1
0
mirror of https://github.com/golang/go synced 2024-11-17 10:04:43 -07:00

math/big: use Montgomery for z.Exp(x, y, m) even for even m

Montgomery multiplication can be used for Exp mod even m
by splitting it into two steps - Exp mod an odd number and
Exp mod a power of two - and then combining the two results
using the Chinese Remainder Theorem.

For more details, see Ç. K. Koç, “Montgomery Reduction with Even Modulus”,
IEE Proceedings: Computers and Digital Techniques, 141(5) 314-316, September 1994.
http://www.people.vcu.edu/~jwang3/CMSC691/j34monex.pdf

Thanks to Guido Vranken for suggesting that we use a faster algorithm.

name                   old time/op    new time/op    delta
ExpMont/Odd-16            240µs ± 2%     239µs ± 2%      ~     (p=0.853 n=10+10)
ExpMont/Even1-16          757µs ± 3%     249µs ± 6%   -67.17%  (p=0.000 n=10+10)
ExpMont/Even2-16          755µs ± 1%     244µs ± 4%   -67.64%  (p=0.000 n=8+10)
ExpMont/Even3-16          771µs ± 3%     240µs ± 2%   -68.90%  (p=0.000 n=10+10)
ExpMont/Even4-16          775µs ± 3%     241µs ± 2%   -68.91%  (p=0.000 n=10+10)
ExpMont/Even8-16          779µs ± 2%     241µs ± 3%   -69.06%  (p=0.000 n=9+10)
ExpMont/Even32-16         778µs ± 3%     240µs ± 4%   -69.11%  (p=0.000 n=9+9)
ExpMont/Even64-16         774µs ± 6%     186µs ± 2%   -76.00%  (p=0.000 n=10+10)
ExpMont/Even96-16         776µs ± 4%     186µs ± 6%   -76.09%  (p=0.000 n=9+10)
ExpMont/Even128-16        764µs ± 2%     143µs ± 3%   -81.24%  (p=0.000 n=10+10)
ExpMont/Even255-16        761µs ± 3%     109µs ± 2%   -85.73%  (p=0.000 n=10+10)
ExpMont/SmallEven1-16    45.6µs ± 1%    36.3µs ± 3%   -20.49%  (p=0.000 n=9+10)
ExpMont/SmallEven2-16    44.3µs ± 2%    37.5µs ± 2%   -15.26%  (p=0.000 n=9+10)
ExpMont/SmallEven3-16    44.1µs ± 5%    37.3µs ± 3%   -15.32%  (p=0.000 n=9+10)
ExpMont/SmallEven4-16    47.1µs ± 6%    38.0µs ± 5%   -19.40%  (p=0.000 n=10+9)

name                   old alloc/op   new alloc/op   delta
ExpMont/Odd-16           2.53kB ± 0%    2.53kB ± 0%      ~     (p=0.137 n=8+10)
ExpMont/Even1-16         2.57kB ± 0%    3.31kB ± 0%   +28.90%  (p=0.000 n=8+10)
ExpMont/Even2-16         2.57kB ± 0%    3.37kB ± 0%   +31.09%  (p=0.000 n=9+10)
ExpMont/Even3-16         2.57kB ± 0%    3.37kB ± 0%   +31.08%  (p=0.000 n=8+8)
ExpMont/Even4-16         2.57kB ± 0%    3.37kB ± 0%   +31.09%  (p=0.000 n=9+10)
ExpMont/Even8-16         2.57kB ± 0%    3.37kB ± 0%   +31.09%  (p=0.000 n=9+10)
ExpMont/Even32-16        2.57kB ± 0%    3.37kB ± 0%   +31.14%  (p=0.000 n=10+10)
ExpMont/Even64-16        2.57kB ± 0%    3.16kB ± 0%   +22.99%  (p=0.000 n=9+9)
ExpMont/Even96-16        2.57kB ± 0%    3.44kB ± 0%   +33.90%  (p=0.000 n=10+8)
ExpMont/Even128-16       2.57kB ± 0%    2.88kB ± 0%   +12.10%  (p=0.000 n=10+10)
ExpMont/Even255-16       2.57kB ± 0%    2.54kB ± 0%    -1.30%  (p=0.000 n=9+10)
ExpMont/SmallEven1-16      872B ± 0%     1232B ± 0%   +41.28%  (p=0.000 n=10+10)
ExpMont/SmallEven2-16      872B ± 0%     1233B ± 0%   +41.40%  (p=0.000 n=10+9)
ExpMont/SmallEven3-16      872B ± 0%     1289B ± 0%   +47.82%  (p=0.000 n=10+10)
ExpMont/SmallEven4-16      872B ± 0%     1241B ± 0%   +42.32%  (p=0.000 n=10+10)

