1
0
mirror of https://github.com/golang/go synced 2024-11-06 22:46:14 -07:00

runtime: add new page allocator core

This change adds a new bitmap-based allocator to the runtime with tests.
It does not yet integrate the page allocator into the runtime and thus
this change is almost purely additive.

Updates #35112.

Change-Id: Ic3d024c28abee8be8797d3918116a80f901cc2bf
Reviewed-on: https://go-review.googlesource.com/c/go/+/190622
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Austin Clements <austin@google.com>
This commit is contained in:
Michael Anthony Knyszek 2019-08-14 16:32:12 +00:00 committed by Michael Knyszek
parent 05aa4a7b74
commit 39e8cb0faa
6 changed files with 1716 additions and 2 deletions

View File

@ -38,6 +38,7 @@ var Nanotime = nanotime
var NetpollBreak = netpollBreak var NetpollBreak = netpollBreak
var Usleep = usleep var Usleep = usleep
var PageSize = pageSize
var PhysHugePageSize = physHugePageSize var PhysHugePageSize = physHugePageSize
var NetpollGenericInit = netpollGenericInit var NetpollGenericInit = netpollGenericInit
@ -824,7 +825,90 @@ func StringifyPallocBits(b *PallocBits, r BitRange) string {
return str return str
} }
// Expose chunk index type.
type ChunkIdx chunkIdx
// Expose pageAlloc for testing. Note that because pageAlloc is
// not in the heap, so is PageAlloc.
type PageAlloc pageAlloc
func (p *PageAlloc) Alloc(npages uintptr) uintptr { return (*pageAlloc)(p).alloc(npages) }
func (p *PageAlloc) Free(base, npages uintptr) { (*pageAlloc)(p).free(base, npages) }
func (p *PageAlloc) Bounds() (ChunkIdx, ChunkIdx) {
return ChunkIdx((*pageAlloc)(p).start), ChunkIdx((*pageAlloc)(p).end)
}
func (p *PageAlloc) PallocBits(i ChunkIdx) *PallocBits {
return (*PallocBits)(&((*pageAlloc)(p).chunks[i]))
}
// BitRange represents a range over a bitmap. // BitRange represents a range over a bitmap.
type BitRange struct { type BitRange struct {
I, N uint // bit index and length in bits I, N uint // bit index and length in bits
} }
// NewPageAlloc creates a new page allocator for testing and
// initializes it with the chunks map. Each key represents a chunk
// index and each value is a series of bit ranges to set within that
// chunk.
func NewPageAlloc(chunks map[ChunkIdx][]BitRange) *PageAlloc {
p := new(pageAlloc)
// We've got an entry, so initialize the pageAlloc.
p.init(new(mutex), nil)
for i, init := range chunks {
addr := chunkBase(chunkIdx(i))
// Mark the chunk's existence in the pageAlloc.
p.grow(addr, pallocChunkBytes)
// Initialize the bitmap and update pageAlloc metadata.
chunk := &p.chunks[chunkIndex(addr)]
for _, s := range init {
// Ignore the case of s.N == 0. allocRange doesn't handle
// it and it's a no-op anyway.
if s.N != 0 {
chunk.allocRange(s.I, s.N)
}
}
// Update heap metadata for the allocRange calls above.
p.update(addr, pallocChunkPages, false, false)
}
return (*PageAlloc)(p)
}
// FreePageAlloc releases hard OS resources owned by the pageAlloc. Once this
// is called the pageAlloc may no longer be used. The object itself will be
// collected by the garbage collector once it is no longer live.
func FreePageAlloc(pp *PageAlloc) {
p := (*pageAlloc)(pp)
// Free all the mapped space for the summary levels.
if pageAlloc64Bit != 0 {
for l := 0; l < summaryLevels; l++ {
sysFree(unsafe.Pointer(&p.summary[l][0]), uintptr(cap(p.summary[l]))*pallocSumBytes, nil)
}
} else {
resSize := uintptr(0)
for _, s := range p.summary {
resSize += uintptr(cap(s)) * pallocSumBytes
}
sysFree(unsafe.Pointer(&p.summary[0][0]), alignUp(resSize, physPageSize), nil)
}
// Free the mapped space for chunks.
chunksLen := uintptr(cap(p.chunks)) * unsafe.Sizeof(p.chunks[0])
sysFree(unsafe.Pointer(&p.chunks[0]), alignUp(chunksLen, physPageSize), nil)
}
// BaseChunkIdx is a convenient chunkIdx value which works on both
// 64 bit and 32 bit platforms, allowing the tests to share code
// between the two.
var BaseChunkIdx = ChunkIdx(chunkIndex((0xc000*pageAlloc64Bit + 0x200*pageAlloc32Bit) * pallocChunkBytes))
// PageBase returns an address given a chunk index and a page index
// relative to that chunk.
func PageBase(c ChunkIdx, pageIdx uint) uintptr {
return chunkBase(chunkIdx(c)) + uintptr(pageIdx)*pageSize
}

