mirror of
https://github.com/golang/go
synced 2024-11-17 10:04:43 -07:00
math/big: use Montgomery for z.Exp(x, y, m) even for even m
Montgomery multiplication can be used for Exp mod even m by splitting it into two steps - Exp mod an odd number and Exp mod a power of two - and then combining the two results using the Chinese Remainder Theorem. For more details, see Ç. K. Koç, “Montgomery Reduction with Even Modulus”, IEE Proceedings: Computers and Digital Techniques, 141(5) 314-316, September 1994. http://www.people.vcu.edu/~jwang3/CMSC691/j34monex.pdf Thanks to Guido Vranken for suggesting that we use a faster algorithm. name old time/op new time/op delta ExpMont/Odd-16 240µs ± 2% 239µs ± 2% ~ (p=0.853 n=10+10) ExpMont/Even1-16 757µs ± 3% 249µs ± 6% -67.17% (p=0.000 n=10+10) ExpMont/Even2-16 755µs ± 1% 244µs ± 4% -67.64% (p=0.000 n=8+10) ExpMont/Even3-16 771µs ± 3% 240µs ± 2% -68.90% (p=0.000 n=10+10) ExpMont/Even4-16 775µs ± 3% 241µs ± 2% -68.91% (p=0.000 n=10+10) ExpMont/Even8-16 779µs ± 2% 241µs ± 3% -69.06% (p=0.000 n=9+10) ExpMont/Even32-16 778µs ± 3% 240µs ± 4% -69.11% (p=0.000 n=9+9) ExpMont/Even64-16 774µs ± 6% 186µs ± 2% -76.00% (p=0.000 n=10+10) ExpMont/Even96-16 776µs ± 4% 186µs ± 6% -76.09% (p=0.000 n=9+10) ExpMont/Even128-16 764µs ± 2% 143µs ± 3% -81.24% (p=0.000 n=10+10) ExpMont/Even255-16 761µs ± 3% 109µs ± 2% -85.73% (p=0.000 n=10+10) ExpMont/SmallEven1-16 45.6µs ± 1% 36.3µs ± 3% -20.49% (p=0.000 n=9+10) ExpMont/SmallEven2-16 44.3µs ± 2% 37.5µs ± 2% -15.26% (p=0.000 n=9+10) ExpMont/SmallEven3-16 44.1µs ± 5% 37.3µs ± 3% -15.32% (p=0.000 n=9+10) ExpMont/SmallEven4-16 47.1µs ± 6% 38.0µs ± 5% -19.40% (p=0.000 n=10+9) name old alloc/op new alloc/op delta ExpMont/Odd-16 2.53kB ± 0% 2.53kB ± 0% ~ (p=0.137 n=8+10) ExpMont/Even1-16 2.57kB ± 0% 3.31kB ± 0% +28.90% (p=0.000 n=8+10) ExpMont/Even2-16 2.57kB ± 0% 3.37kB ± 0% +31.09% (p=0.000 n=9+10) ExpMont/Even3-16 2.57kB ± 0% 3.37kB ± 0% +31.08% (p=0.000 n=8+8) ExpMont/Even4-16 2.57kB ± 0% 3.37kB ± 0% +31.09% (p=0.000 n=9+10) ExpMont/Even8-16 2.57kB ± 0% 3.37kB ± 0% +31.09% (p=0.000 n=9+10) ExpMont/Even32-16 2.57kB ± 0% 3.37kB ± 0% +31.14% (p=0.000 n=10+10) ExpMont/Even64-16 2.57kB ± 0% 3.16kB ± 0% +22.99% (p=0.000 n=9+9) ExpMont/Even96-16 2.57kB ± 0% 3.44kB ± 0% +33.90% (p=0.000 n=10+8) ExpMont/Even128-16 2.57kB ± 0% 2.88kB ± 0% +12.10% (p=0.000 n=10+10) ExpMont/Even255-16 2.57kB ± 0% 2.54kB ± 0% -1.30% (p=0.000 n=9+10) ExpMont/SmallEven1-16 872B ± 0% 