name                   old allocs/op  new allocs/op  delta
ExpMont/Odd-16             21.0 ± 0%      21.0 ± 0%      ~     (all equal)
ExpMont/Even1-16           24.0 ± 0%      38.0 ± 0%   +58.33%  (p=0.000 n=10+10)
ExpMont/Even2-16           24.0 ± 0%      40.0 ± 0%   +66.67%  (p=0.000 n=10+10)
ExpMont/Even3-16           24.0 ± 0%      40.0 ± 0%   +66.67%  (p=0.000 n=10+10)
ExpMont/Even4-16           24.0 ± 0%      40.0 ± 0%   +66.67%  (p=0.000 n=10+10)
ExpMont/Even8-16           24.0 ± 0%      40.0 ± 0%   +66.67%  (p=0.000 n=10+10)
ExpMont/Even32-16          24.0 ± 0%      40.0 ± 0%   +66.67%  (p=0.000 n=10+10)
ExpMont/Even64-16          24.0 ± 0%      39.0 ± 0%   +62.50%  (p=0.000 n=10+10)
ExpMont/Even96-16          24.0 ± 0%      42.0 ± 0%   +75.00%  (p=0.000 n=10+10)
ExpMont/Even128-16         24.0 ± 0%      40.0 ± 0%   +66.67%  (p=0.000 n=10+10)
ExpMont/Even255-16         24.0 ± 0%      38.0 ± 0%   +58.33%  (p=0.000 n=10+10)
ExpMont/SmallEven1-16      16.0 ± 0%      35.0 ± 0%  +118.75%  (p=0.000 n=10+10)
ExpMont/SmallEven2-16      16.0 ± 0%      35.0 ± 0%  +118.75%  (p=0.000 n=10+10)
ExpMont/SmallEven3-16      16.0 ± 0%      37.0 ± 0%  +131.25%  (p=0.000 n=10+10)
ExpMont/SmallEven4-16      16.0 ± 0%      36.0 ± 0%  +125.00%  (p=0.000 n=10+10)

Change-Id: Ib7f70290f8f087b78805ec3120baf17dd7737ac3
Reviewed-on: https://go-review.googlesource.com/c/go/+/420897
Run-TryBot: Russ Cox <rsc@golang.org>
Reviewed-by: Roland Shoemaker <roland@golang.org>
Auto-Submit: Russ Cox <rsc@golang.org>
TryBot-Result: Gopher Robot <gobot@golang.org>
This commit is contained in:
Russ Cox 2022-07-27 00:38:37 -04:00 committed by Gopher Robot
parent d8541aa8d5
commit 3ba3b4893f
8 changed files with 315 additions and 50 deletions

View File

@ -370,7 +370,7 @@ func TestShiftOverlap(t *testing.T) {
func TestIssue31084(t *testing.T) {
// compute 10^n via 5^n << n.
const n = 165
p := nat(nil).expNN(nat{5}, nat{n}, nil)
p := nat(nil).expNN(nat{5}, nat{n}, nil, false)
p = p.shl(p, n)
got := string(p.utoa(10))
want := "1" + strings.Repeat("0", n)

View File

@ -523,6 +523,14 @@ func (x *Int) TrailingZeroBits() uint {
// Modular exponentiation of inputs of a particular size is not a
// cryptographically constant-time operation.
func (z *Int) Exp(x, y, m *Int) *Int {
return z.exp(x, y, m, false)
}
func (z *Int) expSlow(x, y, m *Int) *Int {
return z.exp(x, y, m, true)
}
func (z *Int) exp(x, y, m *Int, slow bool) *Int {
// See Knuth, volume 2, section 4.6.3.
xWords := x.abs
if y.neg {
@ -546,7 +554,7 @@ func (z *Int) Exp(x, y, m *Int) *Int {
mWords = m.abs // m.abs may be nil for m == 0
}
z.abs = z.abs.expNN(xWords, yWords, mWords)
z.abs = z.abs.expNN(xWords, yWords, mWords, slow)
z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign
if z.neg && len(mWords) > 0 {
// make modulus result positive
@ -879,6 +887,11 @@ func (z *Int) ModInverse(g, n *Int) *Int {
return z
}
func (z nat) modInverse(g, n nat) nat {
// TODO(rsc): ModInverse should be implemented in terms of this function.
return (&Int{abs: z}).ModInverse(&Int{abs: g}, &Int{abs: n}).abs
}
// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
// The y argument must be an odd integer.
func Jacobi(x, y *Int) int {