View File

@ -48,6 +48,10 @@
package runtime package runtime
import (
"unsafe"
)
const ( const (
// The size of a bitmap chunk, i.e. the amount of bits (that is, pages) to consider // The size of a bitmap chunk, i.e. the amount of bits (that is, pages) to consider
// in the bitmap at once. // in the bitmap at once.
@ -61,7 +65,7 @@ const (
// The value of 3 is chosen such that the block of summaries we need to scan at // The value of 3 is chosen such that the block of summaries we need to scan at
// each level fits in 64 bytes (2^3 summaries * 8 bytes per summary), which is // each level fits in 64 bytes (2^3 summaries * 8 bytes per summary), which is
// close to the L1 cache line width on many systems. Also, a value of 3 fits 4 tree // close to the L1 cache line width on many systems. Also, a value of 3 fits 4 tree
// levels perfectly into the 21-bit mallocBits summary field at the root level. // levels perfectly into the 21-bit pallocBits summary field at the root level.
// //
// The following equation explains how each of the constants relate: // The following equation explains how each of the constants relate:
// summaryL0Bits + (summaryLevels-1)*summaryLevelBits + logPallocChunkBytes = heapAddrBits // summaryL0Bits + (summaryLevels-1)*summaryLevelBits + logPallocChunkBytes = heapAddrBits
@ -69,13 +73,727 @@ const (
// summaryLevels is an architecture-dependent value defined in mpagealloc_*.go. // summaryLevels is an architecture-dependent value defined in mpagealloc_*.go.
summaryLevelBits = 3 summaryLevelBits = 3
summaryL0Bits = heapAddrBits - logPallocChunkBytes - (summaryLevels-1)*summaryLevelBits summaryL0Bits = heapAddrBits - logPallocChunkBytes - (summaryLevels-1)*summaryLevelBits
// Maximum searchAddr value, which indicates that the heap has no free space.
//
// We subtract arenaBaseOffset because we want this to represent the maximum
// value in the shifted address space, but searchAddr is stored as a regular
// memory address. See arenaBaseOffset for details.
maxSearchAddr = ^uintptr(0) - arenaBaseOffset
) )
// Global chunk index.
//
// Represents an index into the leaf level of the radix tree.
// Similar to arenaIndex, except instead of arenas, it divides the address
// space into chunks.
type chunkIdx uint
// chunkIndex returns the global index of the palloc chunk containing the
// pointer p.
func chunkIndex(p uintptr) chunkIdx {
return chunkIdx((p + arenaBaseOffset) / pallocChunkBytes)
}
// chunkIndex returns the base address of the palloc chunk at index ci.
func chunkBase(ci chunkIdx) uintptr {
return uintptr(ci)*pallocChunkBytes - arenaBaseOffset
}
// chunkPageIndex computes the index of the page that contains p,
// relative to the chunk which contains p.
func chunkPageIndex(p uintptr) uint {
return uint(p % pallocChunkBytes / pageSize)
}
// addrsToSummaryRange converts base and limit pointers into a range
// of entries for the given summary level.
//
// The returned range is inclusive on the lower bound and exclusive on
// the upper bound.
func addrsToSummaryRange(level int, base, limit uintptr) (lo int, hi int) {
// This is slightly more nuanced than just a shift for the exclusive
// upper-bound. Note that the exclusive upper bound may be within a
// summary at this level, meaning if we just do the obvious computation
// hi will end up being an inclusive upper bound. Unfortunately, just
// adding 1 to that is too broad since we might be on the very edge of
// of a summary's max page count boundary for this level
// (1 << levelLogPages[level]). So, make limit an inclusive upper bound
// then shift, then add 1, so we get an exclusive upper bound at the end.
lo = int((base + arenaBaseOffset) >> levelShift[level])
hi = int(((limit-1)+arenaBaseOffset)>>levelShift[level]) + 1
return
}
// blockAlignSummaryRange aligns indices into the given level to that
// level's block width (1 << levelBits[level]). It assumes lo is inclusive
// and hi is exclusive, and so aligns them down and up respectively.
func blockAlignSummaryRange(level int, lo, hi int) (int, int) {
e := uintptr(1) << levelBits[level]
return int(alignDown(uintptr(lo), e)), int(alignUp(uintptr(hi), e))
}
type pageAlloc struct {
// Radix tree of summaries.
//
// Each slice's cap represents the whole memory reservation.
// Each slice's len reflects the allocator's maximum known
// mapped heap address for that level.
//
// The backing store of each summary level is reserved in init
// and may or may not be committed in grow (small address spaces
// may commit all the memory in init).
//
// The purpose of keeping len <= cap is to enforce bounds checks
// on the top end of the slice so that instead of an unknown
// runtime segmentation fault, we get a much friendlier out-of-bounds
// error.
//
// We may still get segmentation faults < len since some of that
// memory may not be committed yet.
summary [summaryLevels][]pallocSum
// chunks is a slice of bitmap chunks.
//
// The backing store for chunks is reserved in init and committed
// by grow.
//
// To find the chunk containing a memory address `a`, do:
// chunks[chunkIndex(a)]
//
// summary[len(s.summary)-1][i] should always be checked, at least
// for a zero max value, before accessing chunks[i]. It's possible the
// bitmap at that index is mapped in and zeroed, indicating that it
// contains free space, but in actuality it is unused since its
// corresponding summary was never updated. Tests may ignore this
// and assume the zero value (and that it is mapped).
//
// TODO(mknyszek): Consider changing the definition of the bitmap
// such that 1 means free and 0 means in-use so that summaries and
// the bitmaps align better on zero-values.
chunks []pallocBits
// The address to start an allocation search with.
//
// When added with arenaBaseOffset, we guarantee that
// all valid heap addresses (when also added with
// arenaBaseOffset) below this value are allocated and
// not worth searching.
//
// Note that adding in arenaBaseOffset transforms addresses
// to a new address space with a linear view of the full address
// space on architectures with segmented address spaces.
searchAddr uintptr
// start and end represent the chunk indices
// which pageAlloc knows about. It assumes
// chunks in the range [start, end) are
// currently ready to use.
start, end chunkIdx
// mheap_.lock. This level of indirection makes it possible
// to test pageAlloc indepedently of the runtime allocator.
mheapLock *mutex
// sysStat is the runtime memstat to update when new system
// memory is committed by the pageAlloc for allocation metadata.
sysStat *uint64
}
func (s *pageAlloc) init(mheapLock *mutex, sysStat *uint64) {
if levelLogPages[0] > logMaxPackedValue {
// We can't represent 1<<levelLogPages[0] pages, the maximum number
// of pages we need to represent at the root level, in a summary, which
// is a big problem. Throw.
print("runtime: root level max pages = ", 1<<levelLogPages[0], "\n")
print("runtime: summary max pages = ", maxPackedValue, "\n")
throw("root level max pages doesn't fit in summary")
}
s.sysStat = sysStat
// System-dependent initialization.
s.sysInit()
// Start with the searchAddr in a state indicating there's no free memory.
s.searchAddr = maxSearchAddr
// Reserve space for the bitmap and put this reservation
// into the chunks slice.
const maxChunks = (1 << heapAddrBits) / pallocChunkBytes
r := sysReserve(nil, maxChunks*unsafe.Sizeof(s.chunks[0]))
if r == nil {
throw("failed to reserve page bitmap memory")
}
sl := notInHeapSlice{(*notInHeap)(r), 0, maxChunks}
s.chunks = *(*[]pallocBits)(unsafe.Pointer(&sl))
// Set the mheapLock.
s.mheapLock = mheapLock
}
// extendMappedRegion ensures that all the memory in the range
// [base+nbase, base+nlimit) is in the Ready state.
// base must refer to the beginning of a memory region in the
// Reserved state. extendMappedRegion assumes that the region
// [base+mbase, base+mlimit) is already mapped.
//
// Note that extendMappedRegion only supports extending
// mappings in one direction. Therefore,
// nbase < mbase && nlimit > mlimit is an invalid input
// and this function will throw.
func extendMappedRegion(base unsafe.Pointer, mbase, mlimit, nbase, nlimit uintptr, sysStat *uint64) {
if uintptr(base)%physPageSize != 0 {
print("runtime: base = ", base, "\n")
throw("extendMappedRegion: base not page-aligned")
}
// Round the offsets to a physical page.
mbase = alignDown(mbase, physPageSize)
nbase = alignDown(nbase, physPageSize)
mlimit = alignUp(mlimit, physPageSize)
nlimit = alignUp(nlimit, physPageSize)
// If none of the region is mapped, don't bother
// trying to figure out which parts are.
if mlimit-mbase != 0 {
// Determine which part of the region actually needs
// mapping.
if nbase < mbase && nlimit > mlimit {
// TODO(mknyszek): Consider supporting this case. It can't
// ever happen currently in the page allocator, but may be
// useful in the future. Also, it would make this function's
// purpose simpler to explain.
throw("mapped region extended in two directions")
} else if nbase < mbase && nlimit <= mlimit {
nlimit = mbase
} else if nbase >= mbase && nlimit > mlimit {
nbase = mlimit
} else {
return
}
}
// Transition from Reserved to Ready.
rbase := add(base, nbase)
sysMap(rbase, nlimit-nbase, sysStat)
sysUsed(rbase, nlimit-nbase)
}
// compareSearchAddrTo compares an address against s.searchAddr in a linearized
// view of the address space on systems with discontinuous process address spaces.
// This linearized view is the same one generated by chunkIndex and arenaIndex,
// done by adding arenaBaseOffset.
//
// On systems without a discontinuous address space, it's just a normal comparison.
//
// Returns < 0 if addr is less than s.searchAddr in the linearized address space.
// Returns > 0 if addr is greater than s.searchAddr in the linearized address space.
// Returns 0 if addr and s.searchAddr are equal.
func (s *pageAlloc) compareSearchAddrTo(addr uintptr) int {