1232B ± 0% +41.28% (p=0.000 n=10+10) ExpMont/SmallEven2-16 872B ± 0% 1233B ± 0% +41.40% (p=0.000 n=10+9) ExpMont/SmallEven3-16 872B ± 0% 1289B ± 0% +47.82% (p=0.000 n=10+10) ExpMont/SmallEven4-16 872B ± 0% 1241B ± 0% +42.32% (p=0.000 n=10+10) name old allocs/op new allocs/op delta ExpMont/Odd-16 21.0 ± 0% 21.0 ± 0% ~ (all equal) ExpMont/Even1-16 24.0 ± 0% 38.0 ± 0% +58.33% (p=0.000 n=10+10) ExpMont/Even2-16 24.0 ± 0% 40.0 ± 0% +66.67% (p=0.000 n=10+10) ExpMont/Even3-16 24.0 ± 0% 40.0 ± 0% +66.67% (p=0.000 n=10+10) ExpMont/Even4-16 24.0 ± 0% 40.0 ± 0% +66.67% (p=0.000 n=10+10) ExpMont/Even8-16 24.0 ± 0% 40.0 ± 0% +66.67% (p=0.000 n=10+10) ExpMont/Even32-16 24.0 ± 0% 40.0 ± 0% +66.67% (p=0.000 n=10+10) ExpMont/Even64-16 24.0 ± 0% 39.0 ± 0% +62.50% (p=0.000 n=10+10) ExpMont/Even96-16 24.0 ± 0% 42.0 ± 0% +75.00% (p=0.000 n=10+10) ExpMont/Even128-16 24.0 ± 0% 40.0 ± 0% +66.67% (p=0.000 n=10+10) ExpMont/Even255-16 24.0 ± 0% 38.0 ± 0% +58.33% (p=0.000 n=10+10) ExpMont/SmallEven1-16 16.0 ± 0% 35.0 ± 0% +118.75% (p=0.000 n=10+10) ExpMont/SmallEven2-16 16.0 ± 0% 35.0 ± 0% +118.75% (p=0.000 n=10+10) ExpMont/SmallEven3-16 16.0 ± 0% 37.0 ± 0% +131.25% (p=0.000 n=10+10) ExpMont/SmallEven4-16 16.0 ± 0% 36.0 ± 0% +125.00% (p=0.000 n=10+10) Change-Id: Ib7f70290f8f087b78805ec3120baf17dd7737ac3 Reviewed-on: https://go-review.googlesource.com/c/go/+/420897 Run-TryBot: Russ Cox <rsc@golang.org> Reviewed-by: Roland Shoemaker <roland@golang.org> Auto-Submit: Russ Cox <rsc@golang.org> TryBot-Result: Gopher Robot <gobot@golang.org>
This commit is contained in:
parent
d8541aa8d5
commit
3ba3b4893f
@ -370,7 +370,7 @@ func TestShiftOverlap(t *testing.T) {
|
||||
func TestIssue31084(t *testing.T) {
|
||||
// compute 10^n via 5^n << n.
|
||||
const n = 165
|
||||
p := nat(nil).expNN(nat{5}, nat{n}, nil)
|
||||
p := nat(nil).expNN(nat{5}, nat{n}, nil, false)
|
||||
p = p.shl(p, n)
|
||||
got := string(p.utoa(10))
|
||||
want := "1" + strings.Repeat("0", n)
|
||||
|
@ -523,6 +523,14 @@ func (x *Int) TrailingZeroBits() uint {
|
||||
// Modular exponentiation of inputs of a particular size is not a
|
||||
// cryptographically constant-time operation.
|
||||
func (z *Int) Exp(x, y, m *Int) *Int {
|
||||
return z.exp(x, y, m, false)
|
||||
}
|
||||
|
||||
func (z *Int) expSlow(x, y, m *Int) *Int {
|
||||
return z.exp(x, y, m, true)
|
||||
}
|
||||
|
||||
func (z *Int) exp(x, y, m *Int, slow bool) *Int {
|
||||
// See Knuth, volume 2, section 4.6.3.