View File

@ -40,6 +40,10 @@ var (
natTen = nat{10}
)
func (z nat) String() string {
return "0x" + string(z.itoa(false, 16))
}
func (z nat) clear() {
for i := range z {
z[i] = 0
@ -642,6 +646,9 @@ func getNat(n int) *nat {
z = new(nat)
}
*z = z.make(n)
if n > 0 {
(*z)[0] = 0xfedcb // break code expecting zero
}
return z
}
@ -651,7 +658,8 @@ func putNat(x *nat) {
var natPool sync.Pool
// Length of x in bits. x must be normalized.
// bitLen returns the length of x in bits.
// Unlike most methods, it works even if x is not normalized.
func (x nat) bitLen() int {
if i := len(x) - 1; i >= 0 {
return i*_W + bits.Len(uint(x[i]))
@ -673,6 +681,18 @@ func (x nat) trailingZeroBits() uint {
return i*_W + uint(bits.TrailingZeros(uint(x[i])))
}
// isPow2 returns i, true when x == 2**i and 0, false otherwise.
func (x nat) isPow2() (uint, bool) {
var i uint
for x[i] == 0 {
i++
}
if i == uint(len(x))-1 && x[i]&(x[i]-1) == 0 {
return i*_W + uint(bits.TrailingZeros(uint(x[i]))), true
}
return 0, false
}
func same(x, y nat) bool {
return len(x) == len(y) && len(x) > 0 && &x[0] == &y[0]
}
@ -803,6 +823,20 @@ func (z nat) and(x, y nat) nat {
return z.norm()
}
// trunc returns z = x mod 2ⁿ.
func (z nat) trunc(x nat, n uint) nat {
w := (n + _W - 1) / _W
if uint(len(x)) < w {
return z.set(x)
}
z = z.make(int(w))
copy(z, x)
if n%_W != 0 {
z[len(z)-1] &= 1<<(n%_W) - 1
}
return z.norm()
}
func (z nat) andNot(x, y nat) nat {
m := len(x)
n := len(y)
@ -896,7 +930,7 @@ func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
// If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m;
// otherwise it sets z to x**y. The result is the value of z.
func (z nat) expNN(x, y, m nat) nat {
func (z nat) expNN(x, y, m nat, slow bool) nat {
if alias(z, x) || alias(z, y) {
// We cannot allow in-place modification of x or y.
z = nil
@ -914,31 +948,48 @@ func (z nat) expNN(x, y, m nat) nat {
}
// y > 0
// x**1 mod m == x mod m
if len(y) == 1 && y[0] == 1 && len(m) != 0 {
_, z = nat(nil).div(z, x, m)
return z
// 0**y = 0
if len(x) == 0 {
return z.setWord(0)
}
// x > 0
// 1**y = 1
if len(x) == 1 && x[0] == 1 {
return z.setWord(1)
}
// x > 1
// x**1 == x
if len(y) == 1 && y[0] == 1 {
if len(m) != 0 {
return z.rem(x, m)
}
return z.set(x)
}
// y > 1
if len(m) != 0 {
// We likely end up being as long as the modulus.
z = z.make(len(m))
}
z = z.set(x)
// If the base is non-trivial and the exponent is large, we use
// 4-bit, windowed exponentiation. This involves precomputing 14 values
// (x^2...x^15) but then reduces the number of multiply-reduces by a
// third. Even for a 32-bit exponent, this reduces the number of
// operations. Uses Montgomery method for odd moduli.
if x.cmp(natOne) > 0 && len(y) > 1 && len(m) > 0 {
if m[0]&1 == 1 {
return z.expNNMontgomery(x, y, m)
// If the exponent is large, we use the Montgomery method for odd values,
// and a 4-bit, windowed exponentiation for powers of two,