// Compare with arenaBaseOffset added because it gives us a linear, contiguous view
// of the heap on architectures with signed address spaces.
lAddr := addr + arenaBaseOffset
lSearchAddr := s.searchAddr + arenaBaseOffset
if lAddr < lSearchAddr {
return -1
} else if lAddr > lSearchAddr {
return 1
}
return 0
}
// grow sets up the metadata for the address range [base, base+size).
// It may allocate metadata, in which case *s.sysStat will be updated.
//
// s.mheapLock must be held.
func (s *pageAlloc) grow(base, size uintptr) {
// Round up to chunks, since we can't deal with increments smaller
// than chunks. Also, sysGrow expects aligned values.
limit := alignUp(base+size, pallocChunkBytes)
base = alignDown(base, pallocChunkBytes)
// Grow the summary levels in a system-dependent manner.
// We just update a bunch of additional metadata here.
s.sysGrow(base, limit)
// Update s.start and s.end.
// If no growth happened yet, start == 0. This is generally
// safe since the zero page is unmapped.
oldStart, oldEnd := s.start, s.end
firstGrowth := s.start == 0
start, end := chunkIndex(base), chunkIndex(limit)
if firstGrowth || start < s.start {
s.start = start
}
if end > s.end {
s.end = end
// s.end corresponds directly to the length of s.chunks,
// so just update it here.
s.chunks = s.chunks[:end]
}
// Extend the mapped part of the chunk reservation.
elemSize := unsafe.Sizeof(s.chunks[0])
extendMappedRegion(
unsafe.Pointer(&s.chunks[0]),
uintptr(oldStart)*elemSize,
uintptr(oldEnd)*elemSize,
uintptr(s.start)*elemSize,
uintptr(s.end)*elemSize,
s.sysStat,
)
// A grow operation is a lot like a free operation, so if our
// chunk ends up below the (linearized) s.searchAddr, update
// s.searchAddr to the new address, just like in free.
if s.compareSearchAddrTo(base) < 0 {
s.searchAddr = base
}
// Update summaries accordingly. The grow acts like a free, so
// we need to ensure this newly-free memory is visible in the
// summaries.
s.update(base, size/pageSize, true, false)
}
// update updates heap metadata. It must be called each time the bitmap
// is updated.
//
// If contig is true, update does some optimizations assuming that there was
// a contiguous allocation or free between addr and addr+npages. alloc indicates
// whether the operation performed was an allocation or a free.
//
// s.mheapLock must be held.
func (s *pageAlloc) update(base, npages uintptr, contig, alloc bool) {
// base, limit, start, and end are inclusive.
limit := base + npages*pageSize - 1
sc, ec := chunkIndex(base), chunkIndex(limit)
// Handle updating the lowest level first.
if sc == ec {
// Fast path: the allocation doesn't span more than one chunk,
// so update this one and if the summary didn't change, return.
x := s.summary[len(s.summary)-1][sc]
y := s.chunks[sc].summarize()
if x == y {
return
}
s.summary[len(s.summary)-1][sc] = y
} else if contig {
// Slow contiguous path: the allocation spans more than one chunk
// and at least one summary is guaranteed to change.
summary := s.summary[len(s.summary)-1]
// Update the summary for chunk sc.
summary[sc] = s.chunks[sc].summarize()
// Update the summaries for chunks in between, which are
// either totally allocated or freed.
whole := s.summary[len(s.summary)-1][sc+1 : ec]
if alloc {
// Should optimize into a memclr.
for i := range whole {
whole[i] = 0
}
} else {
for i := range whole {
whole[i] = freeChunkSum
}
}
// Update the summary for chunk ec.
summary[ec] = s.chunks[ec].summarize()
} else {
// Slow general path: the allocation spans more than one chunk
// and at least one summary is guaranteed to change.
//
// We can't assume a contiguous allocation happened, so walk over
// every chunk in the range and manually recompute the summary.
summary := s.summary[len(s.summary)-1]
for c := sc; c <= ec; c++ {
summary[c] = s.chunks[c].summarize()
}
}
// Walk up the radix tree and update the summaries appropriately.
changed := true
for l := len(s.summary) - 2; l >= 0 && changed; l-- {
// Update summaries at level l from summaries at level l+1.
changed = false
// "Constants" for the previous level which we
// need to compute the summary from that level.
logEntriesPerBlock := levelBits[l+1]
logMaxPages := levelLogPages[l+1]
// lo and hi describe all the parts of the level we need to look at.
lo, hi := addrsToSummaryRange(l, base, limit+1)
// Iterate over each block, updating the corresponding summary in the less-granular level.
for i := lo; i < hi; i++ {
children := s.summary[l+1][i<<logEntriesPerBlock : (i+1)<<logEntriesPerBlock]
sum := mergeSummaries(children, logMaxPages)
old := s.summary[l][i]
if old != sum {
changed = true
s.summary[l][i] = sum
}
}
}
}
// allocRange marks the range of memory [base, base+npages*pageSize) as
// allocated. It also updates the summaries to reflect the newly-updated
// bitmap.
//
// s.mheapLock must be held.
func (s *pageAlloc) allocRange(base, npages uintptr) {
limit := base + npages*pageSize - 1
sc, ec := chunkIndex(base), chunkIndex(limit)
si, ei := chunkPageIndex(base), chunkPageIndex(limit)
if sc == ec {
// The range doesn't cross any chunk boundaries.
s.chunks[sc].allocRange(si, ei+1-si)
} else {
// The range crosses at least one chunk boundary.
s.chunks[sc].allocRange(si, pallocChunkPages-si)
for c := sc + 1; c < ec; c++ {
s.chunks[c].allocAll()
}
s.chunks[ec].allocRange(0, ei+1)
}
s.update(base, npages, true, true)
}
// find searches for the first (address-ordered) contiguous free region of
// npages in size and returns a base address for that region.
//
// It uses s.searchAddr to prune its search and assumes that no palloc chunks
// below chunkIndex(s.searchAddr) contain any free memory at all.
//
// find also computes and returns a candidate s.searchAddr, which may or
// may not prune more of the address space than s.searchAddr already does.
//
// find represents the slow path and the full radix tree search.
//
// Returns a base address of 0 on failure, in which case the candidate
// searchAddr returned is invalid and must be ignored.
//
// s.mheapLock must be held.
func (s *pageAlloc) find(npages uintptr) (uintptr, uintptr) {
// Search algorithm.
//
// This algorithm walks each level l of the radix tree from the root level
// to the leaf level. It iterates over at most 1 << levelBits[l] of entries
// in a given level in the radix tree, and uses the summary information to
// find either:
// 1) That a given subtree contains a large enough contiguous region, at
// which point it continues iterating on the next level, or
// 2) That there are enough contiguous boundary-crossing bits to satisfy
// the allocation, at which point it knows exactly where to start
// allocating from.
//
// i tracks the index into the current level l's structure for the
// contiguous 1 << levelBits[l] entries we're actually interested in.
//
// NOTE: Technically this search could allocate a region which crosses
// the arenaBaseOffset boundary, which when arenaBaseOffset != 0, is
// a discontinuity. However, the only way this could happen is if the
// page at the zero address is mapped, and this is impossible on
// every system we support where arenaBaseOffset != 0. So, the
// discontinuity is already encoded in the fact that the OS will never
// map the zero page for us, and this function doesn't try to handle
// this case in any way.
// i is the beginning of the block of entries we're searching at the
// current level.
i := 0
// firstFree is the region of address space that we are certain to
// find the first free page in the heap. base and bound are the inclusive
// bounds of this window, and both are addresses in the linearized, contiguous
// view of the address space (with arenaBaseOffset pre-added). At each level,
// this window is narrowed as we find the memory region containing the
// first free page of memory. To begin with, the range reflects the
// full process address space.
//
// firstFree is updated by calling foundFree each time free space in the
// heap is discovered.
//
// At the end of the search, base-arenaBaseOffset is the best new
// searchAddr we could deduce in this search.
firstFree := struct {
base, bound uintptr
}{
base: 0,
bound: (1<<heapAddrBits - 1),
}
// foundFree takes the given address range [addr, addr+size) and
// updates firstFree if it is a narrower range. The input range must
// either be fully contained within firstFree or not overlap with it
// at all.
//
// This way, we'll record the first summary we find with any free
// pages on the root level and narrow that down if we descend into
// that summary. But as soon as we need to iterate beyond that summary
// in a level to find a large enough range, we'll stop narrowing.
foundFree := func(addr, size uintptr) {
if firstFree.base <= addr && addr+size-1 <= firstFree.bound {
// This range fits within the current firstFree window, so narrow
// down the firstFree window to the base and bound of this range.
firstFree.base = addr
firstFree.bound = addr + size - 1
} else if !(addr+size-1 < firstFree.base || addr > firstFree.bound) {
// This range only partially overlaps with the firstFree range,
// so throw.
print("runtime: addr = ", hex(addr), ", size = ", size, "\n")
print("runtime: base = ", hex(firstFree.base), ", bound = ", hex(firstFree.bound), "\n")
throw("range partially overlaps")
}
}
// lastSum is the summary which we saw on the previous level that made us
// move on to the next level. Used to print additional information in the
// case of a catastrophic failure.
// lastSumIdx is that summary's index in the previous level.
lastSum := packPallocSum(0, 0, 0)
lastSumIdx := -1
nextLevel:
for l := 0; l < len(s.summary); l++ {
// For the root level, entriesPerBlock is the whole level.
entriesPerBlock := 1 << levelBits[l]
logMaxPages := levelLogPages[l]
// We've moved into a new level, so let's update i to our new
// starting index. This is a no-op for level 0.
i <<= levelBits[l]