|
||||
xWords := x.abs
|
||||
if y.neg {
|
||||
@ -546,7 +554,7 @@ func (z *Int) Exp(x, y, m *Int) *Int {
|
||||
mWords = m.abs // m.abs may be nil for m == 0
|
||||
}
|
||||
|
||||
z.abs = z.abs.expNN(xWords, yWords, mWords)
|
||||
z.abs = z.abs.expNN(xWords, yWords, mWords, slow)
|
||||
z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign
|
||||
if z.neg && len(mWords) > 0 {
|
||||
// make modulus result positive
|
||||
@ -879,6 +887,11 @@ func (z *Int) ModInverse(g, n *Int) *Int {
|
||||
return z
|
||||
}
|
||||
|
||||
func (z nat) modInverse(g, n nat) nat {
|
||||
// TODO(rsc): ModInverse should be implemented in terms of this function.
|
||||
return (&Int{abs: z}).ModInverse(&Int{abs: g}, &Int{abs: n}).abs
|
||||
}
|
||||
|
||||
// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
|
||||
// The y argument must be an odd integer.
|
||||
func Jacobi(x, y *Int) int {
|
||||
|
@ -40,6 +40,10 @@ var (
|
||||
natTen = nat{10}
|
||||
)
|
||||
|
||||
func (z nat) String() string {
|
||||
return "0x" + string(z.itoa(false, 16))
|
||||
}
|
||||
|
||||
func (z nat) clear() {
|
||||
for i := range z {
|
||||
z[i] = 0
|
||||
@ -642,6 +646,9 @@ func getNat(n int) *nat {
|
||||
z = new(nat)
|
||||
}
|
||||
*z = z.make(n)
|
||||
if n > 0 {
|
||||
(*z)[0] = 0xfedcb // break code expecting zero
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
@ -651,7 +658,8 @@ func putNat(x *nat) {
|
||||
|
||||
var natPool sync.Pool
|
||||
|
||||
// Length of x in bits. x must be normalized.
|
||||
// bitLen returns the length of x in bits.
|
||||
// Unlike most methods, it works even if x is not normalized.
|
||||
func (x nat) bitLen() int {
|
||||
if i := len(x) - 1; i >= 0 {
|
||||
return i*_W + bits.Len(uint(x[i]))
|
||||
@ -673,6 +681,18 @@ func (x nat) trailingZeroBits() uint {
|
||||
return i*_W + uint(bits.TrailingZeros(uint(x[i])))
|
||||
}
|
||||
|
||||
// isPow2 returns i, true when x == 2**i and 0, false otherwise.
|
||||
func (x nat) isPow2() (uint, bool) {
|
||||
var i uint
|
||||
for x[i] == 0 {
|
||||
i++
|
||||
}
|
||||
if i == uint(len(x))-1 && x[i]&(x[i]-1) == 0 {
|
||||
return i*_W + uint(bits.TrailingZeros(uint(x[i]))), true
|
||||
}
|
||||
return 0, false
|
||||
}
|
||||
|
||||
func same(x, y nat) bool {
|
||||
return len(x) == len(y) && len(x) > 0 && &x[0] == &y[0]
|
||||
}
|
||||
@ -803,6 +823,20 @@ func (z nat) and(x, y nat) nat {
|
||||
return z.norm()
|
||||
}
|
||||
|
||||
// trunc returns z = x mod 2ⁿ.
|
||||
func (z nat) trunc(x nat, n uint) nat {
|
||||
w := (n + _W - 1) / _W
|
||||
if uint(len(x)) < w {
|
||||
return z.set(x)
|
||||
}
|
||||
z = z.make(int(w))
|
||||
copy(z, x)
|
||||
if n%_W != 0 {
|
||||
z[len(z)-1] &= 1<<(n%_W) - 1
|
||||
}
|
||||
return z.norm()
|
||||
}
|
||||
|
||||
func (z nat) andNot(x, y nat) nat {
|
||||
m := len(x)
|
||||
n := len(y)
|
||||
@ -896,7 +930,7 @@ func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
|
||||
|
||||
// If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m;
|
||||
// otherwise it sets z to x**y. The result is the value of z.
|
||||
func (z nat) expNN(x, y, m nat) nat {
|
||||
func (z nat) expNN(x, y, m nat, slow bool) nat {
|
||||
if alias(z, x) || alias(z, y) {
|
||||
// We cannot allow in-place modification of x or y.
