1
0
mirror of https://github.com/golang/go synced 2024-11-19 12:04:43 -07:00

math/big: use correct precision in Float.Float32/64 for denormals

When a big.Float is converted to a denormal float32/64, the rounding
precision depends on the size of the denormal. Rounding may round up
and thus change the size (exponent) of the denormal. Recompute the
correct precision again for correct placement of the mantissa.

Fixes #14553.

Change-Id: Iedab5810a2d2a405cc5da28c6de7be34cb035b86
Reviewed-on: https://go-review.googlesource.com/20198
Reviewed-by: Alan Donovan <adonovan@google.com>
This commit is contained in:
Robert Griesemer 2016-03-03 17:39:55 -08:00
parent 08c2cd8469
commit 3858efcc58
2 changed files with 61 additions and 10 deletions

View File

@ -874,15 +874,15 @@ func (x *Float) Float32() (float32, Accuracy) {
emax = bias // 127 largest unbiased exponent (normal)
)
// Float mantissa m is 0.5 <= m < 1.0; compute exponent for floatxx mantissa.
// Float mantissa m is 0.5 <= m < 1.0; compute exponent for float32 mantissa.
e := x.exp - 1 // exponent for mantissa m with 1.0 <= m < 2.0
p := mbits + 1 // precision of normal float
// If the exponent is too small, we may have a denormal number
// in which case we have fewer mantissa bits available: reduce
// precision accordingly.
// in which case we have fewer mantissa bits available: recompute
// precision.
if e < emin {
p -= emin - int(e)
p = mbits + 1 - emin + int(e)
// Make sure we have at least 1 bit so that we don't
// lose numbers rounded up to the smallest denormal.
if p < 1 {
@ -931,7 +931,9 @@ func (x *Float) Float32() (float32, Accuracy) {
return 0.0, Below
}
// bexp = 0
mant = msb32(r.mant) >> (fbits - r.prec)
// recompute precision
p = mbits + 1 - emin + int(e)
mant = msb32(r.mant) >> uint(fbits-p)
} else {
// normal number: emin <= e <= emax
bexp = uint32(e+bias) << mbits
@ -981,15 +983,15 @@ func (x *Float) Float64() (float64, Accuracy) {
emax = bias // 1023 largest unbiased exponent (normal)
)
// Float mantissa m is 0.5 <= m < 1.0; compute exponent for floatxx mantissa.
// Float mantissa m is 0.5 <= m < 1.0; compute exponent for float64 mantissa.
e := x.exp - 1 // exponent for mantissa m with 1.0 <= m < 2.0
p := mbits + 1 // precision of normal float
// If the exponent is too small, we may have a denormal number
// in which case we have fewer mantissa bits available: reduce
// precision accordingly.
// in which case we have fewer mantissa bits available: recompute
// precision.
if e < emin {
p -= emin - int(e)
p = mbits + 1 - emin + int(e)
// Make sure we have at least 1 bit so that we don't
// lose numbers rounded up to the smallest denormal.
if p < 1 {
@ -1038,7 +1040,9 @@ func (x *Float) Float64() (float64, Accuracy) {
return 0.0, Below
}
// bexp = 0
mant = msb64(r.mant) >> (fbits - r.prec)
// recompute precision
p = mbits + 1 - emin + int(e)
mant = msb64(r.mant) >> uint(fbits-p)
} else {
// normal number: emin <= e <= emax
bexp = uint64(e+bias) << mbits

View File

@ -843,6 +843,32 @@ func TestFloatFloat32(t *testing.T) {
{"1p-149", math.SmallestNonzeroFloat32, Exact},
{"0x.fffffep-126", math.Float32frombits(0x7fffff), Exact}, // largest denormal
// special cases (see issue 14553)
{"0x0.bp-149", math.Float32frombits(0x000000000), Below}, // ToNearestEven rounds down (to even)
{"0x0.cp-149", math.Float32frombits(0x000000001), Above},
{"0x1.0p-149", math.Float32frombits(0x000000001), Exact},
{"0x1.7p-149", math.Float32frombits(0x000000001), Below},
{"0x1.8p-149", math.Float32frombits(0x000000002), Above},
{"0x1.9p-149", math.Float32frombits(0x000000002), Above},
{"0x2.0p-149", math.Float32frombits(0x000000002), Exact},
{"0x2.8p-149", math.Float32frombits(0x000000002), Below}, // ToNearestEven rounds down (to even)
{"0x2.9p-149", math.Float32frombits(0x000000003), Above},
{"0x3.0p-149", math.Float32frombits(0x000000003), Exact},
{"0x3.7p-149", math.Float32frombits(0x000000003), Below},
{"0x3.8p-149", math.Float32frombits(0x000000004), Above}, // ToNearestEven rounds up (to even)
{"0x4.0p-149", math.Float32frombits(0x000000004), Exact},
{"0x4.8p-149", math.Float32frombits(0x000000004), Below}, // ToNearestEven rounds down (to even)
{"0x4.9p-149", math.Float32frombits(0x000000005), Above},
// specific case from issue 14553
{"0x7.7p-149", math.Float32frombits(0x000000007), Below},
{"0x7.8p-149", math.Float32frombits(0x000000008), Above},
{"0x7.9p-149", math.Float32frombits(0x000000008), Above},
// normals
{"0x.ffffffp-126", math.Float32frombits(0x00800000), Above}, // rounded up to smallest normal
{"1p-126", math.Float32frombits(0x00800000), Exact}, // smallest normal
@ -915,6 +941,27 @@ func TestFloatFloat64(t *testing.T) {
{"1p-1074", math.SmallestNonzeroFloat64, Exact},
{"0x.fffffffffffffp-1022", math.Float64frombits(0x000fffffffffffff), Exact}, // largest denormal
// special cases (see issue 14553)
{"0x0.bp-1074", math.Float64frombits(0x00000000000000000), Below}, // ToNearestEven rounds down (to even)
{"0x0.cp-1074", math.Float64frombits(0x00000000000000001), Above},
{"0x1.0p-1074", math.Float64frombits(0x00000000000000001), Exact},
{"0x1.7p-1074", math.Float64frombits(0x00000000000000001), Below},
{"0x1.8p-1074", math.Float64frombits(0x00000000000000002), Above},
{"0x1.9p-1074", math.Float64frombits(0x00000000000000002), Above},
{"0x2.0p-1074", math.Float64frombits(0x00000000000000002), Exact},
{"0x2.8p-1074", math.Float64frombits(0x00000000000000002), Below}, // ToNearestEven rounds down (to even)
{"0x2.9p-1074", math.Float64frombits(0x00000000000000003), Above},
{"0x3.0p-1074", math.Float64frombits(0x00000000000000003), Exact},
{"0x3.7p-1074", math.Float64frombits(0x00000000000000003), Below},
{"0x3.8p-1074", math.Float64frombits(0x00000000000000004), Above}, // ToNearestEven rounds up (to even)
{"0x4.0p-1074", math.Float64frombits(0x00000000000000004), Exact},
{"0x4.8p-1074", math.Float64frombits(0x00000000000000004), Below}, // ToNearestEven rounds down (to even)
{"0x4.9p-1074", math.Float64frombits(0x00000000000000005), Above},
// normals
{"0x.fffffffffffff8p-1022", math.Float64frombits(0x0010000000000000), Above}, // rounded up to smallest normal
{"1p-1022", math.Float64frombits(0x0010000000000000), Exact}, // smallest normal