// Slice out the block of entries we care about.
entries := s.summary[l][i : i+entriesPerBlock]
// Determine j0, the first index we should start iterating from.
// The searchAddr may help us eliminate iterations if we followed the
// searchAddr on the previous level or we're on the root leve, in which
// case the searchAddr should be the same as i after levelShift.
j0 := 0
if searchIdx := int((s.searchAddr + arenaBaseOffset) >> levelShift[l]); searchIdx&^(entriesPerBlock-1) == i {
j0 = searchIdx & (entriesPerBlock - 1)
}
// Run over the level entries looking for
// a contiguous run of at least npages either
// within an entry or across entries.
//
// base contains the page index (relative to
// the first entry's first page) of the currently
// considered run of consecutive pages.
//
// size contains the size of the currently considered
// run of consecutive pages.
var base, size uint
for j := j0; j < len(entries); j++ {
sum := entries[j]
if sum == 0 {
// A full entry means we broke any streak and
// that we should skip it altogether.
size = 0
continue
}
// We've encountered a non-zero summary which means
// free memory, so update firstFree.
foundFree(uintptr((i+j)<<levelShift[l]), (uintptr(1)<<logMaxPages)*pageSize)
s := sum.start()
if size+s >= uint(npages) {
// If size == 0 we don't have a run yet,
// which means base isn't valid. So, set
// base to the first page in this block.
if size == 0 {
base = uint(j) << logMaxPages
}
// We hit npages; we're done!
size += s
break
}
if sum.max() >= uint(npages) {
// The entry itself contains npages contiguous
// free pages, so continue on the next level
// to find that run.
i += j
lastSumIdx = i
lastSum = sum
continue nextLevel
}
if size == 0 || s < 1<<logMaxPages {
// We either don't have a current run started, or this entry
// isn't totally free (meaning we can't continue the current
// one), so try to begin a new run by setting size and base
// based on sum.end.
size = sum.end()
base = uint(j+1)<<logMaxPages - size
continue
}
// The entry is completely free, so continue the run.
size += 1 << logMaxPages
}
if size >= uint(npages) {
// We found a sufficiently large run of free pages straddling
// some boundary, so compute the address and return it.
addr := uintptr(i<<levelShift[l]) - arenaBaseOffset + uintptr(base)*pageSize
return addr, firstFree.base - arenaBaseOffset
}
if l == 0 {
// We're at level zero, so that means we've exhausted our search.
return 0, maxSearchAddr
}
// We're not at level zero, and we exhausted the level we were looking in.
// This means that either our calculations were wrong or the level above
// lied to us. In either case, dump some useful state and throw.
print("runtime: summary[", l-1, "][", lastSumIdx, "] = ", lastSum.start(), ", ", lastSum.max(), ", ", lastSum.end(), "\n")
print("runtime: level = ", l, ", npages = ", npages, ", j0 = ", j0, "\n")
print("runtime: s.searchAddr = ", hex(s.searchAddr), ", i = ", i, "\n")
print("runtime: levelShift[level] = ", levelShift[l], ", levelBits[level] = ", levelBits[l], "\n")
for j := 0; j < len(entries); j++ {
sum := entries[j]
print("runtime: summary[", l, "][", i+j, "] = (", sum.start(), ", ", sum.max(), ", ", sum.end(), ")\n")
}
throw("bad summary data")
}
// Since we've gotten to this point, that means we haven't found a
// sufficiently-sized free region straddling some boundary (chunk or larger).
// This means the last summary we inspected must have had a large enough "max"
// value, so look inside the chunk to find a suitable run.
//
// After iterating over all levels, i must contain a chunk index which
// is what the final level represents.
ci := chunkIdx(i)
j, searchIdx := s.chunks[ci].find(npages, 0)
if j < 0 {
// We couldn't find any space in this chunk despite the summaries telling
// us it should be there. There's likely a bug, so dump some state and throw.
sum := s.summary[len(s.summary)-1][i]
print("runtime: summary[", len(s.summary)-1, "][", i, "] = (", sum.start(), ", ", sum.max(), ", ", sum.end(), ")\n")
print("runtime: npages = ", npages, "\n")
throw("bad summary data")
}
// Compute the address at which the free space starts.
addr := chunkBase(ci) + uintptr(j)*pageSize
// Since we actually searched the chunk, we may have
// found an even narrower free window.
searchAddr := chunkBase(ci) + uintptr(searchIdx)*pageSize
foundFree(searchAddr+arenaBaseOffset, chunkBase(ci+1)-searchAddr)
return addr, firstFree.base - arenaBaseOffset
}
// alloc allocates npages worth of memory from the page heap, returning the base
// address for the allocation.
//
// Returns 0 on failure.
//
// s.mheapLock must be held.
func (s *pageAlloc) alloc(npages uintptr) uintptr {
// If the searchAddr refers to a region which has a higher address than
// any known chunk, then we know we're out of memory.
if chunkIndex(s.searchAddr) >= s.end {
return 0
}
// If npages has a chance of fitting in the chunk where the searchAddr is,
// search it directly.
var addr, searchAddr uintptr
if pallocChunkPages-chunkPageIndex(s.searchAddr) >= uint(npages) {
// npages is guaranteed to be no greater than pallocChunkPages here.
i := chunkIndex(s.searchAddr)
if max := s.summary[len(s.summary)-1][i].max(); max >= uint(npages) {
j, searchIdx := s.chunks[i].find(npages, chunkPageIndex(s.searchAddr))
if j < 0 {
print("runtime: max = ", max, ", npages = ", npages, "\n")
print("runtime: searchIdx = ", chunkPageIndex(s.searchAddr), ", s.searchAddr = ", hex(s.searchAddr), "\n")
throw("bad summary data")
}
addr = chunkBase(i) + uintptr(j)*pageSize
searchAddr = chunkBase(i) + uintptr(searchIdx)*pageSize
goto Found
}
}
// We failed to use a searchAddr for one reason or another, so try
// the slow path.
addr, searchAddr = s.find(npages)
if addr == 0 {
if npages == 1 {
// We failed to find a single free page, the smallest unit
// of allocation. This means we know the heap is completely
// exhausted. Otherwise, the heap still might have free
// space in it, just not enough contiguous space to
// accommodate npages.
s.searchAddr = maxSearchAddr
}
return 0
}
Found:
// Go ahead and actually mark the bits now that we have an address.
s.allocRange(addr, npages)
// If we found a higher (linearized) searchAddr, we know that all the
// heap memory before that searchAddr in a linear address space is
// allocated, so bump s.searchAddr up to the new one.
if s.compareSearchAddrTo(searchAddr) > 0 {
s.searchAddr = searchAddr
}
return addr
}
// free returns npages worth of memory starting at base back to the page heap.
//
// s.mheapLock must be held.
func (s *pageAlloc) free(base, npages uintptr) {
// If we're freeing pages below the (linearized) s.searchAddr, update searchAddr.
if s.compareSearchAddrTo(base) < 0 {
s.searchAddr = base
}
if npages == 1 {
// Fast path: we're clearing a single bit, and we know exactly
// where it is, so mark it directly.
s.chunks[chunkIndex(base)].free1(chunkPageIndex(base))
} else {
// Slow path: we're clearing more bits so we may need to iterate.
limit := base + npages*pageSize - 1
sc, ec := chunkIndex(base), chunkIndex(limit)
si, ei := chunkPageIndex(base), chunkPageIndex(limit)
if sc == ec {
// The range doesn't cross any chunk boundaries.
s.chunks[sc].free(si, ei+1-si)
} else {
// The range crosses at least one chunk boundary.
s.chunks[sc].free(si, pallocChunkPages-si)
for c := sc + 1; c < ec; c++ {
s.chunks[c].freeAll()
}
s.chunks[ec].free(0, ei+1)
}
}
s.update(base, npages, true, false)
}
const ( const (
pallocSumBytes = unsafe.Sizeof(pallocSum(0))
// maxPackedValue is the maximum value that any of the three fields in // maxPackedValue is the maximum value that any of the three fields in
// the pallocSum may take on. // the pallocSum may take on.
maxPackedValue = 1 << logMaxPackedValue maxPackedValue = 1 << logMaxPackedValue
logMaxPackedValue = logPallocChunkPages + (summaryLevels-1)*summaryLevelBits logMaxPackedValue = logPallocChunkPages + (summaryLevels-1)*summaryLevelBits
freeChunkSum = pallocSum(uint64(pallocChunkPages) |
uint64(pallocChunkPages<<logMaxPackedValue) |
uint64(pallocChunkPages<<(2*logMaxPackedValue)))
) )
// pallocSum is a packed summary type which packs three numbers: start, max, // pallocSum is a packed summary type which packs three numbers: start, max,
@ -128,3 +846,47 @@ func (p pallocSum) unpack() (uint, uint, uint) {
uint((uint64(p) >> logMaxPackedValue) & (maxPackedValue - 1)), uint((uint64(p) >> logMaxPackedValue) & (maxPackedValue - 1)),
uint((uint64(p) >> (2 * logMaxPackedValue)) & (maxPackedValue - 1)) uint((uint64(p) >> (2 * logMaxPackedValue)) & (maxPackedValue - 1))
} }
// mergeSummaries merges consecutive summaries which may each represent at
// most 1 << logMaxPagesPerSum pages each together into one.
func mergeSummaries(sums []pallocSum, logMaxPagesPerSum uint) pallocSum {
// Merge the summaries in sums into one.
//
// We do this by keeping a running summary representing the merged
// summaries of sums[:i] in start, max, and end.
start, max, end := sums[0].unpack()
for i := 1; i < len(sums); i++ {
// Merge in sums[i].
si, mi, ei := sums[i].unpack()
// Merge in sums[i].start only if the running summary is
// completely free, otherwise this summary's start
// plays no role in the combined sum.
if start == uint(i)<<logMaxPagesPerSum {
start += si
}
// Recompute the max value of the running sum by looking
// across the boundary between the running sum and sums[i]
// and at the max sums[i], taking the greatest of those two
// and the max of the running sum.
if end+si > max {
max = end + si
}
if mi > max {
max = mi
}
// Merge in end by checking if this new summary is totally
// free. If it is, then we want to extend the running sum's
// end by the new summary. If not, then we have some alloc'd
// pages in there and we just want to take the end value in
// sums[i].
if ei == 1<<logMaxPagesPerSum {
end += 1 << logMaxPagesPerSum
} else {
end = ei
}
}
return packPallocSum(start, max, end)
}