|
||||
z = nil
|
||||
@ -914,31 +948,48 @@ func (z nat) expNN(x, y, m nat) nat {
|
||||
}
|
||||
// y > 0
|
||||
|
||||
// x**1 mod m == x mod m
|
||||
if len(y) == 1 && y[0] == 1 && len(m) != 0 {
|
||||
_, z = nat(nil).div(z, x, m)
|
||||
return z
|
||||
// 0**y = 0
|
||||
if len(x) == 0 {
|
||||
return z.setWord(0)
|
||||
}
|
||||
// x > 0
|
||||
|
||||
// 1**y = 1
|
||||
if len(x) == 1 && x[0] == 1 {
|
||||
return z.setWord(1)
|
||||
}
|
||||
// x > 1
|
||||
|
||||
// x**1 == x
|
||||
if len(y) == 1 && y[0] == 1 {
|
||||
if len(m) != 0 {
|
||||
return z.rem(x, m)
|
||||
}
|
||||
return z.set(x)
|
||||
}
|
||||
// y > 1
|
||||
|
||||
if len(m) != 0 {
|
||||
// We likely end up being as long as the modulus.
|
||||
z = z.make(len(m))
|
||||
}
|
||||
z = z.set(x)
|
||||
|
||||
// If the base is non-trivial and the exponent is large, we use
|
||||
// 4-bit, windowed exponentiation. This involves precomputing 14 values
|
||||
// (x^2...x^15) but then reduces the number of multiply-reduces by a
|
||||
// third. Even for a 32-bit exponent, this reduces the number of
|
||||
// operations. Uses Montgomery method for odd moduli.
|
||||
if x.cmp(natOne) > 0 && len(y) > 1 && len(m) > 0 {
|
||||
if m[0]&1 == 1 {
|
||||
return z.expNNMontgomery(x, y, m)
|
||||
// If the exponent is large, we use the Montgomery method for odd values,
|
||||
// and a 4-bit, windowed exponentiation for powers of two,
|
||||
// and a CRT-decomposed Montgomery method for the remaining values
|
||||
// (even values times non-trivial odd values, which decompose into one
|
||||
// instance of each of the first two cases).
|
||||
if len(y) > 1 && !slow {
|
||||
if m[0]&1 == 1 {
|
||||
return z.expNNMontgomery(x, y, m)
|
||||
}
|
||||
if logM, ok := m.isPow2(); ok {
|
||||
return z.expNNWindowed(x, y, logM)
|
||||
}
|
||||
return z.expNNMontgomeryEven(x, y, m)
|
||||
}
|
||||
return z.expNNWindowed(x, y, m)
|
||||
}
|
||||
|
||||
z = z.set(x)
|
||||
v := y[len(y)-1] // v > 0 because y is normalized and y > 0
|
||||
shift := nlz(v) + 1
|
||||
v <<= shift
|
||||
@ -995,66 +1046,151 @@ func (z nat) expNN(x, y, m nat) nat {
|
||||
return z.norm()
|
||||
}
|
||||
|
||||
// expNNWindowed calculates x**y mod m using a fixed, 4-bit window.
|
||||
func (z nat) expNNWindowed(x, y, m nat) nat {
|
||||
// zz and r are used to avoid allocating in mul and div as otherwise
|
||||
// expNNMontgomeryEven calculates x**y mod m where m = m1 × m2 for m1 = 2ⁿ and m2 odd.
|
||||
// It uses two recursive calls to expNN for x**y mod m1 and x**y mod m2
|
||||
// and then uses the Chinese Remainder Theorem to combine the results.
|
||||
// The recursive call using m1 will use expNNWindowed,
|
||||
// while the recursive call using m2 will use expNNMontgomery.
|
||||
// For more details, see Ç. K. Koç, “Montgomery Reduction with Even Modulus”,
|
||||
// IEE Proceedings: Computers and Digital Techniques, 141(5) 314-316, September 1994.