// and a CRT-decomposed Montgomery method for the remaining values
// (even values times non-trivial odd values, which decompose into one
// instance of each of the first two cases).
if len(y) > 1 && !slow {
if m[0]&1 == 1 {
return z.expNNMontgomery(x, y, m)
}
if logM, ok := m.isPow2(); ok {
return z.expNNWindowed(x, y, logM)
}
return z.expNNMontgomeryEven(x, y, m)
}
return z.expNNWindowed(x, y, m)
}
z = z.set(x)
v := y[len(y)-1] // v > 0 because y is normalized and y > 0
shift := nlz(v) + 1
v <<= shift
@ -995,66 +1046,151 @@ func (z nat) expNN(x, y, m nat) nat {
return z.norm()
}
// expNNWindowed calculates x**y mod m using a fixed, 4-bit window.
func (z nat) expNNWindowed(x, y, m nat) nat {
// zz and r are used to avoid allocating in mul and div as otherwise
// expNNMontgomeryEven calculates x**y mod m where m = m1 × m2 for m1 = 2ⁿ and m2 odd.
// It uses two recursive calls to expNN for x**y mod m1 and x**y mod m2
// and then uses the Chinese Remainder Theorem to combine the results.
// The recursive call using m1 will use expNNWindowed,
// while the recursive call using m2 will use expNNMontgomery.
// For more details, see Ç. K. Koç, “Montgomery Reduction with Even Modulus”,
// IEE Proceedings: Computers and Digital Techniques, 141(5) 314-316, September 1994.
// http://www.people.vcu.edu/~jwang3/CMSC691/j34monex.pdf
func (z nat) expNNMontgomeryEven(x, y, m nat) nat {
// Split m = m₁ × m₂ where m₁ = 2ⁿ
n := m.trailingZeroBits()
m1 := nat(nil).shl(natOne, n)
m2 := nat(nil).shr(m, n)
// We want z = x**y mod m.
// z₁ = x**y mod m1 = (x**y mod m) mod m1 = z mod m1
// z₂ = x**y mod m2 = (x**y mod m) mod m2 = z mod m2
// (We are using the math/big convention for names here,
// where the computation is z = x**y mod m, so its parts are z1 and z2.
// The paper is computing x = a**e mod n; it refers to these as x2 and z1.)
z1 := nat(nil).expNN(x, y, m1, false)
z2 := nat(nil).expNN(x, y, m2, false)
// Reconstruct z from z₁, z₂ using CRT, using algorithm from paper,
// which uses only a single modInverse (and an easy one at that).
// p = (z₁ - z₂) × m₂⁻¹ (mod m₁)
// z = z₂ + p × m₂
// The final addition is in range because:
// z = z₂ + p × m₂
// ≤ z₂ + (m₁-1) × m₂
// < m₂ + (m₁-1) × m₂
// = m₁ × m₂
// = m.
z = z.set(z2)
// Compute (z₁ - z₂) mod m1 [m1 == 2**n] into z1.
z1 = z1.subMod2N(z1, z2, n)
// Reuse z2 for p = (z₁ - z₂) [in z1] * m2⁻¹ (mod m₁ [= 2ⁿ]).
m2inv := nat(nil).modInverse(m2, m1)
z2 = z2.mul(z1, m2inv)
z2 = z2.trunc(z2, n)
// Reuse z1 for p * m2.
z = z.add(z, z1.mul(z2, m2))
return z
}
// expNNWindowed calculates x**y mod m using a fixed, 4-bit window,
// where m = 2**logM.
func (z nat) expNNWindowed(x, y nat, logM uint) nat {
if len(y) <= 1 {
panic("big: misuse of expNNWindowed")
}
if x[0]&1 == 0 {
// len(y) > 1, so y > logM.
// x is even, so x**y is a multiple of 2**y which is a multiple of 2**logM.
return z.setWord(0)
}
if logM == 1 {
return z.setWord(1)
}
