
@ -162,6 +162,8 @@ type Type interface {
// It panics if i is not in the range [0, NumOut()).
Out(i int) Type
runtimeType() *runtime.Type
common() *commonType
uncommon() *uncommonType
}
@ -408,9 +410,12 @@ func (t *commonType) String() string { return *t.string }
func (t *commonType) Size() uintptr { return t.size }
func (t *commonType) Bits() int {
if t == nil {
panic("reflect: Bits of nil Type")
}
k := t.Kind()
if k < Int || k > Complex128 {
panic("reflect: Bits of non-arithmetic Type")
panic("reflect: Bits of non-arithmetic Type " + t.String())
}
return int(t.size) * 8
}
@ -431,12 +436,14 @@ func (t *uncommonType) Method(i int) (m Method) {
if p.name != nil {
m.Name = *p.name
}
flag := uint32(0)
if p.pkgPath != nil {
m.PkgPath = *p.pkgPath
flag |= flagRO
}
m.Type = toType(p.typ)
fn := p.tfn
m.Func = Value{&funcValue{value: value{m.Type, addr(&fn), canSet}}}
m.Func = valueFromIword(flag, m.Type, iword(fn))
return
}
@ -772,24 +779,32 @@ func (t *structType) FieldByNameFunc(match func(string) bool) (f StructField, pr
}
// Convert runtime type to reflect type.
func toType(p *runtime.Type) Type {
func toCommonType(p *runtime.Type) *commonType {
if p == nil {
return nil
}
type hdr struct {
x interface{}
t commonType
}
t := &(*hdr)(unsafe.Pointer(p)).t
return t.toType()
x := unsafe.Pointer(p)
if uintptr(x)&reflectFlags != 0 {
panic("invalid interface value")
}
return &(*hdr)(x).t
}
func toType(p *runtime.Type) Type {
if p == nil {
return nil
}
return toCommonType(p).toType()
}
// Typeof returns the reflection Type of the value in the interface{}.
func Typeof(i interface{}) Type {
type hdr struct {
typ *byte
val *commonType
}
rt := unsafe.Typeof(i)
t := (*(*hdr)(unsafe.Pointer(&rt))).val
return t.toType()
eface := *(*emptyInterface)(unsafe.Pointer(&i))
return toType(eface.typ)
}
// ptrMap is the cache for PtrTo.
@ -798,6 +813,16 @@ var ptrMap struct {
m map[*commonType]*ptrType
}
func (t *commonType) runtimeType() *runtime.Type {
// The runtime.Type always precedes the commonType in memory.
// Adjust pointer to find it.
var rt struct {
i runtime.Type
ct commonType
}
return (*runtime.Type)(unsafe.Pointer(uintptr(unsafe.Pointer(t)) - uintptr(unsafe.Offsetof(rt.ct))))
}
// PtrTo returns the pointer type with element t.
// For example, if t represents type Foo, PtrTo(t) represents *Foo.
func PtrTo(t Type) Type {

File diff suppressed because it is too large Load Diff

View File

@ -71,7 +71,6 @@ OFILES=\
msize.$O\
print.$O\
proc.$O\
reflect.$O\
rune.$O\
runtime.$O\
runtime1.$O\