|
||||
// http://www.people.vcu.edu/~jwang3/CMSC691/j34monex.pdf
|
||||
func (z nat) expNNMontgomeryEven(x, y, m nat) nat {
|
||||
// Split m = m₁ × m₂ where m₁ = 2ⁿ
|
||||
n := m.trailingZeroBits()
|
||||
m1 := nat(nil).shl(natOne, n)
|
||||
m2 := nat(nil).shr(m, n)
|
||||
|
||||
// We want z = x**y mod m.
|
||||
// z₁ = x**y mod m1 = (x**y mod m) mod m1 = z mod m1
|
||||
// z₂ = x**y mod m2 = (x**y mod m) mod m2 = z mod m2
|
||||
// (We are using the math/big convention for names here,
|
||||
// where the computation is z = x**y mod m, so its parts are z1 and z2.
|
||||
// The paper is computing x = a**e mod n; it refers to these as x2 and z1.)
|
||||
z1 := nat(nil).expNN(x, y, m1, false)
|
||||
z2 := nat(nil).expNN(x, y, m2, false)
|
||||
|
||||
// Reconstruct z from z₁, z₂ using CRT, using algorithm from paper,
|
||||
// which uses only a single modInverse (and an easy one at that).
|
||||
// p = (z₁ - z₂) × m₂⁻¹ (mod m₁)
|
||||
// z = z₂ + p × m₂
|
||||
// The final addition is in range because:
|
||||
// z = z₂ + p × m₂
|
||||
// ≤ z₂ + (m₁-1) × m₂
|
||||
// < m₂ + (m₁-1) × m₂
|
||||
// = m₁ × m₂
|
||||
// = m.
|
||||
z = z.set(z2)
|
||||
|
||||
// Compute (z₁ - z₂) mod m1 [m1 == 2**n] into z1.
|
||||
z1 = z1.subMod2N(z1, z2, n)
|
||||
|
||||
// Reuse z2 for p = (z₁ - z₂) [in z1] * m2⁻¹ (mod m₁ [= 2ⁿ]).
|
||||
m2inv := nat(nil).modInverse(m2, m1)
|
||||
z2 = z2.mul(z1, m2inv)
|
||||
z2 = z2.trunc(z2, n)
|
||||
|
||||
// Reuse z1 for p * m2.
|
||||
z = z.add(z, z1.mul(z2, m2))
|
||||
|
||||
return z
|
||||
}
|
||||
|
||||
// expNNWindowed calculates x**y mod m using a fixed, 4-bit window,
|
||||
// where m = 2**logM.
|
||||
func (z nat) expNNWindowed(x, y nat, logM uint) nat {
|
||||
if len(y) <= 1 {
|
||||
panic("big: misuse of expNNWindowed")
|
||||
}
|
||||
if x[0]&1 == 0 {
|
||||
// len(y) > 1, so y > logM.
|
||||
// x is even, so x**y is a multiple of 2**y which is a multiple of 2**logM.
|
||||
return z.setWord(0)
|
||||
}
|
||||
if logM == 1 {
|
||||
return z.setWord(1)
|
||||
}
|
||||
|
||||
// zz is used to avoid allocating in mul as otherwise
|
||||
// the arguments would alias.
|
||||
var zz, r nat
|
||||
w := int((logM + _W - 1) / _W)
|
||||
zzp := getNat(w)
|
||||
zz := *zzp
|
||||
|
||||
const n = 4
|
||||
// powers[i] contains x^i.
|
||||
var powers [1 << n]nat
|
||||
powers[0] = natOne
|
||||
powers[1] = x
|
||||
var powers [1 << n]*nat
|
||||
for i := range powers {
|
||||
powers[i] = getNat(w)
|
||||
}
|
||||
*powers[0] = powers[0].set(natOne)
|
||||
*powers[1] = powers[1].trunc(x, logM)
|
||||
for i := 2; i < 1<<n; i += 2 {
|
||||
p2, p, p1 := &powers[i/2], &powers[i], &powers[i+1]
|
||||
p2, p, p1 := powers[i/2], powers[i], powers[i+1]
|
||||
*p = p.sqr(*p2)
|
||||
zz, r = zz.div(r, *p, m)
|
||||
*p, r = r, *p
|
||||
*p = p.trunc(*p, logM)
|
||||
*p1 = p1.mul(*p, x)
|
||||
zz, r = zz.div(r, *p1, m)
|
||||
*p1, r = r, *p1
|
||||
*p1 = p1.trunc(*p1, logM)
|
||||
}
|
||||
|
||||
// Because phi(2**logM) = 2**(logM-1), x**(2**(logM-1)) = 1,
|
||||
// so we can compute x**(y mod 2**(logM-1)) instead of x**y.