View File

@ -17,7 +17,93 @@
package runtime package runtime
import "unsafe"
const ( const (
// The number of levels in the radix tree. // The number of levels in the radix tree.
summaryLevels = 4 summaryLevels = 4
// Constants for testing.
pageAlloc32Bit = 1
pageAlloc64Bit = 0
) )
// See comment in mpagealloc_64bit.go.
var levelBits = [summaryLevels]uint{
summaryL0Bits,
summaryLevelBits,
summaryLevelBits,
summaryLevelBits,
}
// See comment in mpagealloc_64bit.go.
var levelShift = [summaryLevels]uint{
heapAddrBits - summaryL0Bits,
heapAddrBits - summaryL0Bits - 1*summaryLevelBits,
heapAddrBits - summaryL0Bits - 2*summaryLevelBits,
heapAddrBits - summaryL0Bits - 3*summaryLevelBits,
}
// See comment in mpagealloc_64bit.go.
var levelLogPages = [summaryLevels]uint{
logPallocChunkPages + 3*summaryLevelBits,
logPallocChunkPages + 2*summaryLevelBits,
logPallocChunkPages + 1*summaryLevelBits,
logPallocChunkPages,
}
// See mpagealloc_64bit.go for details.
func (s *pageAlloc) sysInit() {
// Calculate how much memory all our entries will take up.
//
// This should be around 12 KiB or less.
totalSize := uintptr(0)
for l := 0; l < summaryLevels; l++ {
totalSize += (uintptr(1) << (heapAddrBits - levelShift[l])) * pallocSumBytes
}
totalSize = alignUp(totalSize, physPageSize)
// Reserve memory for all levels in one go. There shouldn't be much for 32-bit.
reservation := sysReserve(nil, totalSize)
if reservation == nil {
throw("failed to reserve page summary memory")
}
// There isn't much. Just map it and mark it as used immediately.
sysMap(reservation, totalSize, s.sysStat)
sysUsed(reservation, totalSize)
// Iterate over the reservation and cut it up into slices.
//
// Maintain i as the byte offset from reservation where
// the new slice should start.
for l, shift := range levelShift {
entries := 1 << (heapAddrBits - shift)
// Put this reservation into a slice.
sl := notInHeapSlice{(*notInHeap)(reservation), 0, entries}
s.summary[l] = *(*[]pallocSum)(unsafe.Pointer(&sl))
reservation = add(reservation, uintptr(entries)*pallocSumBytes)
}
}
// See mpagealloc_64bit.go for details.
func (s *pageAlloc) sysGrow(base, limit uintptr) {
if base%pallocChunkBytes != 0 || limit%pallocChunkBytes != 0 {
print("runtime: base = ", hex(base), ", limit = ", hex(limit), "\n")
throw("sysGrow bounds not aligned to pallocChunkBytes")
}
// Walk up the tree and update the summary slices.
for l := len(s.summary) - 1; l >= 0; l-- {
// Figure out what part of the summary array this new address space needs.
// Note that we need to align the ranges to the block width (1<<levelBits[l])
// at this level because the full block is needed to compute the summary for
// the next level.
lo, hi := addrsToSummaryRange(l, base, limit)
_, hi = blockAlignSummaryRange(l, lo, hi)
if hi > len(s.summary[l]) {
s.summary[l] = s.summary[l][:hi]
}
}
}