// zz is used to avoid allocating in mul as otherwise
// the arguments would alias.
var zz, r nat
w := int((logM + _W - 1) / _W)
zzp := getNat(w)
zz := *zzp
const n = 4
// powers[i] contains x^i.
var powers [1 << n]nat
powers[0] = natOne
powers[1] = x
var powers [1 << n]*nat
for i := range powers {
powers[i] = getNat(w)
}
*powers[0] = powers[0].set(natOne)
*powers[1] = powers[1].trunc(x, logM)
for i := 2; i < 1<<n; i += 2 {
p2, p, p1 := &powers[i/2], &powers[i], &powers[i+1]
p2, p, p1 := powers[i/2], powers[i], powers[i+1]
*p = p.sqr(*p2)
zz, r = zz.div(r, *p, m)
*p, r = r, *p
*p = p.trunc(*p, logM)
*p1 = p1.mul(*p, x)
zz, r = zz.div(r, *p1, m)
*p1, r = r, *p1
*p1 = p1.trunc(*p1, logM)
}
// Because phi(2**logM) = 2**(logM-1), x**(2**(logM-1)) = 1,
// so we can compute x**(y mod 2**(logM-1)) instead of x**y.
// That is, we can throw away all but the bottom logM-1 bits of y.
// Instead of allocating a new y, we start reading y at the right word
// and truncate it appropriately at the start of the loop.
i := len(y) - 1
mtop := int((logM - 2) / _W) // -2 because the top word of N bits is the (N-1)/W'th word.
mmask := ^Word(0)
if mbits := (logM - 1) & (_W - 1); mbits != 0 {
mmask = (1 << mbits) - 1
}
if i > mtop {
i = mtop
}
advance := false
z = z.setWord(1)
for i := len(y) - 1; i >= 0; i-- {
for ; i >= 0; i-- {
yi := y[i]
if i == mtop {
yi &= mmask
}
for j := 0; j < _W; j += n {
if i != len(y)-1 || j != 0 {
if advance {
// Account for use of 4 bits in previous iteration.
// Unrolled loop for significant performance
// gain. Use go test -bench=".*" in crypto/rsa
// to check performance before making changes.
zz = zz.sqr(z)
zz, z = z, zz
zz, r = zz.div(r, z, m)
z, r = r, z
z = z.trunc(z, logM)
zz = zz.sqr(z)
zz, z = z, zz
zz, r = zz.div(r, z, m)
z, r = r, z
z = z.trunc(z, logM)
zz = zz.sqr(z)
zz, z = z, zz
zz, r = zz.div(r, z, m)
z, r = r, z
z = z.trunc(z, logM)
zz = zz.sqr(z)
zz, z = z, zz
zz, r = zz.div(r, z, m)
z, r = r, z
z = z.trunc(z, logM)
}
zz = zz.mul(z, powers[yi>>(_W-n)])
zz = zz.mul(z, *powers[yi>>(_W-n)])
zz, z = z, zz
zz, r = zz.div(r, z, m)
z, r = r, z
z = z.trunc(z, logM)
yi <<= n
advance = true
}
}
*zzp = zz
putNat(zzp)
for i := range powers {
putNat(powers[i])
}
return z.norm()
}
@ -1242,3 +1378,36 @@ func (z nat) sqrt(x nat) nat {
z1, z2 = z2, z1
}
}
// subMod2N returns z = (x - y) mod 2ⁿ.
func (z nat) subMod2N(x, y nat, n uint) nat {
if uint(x.bitLen()) > n {
if alias(z, x) {
// ok to overwrite x in place
x = x.trunc(x, n)
} else {
x = nat(nil).trunc(x, n)
}
}
if uint(y.bitLen()) > n {
if alias(z, y) {
// ok to overwrite y in place
y = y.trunc(y, n)
} else {
y = nat(nil).trunc(y, n)
}
}
if x.cmp(y) >= 0 {
return z.sub(x, y)
}
// x - y < 0; x - y mod 2ⁿ = x - y + 2ⁿ = 2ⁿ - (y - x) = 1 + 2ⁿ-1 - (y - x) = 1 + ^(y - x).
z = z.sub(y, x)
for uint(len(z))*_W < n {
z = append(z, 0)
}
for i := range z {
z[i] = ^z[i]
}
z = z.trunc(z, n)
return z.add(z, natOne)
}