|
||||
// That is, we can throw away all but the bottom logM-1 bits of y.
|
||||
// Instead of allocating a new y, we start reading y at the right word
|
||||
// and truncate it appropriately at the start of the loop.
|
||||
i := len(y) - 1
|
||||
mtop := int((logM - 2) / _W) // -2 because the top word of N bits is the (N-1)/W'th word.
|
||||
mmask := ^Word(0)
|
||||
if mbits := (logM - 1) & (_W - 1); mbits != 0 {
|
||||
mmask = (1 << mbits) - 1
|
||||
}
|
||||
if i > mtop {
|
||||
i = mtop
|
||||
}
|
||||
advance := false
|
||||
z = z.setWord(1)
|
||||
|
||||
for i := len(y) - 1; i >= 0; i-- {
|
||||
for ; i >= 0; i-- {
|
||||
yi := y[i]
|
||||
if i == mtop {
|
||||
yi &= mmask
|
||||
}
|
||||
for j := 0; j < _W; j += n {
|
||||
if i != len(y)-1 || j != 0 {
|
||||
if advance {
|
||||
// Account for use of 4 bits in previous iteration.
|
||||
// Unrolled loop for significant performance
|
||||
// gain. Use go test -bench=".*" in crypto/rsa
|
||||
// to check performance before making changes.
|
||||
zz = zz.sqr(z)
|
||||
zz, z = z, zz
|
||||
zz, r = zz.div(r, z, m)
|
||||
z, r = r, z
|
||||
z = z.trunc(z, logM)
|
||||
|
||||
zz = zz.sqr(z)
|
||||
zz, z = z, zz
|
||||
zz, r = zz.div(r, z, m)
|
||||
z, r = r, z
|
||||
z = z.trunc(z, logM)
|
||||
|
||||
zz = zz.sqr(z)
|
||||
zz, z = z, zz
|
||||
zz, r = zz.div(r, z, m)
|
||||
z, r = r, z
|
||||
z = z.trunc(z, logM)
|
||||
|
||||
zz = zz.sqr(z)
|
||||
zz, z = z, zz
|
||||
zz, r = zz.div(r, z, m)
|
||||
z, r = r, z
|
||||
z = z.trunc(z, logM)
|
||||
}
|
||||
|
||||
zz = zz.mul(z, powers[yi>>(_W-n)])
|
||||
zz = zz.mul(z, *powers[yi>>(_W-n)])
|
||||
zz, z = z, zz
|
||||
zz, r = zz.div(r, z, m)
|
||||
z, r = r, z
|
||||
z = z.trunc(z, logM)
|
||||
|
||||
yi <<= n
|
||||
advance = true
|
||||
}
|
||||
}
|
||||
|
||||
*zzp = zz
|
||||
putNat(zzp)
|
||||
for i := range powers {
|
||||
putNat(powers[i])
|
||||
}
|
||||
|
||||
return z.norm()
|
||||
}
|
||||
|
||||
@ -1242,3 +1378,36 @@ func (z nat) sqrt(x nat) nat {
|
||||
z1, z2 = z2, z1
|
||||
}
|
||||
}
|
||||
|
||||
// subMod2N returns z = (x - y) mod 2ⁿ.