View File

@ -128,6 +128,15 @@ runtime·makechan_c(Type *elem, int64 hint)
return c;
}
// For reflect
// func makechan(typ *ChanType, size uint32) (chan)
void
reflect·makechan(ChanType *t, uint32 size, Hchan *c)
{
c = runtime·makechan_c(t->elem, size);
FLUSH(&c);
}
static void
destroychan(Hchan *c)
{
@ -263,6 +272,7 @@ closed:
runtime·panicstring("send on closed channel");
}
void
runtime·chanrecv(Hchan* c, byte *ep, bool *selected, bool *received)
{
@ -519,6 +529,71 @@ runtime·selectnbrecv2(byte *v, bool *received, Hchan *c, bool selected)
runtime·chanrecv(c, v, &selected, received);
}
// For reflect:
// func chansend(c chan, val iword, nb bool) (selected bool)
// where an iword is the same word an interface value would use:
// the actual data if it fits, or else a pointer to the data.
//
// The "uintptr selected" is really "bool selected" but saying
// uintptr gets us the right alignment for the output parameter block.
void
reflect·chansend(Hchan *c, uintptr val, bool nb, uintptr selected)
{
bool *sp;
byte *vp;
if(c == nil)
runtime·panicstring("send to nil channel");
if(nb) {
selected = false;
sp = (bool*)&selected;
} else {
*(bool*)&selected = true;
FLUSH(&selected);
sp = nil;
}
if(c->elemsize <= sizeof(val))
vp = (byte*)&val;
else
vp = (byte*)val;
runtime·chansend(c, vp, sp);
}
// For reflect:
// func chanrecv(c chan, nb bool) (val iword, selected, received bool)
// where an iword is the same word an interface value would use:
// the actual data if it fits, or else a pointer to the data.
void
reflect·chanrecv(Hchan *c, bool nb, uintptr val, bool selected, bool received)
{
byte *vp;
bool *sp;
if(c == nil)
runtime·panicstring("receive from nil channel");
if(nb) {
selected = false;
sp = &selected;
} else {
selected = true;
FLUSH(&selected);
sp = nil;
}
received = false;
FLUSH(&received);
if(c->elemsize <= sizeof(val)) {
val = 0;
vp = (byte*)&val;
} else {
vp = runtime·mal(c->elemsize);
val = (uintptr)vp;
FLUSH(&val);
}
runtime·chanrecv(c, vp, sp, &received);
}
static void newselect(int32, Select**);
// newselect(size uint32) (sel *byte);
@ -1036,22 +1111,36 @@ runtime·closechan(Hchan *c)
runtime·unlock(c);
}
// For reflect
// func chanclose(c chan)
void
runtime·chanclose(Hchan *c)
reflect·chanclose(Hchan *c)
{
runtime·closechan(c);
}
int32
runtime·chanlen(Hchan *c)
// For reflect
// func chanlen(c chan) (len int32)
void
reflect·chanlen(Hchan *c, int32 len)
{
return c->qcount;
if(c == nil)
len = 0;
else
len = c->qcount;
FLUSH(&len);
}
int32
runtime·chancap(Hchan *c)
// For reflect
// func chancap(c chan) (cap int32)
void
reflect·chancap(Hchan *c, int32 cap)
{
return c->dataqsiz;
if(c == nil)
cap = 0;
else
cap = c->dataqsiz;
FLUSH(&cap);
}
static SudoG*