View File

@ -523,6 +523,12 @@ var expNNTests = []struct {
"444747819283133684179",
"42",
},
{"375", "249", "388", "175"},
{"375", "18446744073709551801", "388", "175"},
{"0", "0x40000000000000", "0x200", "0"},
{"0xeffffff900002f00", "0x40000000000000", "0x200", "0"},
{"5", "1435700818", "72", "49"},
{"0xffff", "0x300030003000300030003000300030003000302a3000300030003000300030003000300030003000300030003000300030003030623066307f3030783062303430383064303630343036", "0x300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "0xa3f94c08b0b90e87af637cacc9383f7ea032352b8961fc036a52b659b6c9b33491b335ffd74c927f64ddd62cfca0001"},
}
func TestExpNN(t *testing.T) {
@ -536,13 +542,29 @@ func TestExpNN(t *testing.T) {
m = natFromString(test.m)
}
z := nat(nil).expNN(x, y, m)
z := nat(nil).expNN(x, y, m, false)
if z.cmp(out) != 0 {
t.Errorf("#%d got %s want %s", i, z.utoa(10), out.utoa(10))
}
}
}
func FuzzExpMont(f *testing.F) {
f.Fuzz(func(t *testing.T, x1, x2, x3, y1, y2, y3, m1, m2, m3 uint) {
if m1 == 0 && m2 == 0 && m3 == 0 {
return
}
x := new(Int).SetBits([]Word{Word(x1), Word(x2), Word(x3)})
y := new(Int).SetBits([]Word{Word(y1), Word(y2), Word(y3)})
m := new(Int).SetBits([]Word{Word(m1), Word(m2), Word(m3)})
out := new(Int).Exp(x, y, m)
want := new(Int).expSlow(x, y, m)
if out.Cmp(want) != 0 {
t.Errorf("x = %#x\ny=%#x\nz=%#x\nout=%#x\nwant=%#x\ndc: 16o 16i %X %X %X |p", x, y, m, out, want, x, y, m)
}
})
}
func BenchmarkExp3Power(b *testing.B) {
const x = 3
for _, y := range []Word{
@ -733,6 +755,54 @@ func BenchmarkNatSqr(b *testing.B) {
}
}
var subMod2NTests = []struct {
x string
y string
n uint
z string
}{
{"1", "2", 0, "0"},
{"1", "0", 1, "1"},
{"0", "1", 1, "1"},
{"3", "5", 3, "6"},
{"5", "3", 3, "2"},
// 2^65, 2^66-1, 2^65 - (2^66-1) + 2^67
{"36893488147419103232", "73786976294838206463", 67, "110680464442257309697"},
// 2^66-1, 2^65, 2^65-1
{"73786976294838206463", "36893488147419103232", 67, "36893488147419103231"},
}
func TestNatSubMod2N(t *testing.T) {
for _, mode := range []string{"noalias", "aliasX", "aliasY"} {
t.Run(mode, func(t *testing.T) {
for _, tt := range subMod2NTests {
x0 := natFromString(tt.x)
y0 := natFromString(tt.y)
want := natFromString(tt.z)
x := nat(nil).set(x0)
y := nat(nil).set(y0)
var z nat
switch mode {
case "aliasX":
z = x
case "aliasY":
z = y
}
z = z.subMod2N(x, y, tt.n)
if z.cmp(want) != 0 {
t.Fatalf("subMod2N(%d, %d, %d) = %d, want %d", x0, y0, tt.n, z, want)
}
if mode != "aliasX" && x.cmp(x0) != 0 {
t.Fatalf("subMod2N(%d, %d, %d) modified x", x0, y0, tt.n)
}
if mode != "aliasY" && y.cmp(y0) != 0 {
t.Fatalf("subMod2N(%d, %d, %d) modified y", x0, y0, tt.n)
}
}
})
}
}
func BenchmarkNatSetBytes(b *testing.B) {
const maxLength = 128
lengths := []int{

View File

@ -452,7 +452,7 @@ var cacheBase10 struct {
// expWW computes x**y
func (z nat) expWW(x, y Word) nat {
return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil)
return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil, false)
}
// construct table of powers of bb*leafSize to use in subdivisions

View File

@ -500,6 +500,19 @@ package big
import "math/bits"
// rem returns r such that r = u%v.
// It uses z as the storage for r.
func (z nat) rem(u, v nat) (r nat) {
if alias(z, u) {
z = nil
}
qp := getNat(0)
q, r := qp.div(z, u, v)
*qp = q
putNat(qp)
return r
}
// div returns q, r such that q = ⌊u/v⌋ and r = u%v = u - q·v.
// It uses z and z2 as the storage for q and r.
func (z nat) div(z2, u, v nat) (q, r nat) {

View File

@ -103,7 +103,7 @@ NextRandom:
x = x.random(rand, nm3, nm3Len)
x = x.add(x, natTwo)
}
y = y.expNN(x, q, n)
y = y.expNN(x, q, n, false)
if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 {
continue
}

View File

@ -178,7 +178,7 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
if n > 1e6 {
return nil, false // avoid excessively large exponents
}
pow5 := z.b.abs.expNN(natFive, nat(nil).setWord(Word(n)), nil) // use underlying array of z.b.abs
pow5 := z.b.abs.expNN(natFive, nat(nil).setWord(Word(n)), nil, false) // use underlying array of z.b.abs
if exp5 > 0 {
z.a.abs = z.a.abs.mul(z.a.abs, pow5)
z.b.abs = z.b.abs.setWord(1)
@ -346,7 +346,7 @@ func (x *Rat) FloatString(prec int) string {
p := natOne
if prec > 0 {
p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil)
p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil, false)
}
r = r.mul(r, p)