View File

@ -8,7 +8,129 @@
package runtime package runtime
import "unsafe"
const ( const (
// The number of levels in the radix tree. // The number of levels in the radix tree.
summaryLevels = 5 summaryLevels = 5
// Constants for testing.
pageAlloc32Bit = 0
pageAlloc64Bit = 1
) )
// levelBits is the number of bits in the radix for a given level in the super summary
// structure.
//
// The sum of all the entries of levelBits should equal heapAddrBits.
var levelBits = [summaryLevels]uint{
summaryL0Bits,
summaryLevelBits,
summaryLevelBits,
summaryLevelBits,
summaryLevelBits,
}
// levelShift is the number of bits to shift to acquire the radix for a given level
// in the super summary structure.
//
// With levelShift, one can compute the index of the summary at level l related to a
// pointer p by doing:
// p >> levelShift[l]
var levelShift = [summaryLevels]uint{
heapAddrBits - summaryL0Bits,
heapAddrBits - summaryL0Bits - 1*summaryLevelBits,
heapAddrBits - summaryL0Bits - 2*summaryLevelBits,
heapAddrBits - summaryL0Bits - 3*summaryLevelBits,
heapAddrBits - summaryL0Bits - 4*summaryLevelBits,
}
// levelLogPages is log2 the maximum number of runtime pages in the address space
// a summary in the given level represents.
//
// The leaf level always represents exactly log2 of 1 chunk's worth of pages.
var levelLogPages = [summaryLevels]uint{
logPallocChunkPages + 4*summaryLevelBits,
logPallocChunkPages + 3*summaryLevelBits,
logPallocChunkPages + 2*summaryLevelBits,
logPallocChunkPages + 1*summaryLevelBits,
logPallocChunkPages,
}
// sysInit performs architecture-dependent initialization of fields
// in pageAlloc. pageAlloc should be uninitialized except for sysStat
// if any runtime statistic should be updated.
func (s *pageAlloc) sysInit() {
// Reserve memory for each level. This will get mapped in
// as R/W by setArenas.
for l, shift := range levelShift {
entries := 1 << (heapAddrBits - shift)
// Reserve b bytes of memory anywhere in the address space.
b := alignUp(uintptr(entries)*pallocSumBytes, physPageSize)
r := sysReserve(nil, b)
if r == nil {
throw("failed to reserve page summary memory")
}
// Put this reservation into a slice.
sl := notInHeapSlice{(*notInHeap)(r), 0, entries}
s.summary[l] = *(*[]pallocSum)(unsafe.Pointer(&sl))
}
}
// sysGrow performs architecture-dependent operations on heap
// growth for the page allocator, such as mapping in new memory
// for summaries. It also updates the length of the slices in
// s.summary.
//
// base is the base of the newly-added heap memory and limit is
// the first address past the end of the newly-added heap memory.
// Both must be aligned to pallocChunkBytes.
//
// The caller must update s.start and s.end after calling sysGrow.
func (s *pageAlloc) sysGrow(base, limit uintptr) {
if base%pallocChunkBytes != 0 || limit%pallocChunkBytes != 0 {
print("runtime: base = ", hex(base), ", limit = ", hex(limit), "\n")
throw("sysGrow bounds not aligned to pallocChunkBytes")
}
// Walk up the radix tree and map summaries in as needed.
cbase, climit := chunkBase(s.start), chunkBase(s.end)
for l := len(s.summary) - 1; l >= 0; l-- {
// Figure out what part of the summary array this new address space needs.
// Note that we need to align the ranges to the block width (1<<levelBits[l])
// at this level because the full block is needed to compute the summary for
// the next level.
lo, hi := addrsToSummaryRange(l, base, limit)
lo, hi = blockAlignSummaryRange(l, lo, hi)
// Update the summary slices with a new upper-bound. This ensures
// we get tight bounds checks on at least the top bound.
//
// We must do this regardless of whether we map new memory, because we
// may be extending further into the mapped memory.
if hi > len(s.summary[l]) {
s.summary[l] = s.summary[l][:hi]
}
// Figure out what part of the summary array is already mapped.
// If we're doing our first growth, just pass zero.
// addrsToSummaryRange won't accept cbase == climit.
var mlo, mhi int
if s.start != 0 {
mlo, mhi = addrsToSummaryRange(l, cbase, climit)
mlo, mhi = blockAlignSummaryRange(l, mlo, mhi)
}
// Extend the mappings for this summary level.
extendMappedRegion(
unsafe.Pointer(&s.summary[l][0]),
uintptr(mlo)*pallocSumBytes,
uintptr(mhi)*pallocSumBytes,
uintptr(lo)*pallocSumBytes,
uintptr(hi)*pallocSumBytes,
s.sysStat,
)
}
}