View File

@ -776,6 +776,15 @@ runtime·makemap(Type *key, Type *val, int64 hint, Hmap *ret)
FLUSH(&ret);
}
// For reflect:
// func makemap(Type *mapType) (hmap *map)
void
reflect·makemap(MapType *t, Hmap *ret)
{
ret = runtime·makemap_c(t->key, t->elem, 0);
FLUSH(&ret);
}
void
runtime·mapaccess(Hmap *h, byte *ak, byte *av, bool *pres)
{
@ -855,6 +864,34 @@ runtime·mapaccess2(Hmap *h, ...)
}
}
// For reflect:
// func mapaccess(h map, key iword) (val iword, pres bool)
// where an iword is the same word an interface value would use:
// the actual data if it fits, or else a pointer to the data.
void
reflect·mapaccess(Hmap *h, uintptr key, uintptr val, bool pres)
{
byte *ak, *av;
if(h == nil)
runtime·panicstring("lookup in nil map");
if(h->keysize <= sizeof(key))
ak = (byte*)&key;
else
ak = (byte*)key;
val = 0;
pres = false;
if(h->valsize <= sizeof(val))
av = (byte*)&val;
else {
av = runtime·mal(h->valsize);
val = (uintptr)av;
}
runtime·mapaccess(h, ak, av, &pres);
FLUSH(&val);
FLUSH(&pres);
}
void
runtime·mapassign(Hmap *h, byte *ak, byte *av)
{
@ -938,6 +975,30 @@ runtime·mapassign2(Hmap *h, ...)
}
}
// For reflect:
// func mapassign(h map, key, val iword, pres bool)
// where an iword is the same word an interface value would use:
// the actual data if it fits, or else a pointer to the data.
void
reflect·mapassign(Hmap *h, uintptr key, uintptr val, bool pres)
{
byte *ak, *av;
if(h == nil)
runtime·panicstring("lookup in nil map");
if(h->keysize <= sizeof(key))
ak = (byte*)&key;
else
ak = (byte*)key;
if(h->valsize <= sizeof(val))
av = (byte*)&val;
else
av = (byte*)val;
if(!pres)
av = nil;
runtime·mapassign(h, ak, av);
}
// mapiterinit(hmap *map[any]any, hiter *any);
void
runtime·mapiterinit(Hmap *h, struct hash_iter *it)
@ -959,14 +1020,14 @@ runtime·mapiterinit(Hmap *h, struct hash_iter *it)
}
}
struct hash_iter*
runtime·newmapiterinit(Hmap *h)
// For reflect:
// func mapiterinit(h map) (it iter)
void
reflect·mapiterinit(Hmap *h, struct hash_iter *it)
{
struct hash_iter *it;
it = runtime·mal(sizeof *it);
FLUSH(&it);
runtime·mapiterinit(h, it);
return it;
}
// mapiternext(hiter *any);
@ -986,6 +1047,14 @@ runtime·mapiternext(struct hash_iter *it)
}
}
// For reflect:
// func mapiternext(it iter)
void
reflect·mapiternext(struct hash_iter *it)
{
runtime·mapiternext(it);
}
// mapiter1(hiter *any) (key any);
#pragma textflag 7
void
@ -1026,6 +1095,48 @@ runtime·mapiterkey(struct hash_iter *it, void *ak)
return true;
}
// For reflect:
// func mapiterkey(h map) (key iword, ok bool)
// where an iword is the same word an interface value would use:
// the actual data if it fits, or else a pointer to the data.
void
reflect·mapiterkey(struct hash_iter *it, uintptr key, bool ok)
{
Hmap *h;
byte *res;
key = 0;
ok = false;
h = it->h;
res = it->data;
if(res == nil) {
key = 0;
ok = false;
} else {
key = 0;
if(h->keysize <= sizeof(key))
h->keyalg->copy(h->keysize, (byte*)&key, res);
else
key = (uintptr)res;
ok = true;
}
FLUSH(&key);
FLUSH(&ok);
}
// For reflect:
// func maplen(h map) (len int32)
// Like len(m) in the actual language, we treat the nil map as length 0.
void
reflect·maplen(Hmap *h, int32 len)
{
if(h == nil)
len = 0;
else
len = h->count;
FLUSH(&len);
}
// mapiter2(hiter *any) (key any, val any);
#pragma textflag 7
void