|
||||
func (z nat) subMod2N(x, y nat, n uint) nat {
|
||||
if uint(x.bitLen()) > n {
|
||||
if alias(z, x) {
|
||||
// ok to overwrite x in place
|
||||
x = x.trunc(x, n)
|
||||
} else {
|
||||
x = nat(nil).trunc(x, n)
|
||||
}
|
||||
}
|
||||
if uint(y.bitLen()) > n {
|
||||
if alias(z, y) {
|
||||
// ok to overwrite y in place
|
||||
y = y.trunc(y, n)
|
||||
} else {
|
||||
y = nat(nil).trunc(y, n)
|
||||
}
|
||||
}
|
||||
if x.cmp(y) >= 0 {
|
||||
return z.sub(x, y)
|
||||
}
|
||||
// x - y < 0; x - y mod 2ⁿ = x - y + 2ⁿ = 2ⁿ - (y - x) = 1 + 2ⁿ-1 - (y - x) = 1 + ^(y - x).
|
||||
z = z.sub(y, x)
|
||||
for uint(len(z))*_W < n {
|
||||
z = append(z, 0)
|
||||
}
|
||||
for i := range z {
|
||||
z[i] = ^z[i]
|
||||
}
|
||||
z = z.trunc(z, n)
|
||||
return z.add(z, natOne)
|
||||
}
|
||||
|
@ -523,6 +523,12 @@ var expNNTests = []struct {
|
||||
"444747819283133684179",
|
||||
"42",
|
||||
},
|
||||
{"375", "249", "388", "175"},
|
||||
{"375", "18446744073709551801", "388", "175"},
|
||||
{"0", "0x40000000000000", "0x200", "0"},
|
||||
{"0xeffffff900002f00", "0x40000000000000", "0x200", "0"},
|
||||
{"5", "1435700818", "72", "49"},
|
||||
{"0xffff", "0x300030003000300030003000300030003000302a3000300030003000300030003000300030003000300030003000300030003030623066307f3030783062303430383064303630343036", "0x300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "0xa3f94c08b0b90e87af637cacc9383f7ea032352b8961fc036a52b659b6c9b33491b335ffd74c927f64ddd62cfca0001"},
|
||||
}
|
||||
|
||||
func TestExpNN(t *testing.T) {
|
||||
@ -536,13 +542,29 @@ func TestExpNN(t *testing.T) {
|
||||
m = natFromString(test.m)
|
||||
}
|
||||
|
||||
z := nat(nil).expNN(x, y, m)
|
||||
z := nat(nil).expNN(x, y, m, false)
|
||||
if z.cmp(out) != 0 {
|
||||
t.Errorf("#%d got %s want %s", i, z.utoa(10), out.utoa(10))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func FuzzExpMont(f *testing.F) {
|
||||
f.Fuzz(func(t *testing.T, x1, x2, x3, y1, y2, y3, m1, m2, m3 uint) {
|
||||
if m1 == 0 && m2 == 0 && m3 == 0 {
|
||||
return
|
||||
}
|
||||
x := new(Int).SetBits([]Word{Word(x1), Word(x2), Word(x3)})
|
||||
y := new(Int).SetBits([]Word{Word(y1), Word(y2), Word(y3)})
|
||||
m := new(Int).SetBits([]Word{Word(m1), Word(m2), Word(m3)})
|
||||
out := new(Int).Exp(x, y, m)
|
||||
want := new(Int).expSlow(x, y, m)
|
||||
if out.Cmp(want) != 0 {
|
||||
t.Errorf("x = %#x\ny=%#x\nz=%#x\nout=%#x\nwant=%#x\ndc: 16o 16i %X %X %X |p", x, y, m, out, want, x, y, m)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
func BenchmarkExp3Power(b *testing.B) {
|
||||
const x = 3
|
||||
for _, y := range []Word{
|
||||
@ -733,6 +755,54 @@ func BenchmarkNatSqr(b *testing.B) {
|
||||
}
|
||||
}
|
||||
|
||||
var subMod2NTests = []struct {
|
||||
x string
|
||||
y string
|
||||
n uint
|
||||
z string
|
||||
}{
|
||||
{"1", "2", 0, "0"},
|
||||
{"1", "0", 1, "1"},
|
||||
{"0", "1", 1, "1"},
|
||||
{"3", "5", 3, "6"},
|
||||
{"5", "3", 3, "2"},
|
||||
// 2^65, 2^66-1, 2^65 - (2^66-1) + 2^67
|
||||
{"36893488147419103232", "73786976294838206463", 67, "110680464442257309697"},
|
||||
// 2^66-1, 2^65, 2^65-1
|