View File

@ -0,0 +1,658 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
"fmt"
. "runtime"
"testing"
)
func checkPageAlloc(t *testing.T, want, got *PageAlloc) {
// Ensure start and end are correct.
wantStart, wantEnd := want.Bounds()
gotStart, gotEnd := got.Bounds()
if gotStart != wantStart {
t.Fatalf("start values not equal: got %d, want %d", gotStart, wantStart)
}
if gotEnd != wantEnd {
t.Fatalf("end values not equal: got %d, want %d", gotEnd, wantEnd)
}
for i := gotStart; i < gotEnd; i++ {
// Check the bitmaps.
if !checkPallocBits(t, got.PallocBits(i), want.PallocBits(i)) {
t.Logf("in chunk %d", i)
}
}
// TODO(mknyszek): Verify summaries too?
}
func TestPageAllocAlloc(t *testing.T) {
type hit struct {
npages, base uintptr
}
tests := map[string]struct {
before map[ChunkIdx][]BitRange
after map[ChunkIdx][]BitRange
hits []hit
}{
"AllFree1": {
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {},
},
hits: []hit{
{1, PageBase(BaseChunkIdx, 0)},
{1, PageBase(BaseChunkIdx, 1)},
{1, PageBase(BaseChunkIdx, 2)},
{1, PageBase(BaseChunkIdx, 3)},
{1, PageBase(BaseChunkIdx, 4)},
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, 5}},
},
},
"ManyArena1": {
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
BaseChunkIdx + 1: {{0, PallocChunkPages}},
BaseChunkIdx + 2: {{0, PallocChunkPages - 1}},
},
hits: []hit{
{1, PageBase(BaseChunkIdx+2, PallocChunkPages-1)},
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
BaseChunkIdx + 1: {{0, PallocChunkPages}},
BaseChunkIdx + 2: {{0, PallocChunkPages}},
},
},
"NotContiguous1": {
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
BaseChunkIdx + 0xff: {{0, 0}},
},
hits: []hit{
{1, PageBase(BaseChunkIdx+0xff, 0)},
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
BaseChunkIdx + 0xff: {{0, 1}},
},
},
"AllFree2": {
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {},
},
hits: []hit{
{2, PageBase(BaseChunkIdx, 0)},
{2, PageBase(BaseChunkIdx, 2)},
{2, PageBase(BaseChunkIdx, 4)},
{2, PageBase(BaseChunkIdx, 6)},
{2, PageBase(BaseChunkIdx, 8)},
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, 10}},
},
},
"Straddle2": {
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages - 1}},
BaseChunkIdx + 1: {{1, PallocChunkPages - 1}},
},
hits: []hit{
{2, PageBase(BaseChunkIdx, PallocChunkPages-1)},
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
BaseChunkIdx + 1: {{0, PallocChunkPages}},
},
},
"AllFree5": {
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {},
},
hits: []hit{
{5, PageBase(BaseChunkIdx, 0)},
{5, PageBase(BaseChunkIdx, 5)},
{5, PageBase(BaseChunkIdx, 10)},
{5, PageBase(BaseChunkIdx, 15)},
{5, PageBase(BaseChunkIdx, 20)},
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, 25}},
},
},
"AllFree64": {
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {},
},
hits: []hit{
{64, PageBase(BaseChunkIdx, 0)},
{64, PageBase(BaseChunkIdx, 64)},
{64, PageBase(BaseChunkIdx, 128)},
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, 192}},
},
},
"AllFree65": {
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {},
},
hits: []hit{
{65, PageBase(BaseChunkIdx, 0)},
{65, PageBase(BaseChunkIdx, 65)},
{65, PageBase(BaseChunkIdx, 130)},
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, 195}},
},
},
// TODO(mknyszek): Add tests close to the chunk size.
"ExhaustPallocChunkPages-3": {
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {},
},
hits: []hit{
{PallocChunkPages - 3, PageBase(BaseChunkIdx, 0)},
{PallocChunkPages - 3, 0},
{1, PageBase(BaseChunkIdx, PallocChunkPages-3)},
{2, PageBase(BaseChunkIdx, PallocChunkPages-2)},
{1, 0},
{PallocChunkPages - 3, 0},
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
},
},
"AllFreePallocChunkPages": {
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {},
},
hits: []hit{
{PallocChunkPages, PageBase(BaseChunkIdx, 0)},
{PallocChunkPages, 0},
{1, 0},
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
},
},
"StraddlePallocChunkPages": {
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages / 2}},
BaseChunkIdx + 1: {{PallocChunkPages / 2, PallocChunkPages / 2}},
},
hits: []hit{
{PallocChunkPages, PageBase(BaseChunkIdx, PallocChunkPages/2)},
{PallocChunkPages, 0},
{1, 0},
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
BaseChunkIdx + 1: {{0, PallocChunkPages}},
},
},
"StraddlePallocChunkPages+1": {
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages / 2}},
BaseChunkIdx + 1: {},
},
hits: []hit{
{PallocChunkPages + 1, PageBase(BaseChunkIdx, PallocChunkPages/2)},
{PallocChunkPages, 0},
{1, PageBase(BaseChunkIdx+1, PallocChunkPages/2+1)},
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
BaseChunkIdx + 1: {{0, PallocChunkPages/2 + 2}},
},
},
"AllFreePallocChunkPages*2": {
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {},
BaseChunkIdx + 1: {},
},
hits: []hit{
{PallocChunkPages * 2, PageBase(BaseChunkIdx, 0)},
{PallocChunkPages * 2, 0},
{1, 0},
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
BaseChunkIdx + 1: {{0, PallocChunkPages}},
},
},
"NotContiguousPallocChunkPages*2": {
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {},
BaseChunkIdx + 0x100: {},
BaseChunkIdx + 0x101: {},
},
hits: []hit{
{PallocChunkPages * 2, PageBase(BaseChunkIdx+0x100, 0)},
{21, PageBase(BaseChunkIdx, 0)},
{1, PageBase(BaseChunkIdx, 21)},
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, 22}},
BaseChunkIdx + 0x100: {{0, PallocChunkPages}},
BaseChunkIdx + 0x101: {{0, PallocChunkPages}},
},
},
"StraddlePallocChunkPages*2": {
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages / 2}},
BaseChunkIdx + 1: {},
BaseChunkIdx + 2: {{PallocChunkPages / 2, PallocChunkPages / 2}},
},
hits: []hit{
{PallocChunkPages * 2, PageBase(BaseChunkIdx, PallocChunkPages/2)},
{PallocChunkPages * 2, 0},
{1, 0},
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
BaseChunkIdx + 1: {{0, PallocChunkPages}},
BaseChunkIdx + 2: {{0, PallocChunkPages}},
},
},
"StraddlePallocChunkPages*5/4": {
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
BaseChunkIdx + 1: {{0, PallocChunkPages * 3 / 4}},
BaseChunkIdx + 2: {{0, PallocChunkPages * 3 / 4}},
BaseChunkIdx + 3: {{0, 0}},
},
hits: []hit{
{PallocChunkPages * 5 / 4, PageBase(BaseChunkIdx+2, PallocChunkPages*3/4)},
{PallocChunkPages * 5 / 4, 0},
{1, PageBase(BaseChunkIdx+1, PallocChunkPages*3/4)},
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
BaseChunkIdx + 1: {{0, PallocChunkPages*3/4 + 1}},
BaseChunkIdx + 2: {{0, PallocChunkPages}},
BaseChunkIdx + 3: {{0, PallocChunkPages}},
},
},
"AllFreePallocChunkPages*7+5": {
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {},
BaseChunkIdx + 1: {},
BaseChunkIdx + 2: {},
BaseChunkIdx + 3: {},
BaseChunkIdx + 4: {},
BaseChunkIdx + 5: {},
BaseChunkIdx + 6: {},
BaseChunkIdx + 7: {},
},
hits: []hit{
{PallocChunkPages*7 + 5, PageBase(BaseChunkIdx, 0)},
{PallocChunkPages*7 + 5, 0},
{1, PageBase(BaseChunkIdx+7, 5)},
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
BaseChunkIdx + 1: {{0, PallocChunkPages}},
BaseChunkIdx + 2: {{0, PallocChunkPages}},
BaseChunkIdx + 3: {{0, PallocChunkPages}},
BaseChunkIdx + 4: {{0, PallocChunkPages}},
BaseChunkIdx + 5: {{0, PallocChunkPages}},
BaseChunkIdx + 6: {{0, PallocChunkPages}},
BaseChunkIdx + 7: {{0, 6}},
},
},
}
for name, v := range tests {
v := v
t.Run(name, func(t *testing.T) {
b := NewPageAlloc(v.before)
defer FreePageAlloc(b)
for iter, i := range v.hits {
if a := b.Alloc(i.npages); a != i.base {
t.Fatalf("bad alloc #%d: want 0x%x, got 0x%x", iter+1, i.base, a)
}
}
want := NewPageAlloc(v.after)
defer FreePageAlloc(want)
checkPageAlloc(t, want, b)
})
}
}
func TestPageAllocExhaust(t *testing.T) {
for _, npages := range []uintptr{1, 2, 3, 4, 5, 8, 16, 64, 1024, 1025, 2048, 2049} {
npages := npages
t.Run(fmt.Sprintf("%d", npages), func(t *testing.T) {
// Construct b.
bDesc := make(map[ChunkIdx][]BitRange)
for i := ChunkIdx(0); i < 4; i++ {
bDesc[BaseChunkIdx+i] = []BitRange{}
}
b := NewPageAlloc(bDesc)
defer FreePageAlloc(b)
// Allocate into b with npages until we've exhausted the heap.
nAlloc := (PallocChunkPages * 4) / int(npages)
for i := 0; i < nAlloc; i++ {
addr := PageBase(BaseChunkIdx, uint(i)*uint(npages))
if a := b.Alloc(npages); a != addr {