View File

@ -6,6 +6,14 @@
#include "type.h"
#include "malloc.h"
enum
{
// If an empty interface has these bits set in its type
// pointer, it was copied from a reflect.Value and is
// not a valid empty interface.
reflectFlags = 3,
};
void
runtime·printiface(Iface i)
{
@ -276,6 +284,8 @@ runtime·assertE2T(Type *t, Eface e, ...)
{
byte *ret;
if(((uintptr)e.type&reflectFlags) != 0)
runtime·throw("invalid interface value");
ret = (byte*)(&e+1);
assertE2Tret(t, e, ret);
}
@ -285,6 +295,8 @@ assertE2Tret(Type *t, Eface e, byte *ret)
{
Eface err;
if(((uintptr)e.type&reflectFlags) != 0)
runtime·throw("invalid interface value");
if(e.type == nil) {
runtime·newTypeAssertionError(nil, nil, t,
nil, nil, t->string,
@ -309,6 +321,8 @@ runtime·assertE2T2(Type *t, Eface e, ...)
bool *ok;
int32 wid;
if(((uintptr)e.type&reflectFlags) != 0)
runtime·throw("invalid interface value");
ret = (byte*)(&e+1);
wid = t->size;
ok = (bool*)(ret+runtime·rnd(wid, 1));
@ -444,6 +458,8 @@ runtime·ifaceE2I(InterfaceType *inter, Eface e, Iface *ret)
Type *t;
Eface err;
if(((uintptr)e.type&reflectFlags) != 0)
runtime·throw("invalid interface value");
t = e.type;
if(t == nil) {
// explicit conversions require non-nil interface value.
@ -456,6 +472,14 @@ runtime·ifaceE2I(InterfaceType *inter, Eface e, Iface *ret)
ret->tab = itab(inter, t, 0);
}
// For reflect
// func ifaceE2I(t *InterfaceType, e interface{}, dst *Iface)
void
reflect·ifaceE2I(InterfaceType *inter, Eface e, Iface *dst)
{
runtime·ifaceE2I(inter, e, dst);
}
// func ifaceE2I(sigi *byte, iface any) (ret any)
void
runtime·assertE2I(InterfaceType* inter, Eface e, Iface ret)
@ -467,6 +491,8 @@ runtime·assertE2I(InterfaceType* inter, Eface e, Iface ret)
void
runtime·assertE2I2(InterfaceType *inter, Eface e, Iface ret, bool ok)
{
if(((uintptr)e.type&reflectFlags) != 0)
runtime·throw("invalid interface value");
if(e.type == nil) {
ok = 0;
ret.data = nil;
@ -489,6 +515,8 @@ runtime·assertE2E(InterfaceType* inter, Eface e, Eface ret)
Type *t;
Eface err;
if(((uintptr)e.type&reflectFlags) != 0)
runtime·throw("invalid interface value");
t = e.type;
if(t == nil) {
// explicit conversions require non-nil interface value.
@ -505,6 +533,8 @@ runtime·assertE2E(InterfaceType* inter, Eface e, Eface ret)
void
runtime·assertE2E2(InterfaceType* inter, Eface e, Eface ret, bool ok)
{
if(((uintptr)e.type&reflectFlags) != 0)
runtime·throw("invalid interface value");
USED(inter);
ret = e;
ok = e.type != nil;
@ -582,6 +612,10 @@ runtime·ifaceeq_c(Iface i1, Iface i2)
bool
runtime·efaceeq_c(Eface e1, Eface e2)
{
if(((uintptr)e1.type&reflectFlags) != 0)
runtime·throw("invalid interface value");
if(((uintptr)e2.type&reflectFlags) != 0)
runtime·throw("invalid interface value");
if(e1.type != e2.type)
return false;
if(e1.type == nil)
@ -624,6 +658,8 @@ runtime·efacethash(Eface e1, uint32 ret)
{
Type *t;
if(((uintptr)e1.type&reflectFlags) != 0)
runtime·throw("invalid interface value");
ret = 0;
t = e1.type;
if(t != nil)
@ -634,11 +670,14 @@ runtime·efacethash(Eface e1, uint32 ret)
void
unsafe·Typeof(Eface e, Eface ret)
{
if(((uintptr)e.type&reflectFlags) != 0)
runtime·throw("invalid interface value");
if(e.type == nil) {
ret.type = nil;
ret.data = nil;
} else
ret = *(Eface*)e.type;
} else {
ret = *(Eface*)(e.type);
}
FLUSH(&ret);
}
@ -648,6 +687,8 @@ unsafe·Reflect(Eface e, Eface rettype, void *retaddr)
uintptr *p;
uintptr x;
if(((uintptr)e.type&reflectFlags) != 0)
runtime·throw("invalid interface value");
if(e.type == nil) {
rettype.type = nil;
rettype.data = nil;
@ -678,6 +719,9 @@ unsafe·Reflect(Eface e, Eface rettype, void *retaddr)
void
unsafe·Unreflect(Eface typ, void *addr, Eface e)
{
if(((uintptr)typ.type&reflectFlags) != 0)
runtime·throw("invalid interface value");
// Reflect library has reinterpreted typ
// as its own kind of type structure.
// We know that the pointer to the original
@ -702,6 +746,9 @@ unsafe·New(Eface typ, void *ret)
{
Type *t;
if(((uintptr)typ.type&reflectFlags) != 0)
runtime·throw("invalid interface value");
// Reflect library has reinterpreted typ
// as its own kind of type structure.
// We know that the pointer to the original
@ -721,6 +768,9 @@ unsafe·NewArray(Eface typ, uint32 n, void *ret)
uint64 size;
Type *t;
if(((uintptr)typ.type&reflectFlags) != 0)
runtime·throw("invalid interface value");
// Reflect library has reinterpreted typ
// as its own kind of type structure.
// We know that the pointer to the original