||||
{"73786976294838206463", "36893488147419103232", 67, "36893488147419103231"},
|
||||
}
|
||||
|
||||
func TestNatSubMod2N(t *testing.T) {
|
||||
for _, mode := range []string{"noalias", "aliasX", "aliasY"} {
|
||||
t.Run(mode, func(t *testing.T) {
|
||||
for _, tt := range subMod2NTests {
|
||||
x0 := natFromString(tt.x)
|
||||
y0 := natFromString(tt.y)
|
||||
want := natFromString(tt.z)
|
||||
x := nat(nil).set(x0)
|
||||
y := nat(nil).set(y0)
|
||||
var z nat
|
||||
switch mode {
|
||||
case "aliasX":
|
||||
z = x
|
||||
case "aliasY":
|
||||
z = y
|
||||
}
|
||||
z = z.subMod2N(x, y, tt.n)
|
||||
if z.cmp(want) != 0 {
|
||||
t.Fatalf("subMod2N(%d, %d, %d) = %d, want %d", x0, y0, tt.n, z, want)
|
||||
}
|
||||
if mode != "aliasX" && x.cmp(x0) != 0 {
|
||||
t.Fatalf("subMod2N(%d, %d, %d) modified x", x0, y0, tt.n)
|
||||
}
|
||||
if mode != "aliasY" && y.cmp(y0) != 0 {
|
||||
t.Fatalf("subMod2N(%d, %d, %d) modified y", x0, y0, tt.n)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkNatSetBytes(b *testing.B) {
|
||||
const maxLength = 128
|
||||
lengths := []int{
|
||||
|
@ -452,7 +452,7 @@ var cacheBase10 struct {
|
||||
|
||||
// expWW computes x**y
|
||||
func (z nat) expWW(x, y Word) nat {
|
||||
return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil)
|
||||
return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil, false)
|
||||
}
|
||||
|
||||
// construct table of powers of bb*leafSize to use in subdivisions
|
||||
|
@ -500,6 +500,19 @@ package big
|
||||
|
||||
import "math/bits"
|
||||
|
||||
// rem returns r such that r = u%v.
|
||||
// It uses z as the storage for r.
|
||||
func (z nat) rem(u, v nat) (r nat) {
|
||||
if alias(z, u) {
|
||||
z = nil
|
||||
}
|
||||
qp := getNat(0)
|
||||
q, r := qp.div(z, u, v)
|
||||
*qp = q
|
||||
putNat(qp)
|
||||
return r
|
||||
}
|
||||
|
||||
// div returns q, r such that q = ⌊u/v⌋ and r = u%v = u - q·v.
|
||||
// It uses z and z2 as the storage for q and r.
|
||||
func (z nat) div(z2, u, v nat) (q, r nat) {
|
||||
|
@ -103,7 +103,7 @@ NextRandom:
|
||||
x = x.random(rand, nm3, nm3Len)
|
||||
x = x.add(x, natTwo)
|
||||
}
|
||||
y = y.expNN(x, q, n)
|
||||
y = y.expNN(x, q, n, false)
|
||||
if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 {
|
||||
continue
|
||||
}
|
||||
|
@ -178,7 +178,7 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
|
||||
if n > 1e6 {
|
||||
return nil, false // avoid excessively large exponents
|
||||
}
|
||||
pow5 := z.b.abs.expNN(natFive, nat(nil).setWord(Word(n)), nil) // use underlying array of z.b.abs
|
||||
pow5 := z.b.abs.expNN(natFive, nat(nil).setWord(Word(n)), nil, false) // use underlying array of z.b.abs
|
||||
if exp5 > 0 {
|
||||
z.a.abs = z.a.abs.mul(z.a.abs, pow5)
|
||||
z.b.abs = z.b.abs.setWord(1)
|
||||
@ -346,7 +346,7 @@ func (x *Rat) FloatString(prec int) string {
|
||||
|
||||
p := natOne
|
||||
if prec > 0 {
|
||||
p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil)
|
||||
p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil, false)
|
||||
}
|
||||
|
||||
r = r.mul(r, p)
|
||||
|
Loading…
Reference in New Issue
Block a user