t.Fatalf("bad alloc #%d: want 0x%x, got 0x%x", i+1, addr, a)
}
}
// Check to make sure the next allocation fails.
if a := b.Alloc(npages); a != 0 {
t.Fatalf("bad alloc #%d: want 0, got 0x%x", nAlloc, a)
}
// Construct what we want the heap to look like now.
allocPages := nAlloc * int(npages)
wantDesc := make(map[ChunkIdx][]BitRange)
for i := ChunkIdx(0); i < 4; i++ {
if allocPages >= PallocChunkPages {
wantDesc[BaseChunkIdx+i] = []BitRange{{0, PallocChunkPages}}
allocPages -= PallocChunkPages
} else if allocPages > 0 {
wantDesc[BaseChunkIdx+i] = []BitRange{{0, uint(allocPages)}}
allocPages = 0
} else {
wantDesc[BaseChunkIdx+i] = []BitRange{}
}
}
want := NewPageAlloc(wantDesc)
defer FreePageAlloc(want)
// Check to make sure the heap b matches what we want.
checkPageAlloc(t, want, b)
})
}
}
func TestPageAllocFree(t *testing.T) {
tests := map[string]struct {
before map[ChunkIdx][]BitRange
after map[ChunkIdx][]BitRange
npages uintptr
frees []uintptr
}{
"Free1": {
npages: 1,
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
},
frees: []uintptr{
PageBase(BaseChunkIdx, 0),
PageBase(BaseChunkIdx, 1),
PageBase(BaseChunkIdx, 2),
PageBase(BaseChunkIdx, 3),
PageBase(BaseChunkIdx, 4),
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{5, PallocChunkPages - 5}},
},
},
"ManyArena1": {
npages: 1,
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
BaseChunkIdx + 1: {{0, PallocChunkPages}},
BaseChunkIdx + 2: {{0, PallocChunkPages}},
},
frees: []uintptr{
PageBase(BaseChunkIdx, PallocChunkPages/2),
PageBase(BaseChunkIdx+1, 0),
PageBase(BaseChunkIdx+2, PallocChunkPages-1),
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages / 2}, {PallocChunkPages/2 + 1, PallocChunkPages/2 - 1}},
BaseChunkIdx + 1: {{1, PallocChunkPages - 1}},
BaseChunkIdx + 2: {{0, PallocChunkPages - 1}},
},
},
"Free2": {
npages: 2,
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
},
frees: []uintptr{
PageBase(BaseChunkIdx, 0),
PageBase(BaseChunkIdx, 2),
PageBase(BaseChunkIdx, 4),
PageBase(BaseChunkIdx, 6),
PageBase(BaseChunkIdx, 8),
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{10, PallocChunkPages - 10}},
},
},
"Straddle2": {
npages: 2,
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{PallocChunkPages - 1, 1}},
BaseChunkIdx + 1: {{0, 1}},
},
frees: []uintptr{
PageBase(BaseChunkIdx, PallocChunkPages-1),
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {},
BaseChunkIdx + 1: {},
},
},
"Free5": {
npages: 5,
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
},
frees: []uintptr{
PageBase(BaseChunkIdx, 0),
PageBase(BaseChunkIdx, 5),
PageBase(BaseChunkIdx, 10),
PageBase(BaseChunkIdx, 15),
PageBase(BaseChunkIdx, 20),
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{25, PallocChunkPages - 25}},
},
},
"Free64": {
npages: 64,
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
},
frees: []uintptr{
PageBase(BaseChunkIdx, 0),
PageBase(BaseChunkIdx, 64),
PageBase(BaseChunkIdx, 128),
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{192, PallocChunkPages - 192}},
},
},
"Free65": {
npages: 65,
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
},
frees: []uintptr{
PageBase(BaseChunkIdx, 0),
PageBase(BaseChunkIdx, 65),
PageBase(BaseChunkIdx, 130),
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{195, PallocChunkPages - 195}},
},
},
"FreePallocChunkPages": {
npages: PallocChunkPages,
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
},
frees: []uintptr{
PageBase(BaseChunkIdx, 0),
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {},
},
},
"StraddlePallocChunkPages": {
npages: PallocChunkPages,
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{PallocChunkPages / 2, PallocChunkPages / 2}},
BaseChunkIdx + 1: {{0, PallocChunkPages / 2}},
},
frees: []uintptr{
PageBase(BaseChunkIdx, PallocChunkPages/2),
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {},
BaseChunkIdx + 1: {},
},
},
"StraddlePallocChunkPages+1": {
npages: PallocChunkPages + 1,
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
BaseChunkIdx + 1: {{0, PallocChunkPages}},
},
frees: []uintptr{
PageBase(BaseChunkIdx, PallocChunkPages/2),
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages / 2}},
BaseChunkIdx + 1: {{PallocChunkPages/2 + 1, PallocChunkPages/2 - 1}},
},
},
"FreePallocChunkPages*2": {
npages: PallocChunkPages * 2,
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
BaseChunkIdx + 1: {{0, PallocChunkPages}},
},
frees: []uintptr{
PageBase(BaseChunkIdx, 0),
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {},
BaseChunkIdx + 1: {},
},
},
"StraddlePallocChunkPages*2": {
npages: PallocChunkPages * 2,
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
BaseChunkIdx + 1: {{0, PallocChunkPages}},
BaseChunkIdx + 2: {{0, PallocChunkPages}},
},
frees: []uintptr{
PageBase(BaseChunkIdx, PallocChunkPages/2),
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages / 2}},
BaseChunkIdx + 1: {},
BaseChunkIdx + 2: {{PallocChunkPages / 2, PallocChunkPages / 2}},
},
},
"AllFreePallocChunkPages*7+5": {
npages: PallocChunkPages*7 + 5,
before: map[ChunkIdx][]BitRange{
BaseChunkIdx: {{0, PallocChunkPages}},
BaseChunkIdx + 1: {{0, PallocChunkPages}},
BaseChunkIdx + 2: {{0, PallocChunkPages}},
BaseChunkIdx + 3: {{0, PallocChunkPages}},
BaseChunkIdx + 4: {{0, PallocChunkPages}},
BaseChunkIdx + 5: {{0, PallocChunkPages}},
BaseChunkIdx + 6: {{0, PallocChunkPages}},
BaseChunkIdx + 7: {{0, PallocChunkPages}},
},
frees: []uintptr{
PageBase(BaseChunkIdx, 0),
},
after: map[ChunkIdx][]BitRange{
BaseChunkIdx: {},
BaseChunkIdx + 1: {},
BaseChunkIdx + 2: {},
BaseChunkIdx + 3: {},
BaseChunkIdx + 4: {},
BaseChunkIdx + 5: {},
BaseChunkIdx + 6: {},
BaseChunkIdx + 7: {{5, PallocChunkPages - 5}},
},
},
}
for name, v := range tests {
v := v
t.Run(name, func(t *testing.T) {
b := NewPageAlloc(v.before)
defer FreePageAlloc(b)
for _, addr := range v.frees {
b.Free(addr, v.npages)
}
want := NewPageAlloc(v.after)
defer FreePageAlloc(want)
checkPageAlloc(t, want, b)
})
}
}
func TestPageAllocAllocAndFree(t *testing.T) {
type hit struct {
alloc bool
npages uintptr
base uintptr
}
tests := map[string]struct {
init map[ChunkIdx][]BitRange
hits []hit
}{
// TODO(mknyszek): Write more tests here.
"Chunks8": {
init: map[ChunkIdx][]BitRange{
BaseChunkIdx: {},
BaseChunkIdx + 1: {},
BaseChunkIdx + 2: {},
BaseChunkIdx + 3: {},
BaseChunkIdx + 4: {},
BaseChunkIdx + 5: {},
BaseChunkIdx + 6: {},
BaseChunkIdx + 7: {},
},
hits: []hit{
{true, PallocChunkPages * 8, PageBase(BaseChunkIdx, 0)},
{false, PallocChunkPages * 8, PageBase(BaseChunkIdx, 0)},
{true, PallocChunkPages * 8, PageBase(BaseChunkIdx, 0)},
{false, PallocChunkPages * 8, PageBase(BaseChunkIdx, 0)},
{true, PallocChunkPages * 8, PageBase(BaseChunkIdx, 0)},
{false, PallocChunkPages * 8, PageBase(BaseChunkIdx, 0)},
{true, 1, PageBase(BaseChunkIdx, 0)},
{false, 1, PageBase(BaseChunkIdx, 0)},
{true, PallocChunkPages * 8, PageBase(BaseChunkIdx, 0)},
},
},
}
for name, v := range tests {
v := v
t.Run(name, func(t *testing.T) {
b := NewPageAlloc(v.init)
defer FreePageAlloc(b)
for iter, i := range v.hits {
if i.alloc {
if a := b.Alloc(i.npages); a != i.base {
t.Fatalf("bad alloc #%d: want 0x%x, got 0x%x", iter+1, i.base, a)
}
} else {
b.Free(i.base, i.npages)
}
}
})
}
}

View File

@ -13,7 +13,7 @@ import (
// Ensures that got and want are the same, and if not, reports // Ensures that got and want are the same, and if not, reports
// detailed diff information. // detailed diff information.
func checkPallocBits(t *testing.T, got, want *PallocBits) { func checkPallocBits(t *testing.T, got, want *PallocBits) bool {
d := DiffPallocBits(got, want) d := DiffPallocBits(got, want)
if len(d) != 0 { if len(d) != 0 {
t.Errorf("%d range(s) different", len(d)) t.Errorf("%d range(s) different", len(d))
@ -22,7 +22,9 @@ func checkPallocBits(t *testing.T, got, want *PallocBits) {
t.Logf("\t| got: %s", StringifyPallocBits(got, bits)) t.Logf("\t| got: %s", StringifyPallocBits(got, bits))
t.Logf("\t| want: %s", StringifyPallocBits(want, bits)) t.Logf("\t| want: %s", StringifyPallocBits(want, bits))
} }
return false
} }
return true
} }
// makePallocBits produces an initialized PallocBits by setting // makePallocBits produces an initialized PallocBits by setting