View File

@ -1,114 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflect
#include "runtime.h"
#include "type.h"
static Type*
gettype(void *typ)
{
// typ is a *runtime.Type (or *runtime.MapType, etc), but the Type
// defined in type.h includes an interface value header
// in front of the raw structure. the -2 below backs up
// to the interface value header.
return (Type*)((void**)typ - 2);
}
/*
* Go wrappers around the C functions near the bottom of hashmap.c
* There's no recursion here even though it looks like there is:
* the names after func are in the reflect package name space
* but the names in the C bodies are in the standard C name space.
*/
func mapaccess(map *byte, key *byte, val *byte) (pres bool) {
runtime·mapaccess((Hmap*)map, key, val, &pres);
}
func mapassign(map *byte, key *byte, val *byte) {
runtime·mapassign((Hmap*)map, key, val);
}
func maplen(map *byte) (len int32) {
// length is first word of map
len = *(uint32*)map;
}
func mapiterinit(map *byte) (it *byte) {
it = (byte*)runtime·newmapiterinit((Hmap*)map);
}
func mapiternext(it *byte) {
runtime·mapiternext((struct hash_iter*)it);
}
func mapiterkey(it *byte, key *byte) (ok bool) {
ok = runtime·mapiterkey((struct hash_iter*)it, key);
}
func makemap(typ *byte) (map *byte) {
MapType *t;
t = (MapType*)gettype(typ);
map = (byte*)runtime·makemap_c(t->key, t->elem, 0);
}
/*
* Go wrappers around the C functions in chan.c
*/
func makechan(typ *byte, size uint32) (ch *byte) {
ChanType *t;
// typ is a *runtime.ChanType, but the ChanType
// defined in type.h includes an interface value header
// in front of the raw ChanType. the -2 below backs up
// to the interface value header.
t = (ChanType*)gettype(typ);
ch = (byte*)runtime·makechan_c(t->elem, size);
}
func chansend(ch *byte, val *byte, selected *bool) {
runtime·chansend((Hchan*)ch, val, selected);
}
func chanrecv(ch *byte, val *byte, selected *bool, received *bool) {
runtime·chanrecv((Hchan*)ch, val, selected, received);
}
func chanclose(ch *byte) {
runtime·chanclose((Hchan*)ch);
}
func chanlen(ch *byte) (r int32) {
r = runtime·chanlen((Hchan*)ch);
}
func chancap(ch *byte) (r int32) {
r = runtime·chancap((Hchan*)ch);
}
/*
* Go wrappers around the functions in iface.c
*/
func setiface(typ *byte, x *byte, ret *byte) {
InterfaceType *t;
t = (InterfaceType*)gettype(typ);
if(t->mhdr.len == 0) {
// already an empty interface
*(Eface*)ret = *(Eface*)x;
return;
}
if(((Eface*)x)->type == nil) {
// can assign nil to any interface
((Iface*)ret)->tab = nil;
((Iface*)ret)->data = nil;
return;
}
runtime·ifaceE2I((InterfaceType*)gettype(typ), *(Eface*)x, (Iface*)ret);
}

View File

@ -580,7 +580,6 @@ int32 runtime·gomaxprocsfunc(int32 n);
void runtime·mapassign(Hmap*, byte*, byte*);
void runtime·mapaccess(Hmap*, byte*, byte*, bool*);
struct hash_iter* runtime·newmapiterinit(Hmap*);
void runtime·mapiternext(struct hash_iter*);
bool runtime·mapiterkey(struct hash_iter*, void*);
void runtime·mapiterkeyvalue(struct hash_iter*, void*, void*);
@ -589,7 +588,6 @@ Hmap* runtime·makemap_c(Type*, Type*, int64);
Hchan* runtime·makechan_c(Type*, int64);
void runtime·chansend(Hchan*, void*, bool*);
void runtime·chanrecv(Hchan*, void*, bool*, bool*);
void runtime·chanclose(Hchan*);
int32 runtime·chanlen(Hchan*);
int32 runtime·chancap(Hchan*);