mirror of
https://github.com/golang/go
synced 2024-11-26 05:07:59 -07:00
cmd/compile/internal/types2: factor out index/slice expr handling
First step towards lightening the load of Checker.exprInternal by factoring out the code for index and slice expressions; incl. moving a couple of related methods (Checker.index, Checker.indexedElts). The code for handling index/slice expressions is copied 1:1 but occurrences of "goto Error" are replaced by "x.mode = invalid" followed by a "return". Change-Id: I44048dcc4851dc5e24f5f169c17f536a37a6a676 Reviewed-on: https://go-review.googlesource.com/c/go/+/308370 Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Robert Griesemer <gri@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Findley <rfindley@google.com>
This commit is contained in:
parent
4638545d85
commit
36c5f902f9
@ -1043,104 +1043,6 @@ func (check *Checker) binary(x *operand, e syntax.Expr, lhs, rhs syntax.Expr, op
|
||||
// x.typ is unchanged
|
||||
}
|
||||
|
||||
// index checks an index expression for validity.
|
||||
// If max >= 0, it is the upper bound for index.
|
||||
// If the result typ is != Typ[Invalid], index is valid and typ is its (possibly named) integer type.
|
||||
// If the result val >= 0, index is valid and val is its constant int value.
|
||||
func (check *Checker) index(index syntax.Expr, max int64) (typ Type, val int64) {
|
||||
typ = Typ[Invalid]
|
||||
val = -1
|
||||
|
||||
var x operand
|
||||
check.expr(&x, index)
|
||||
if x.mode == invalid {
|
||||
return
|
||||
}
|
||||
|
||||
// an untyped constant must be representable as Int
|
||||
check.convertUntyped(&x, Typ[Int])
|
||||
if x.mode == invalid {
|
||||
return
|
||||
}
|
||||
|
||||
// the index must be of integer type
|
||||
if !isInteger(x.typ) {
|
||||
check.errorf(&x, invalidArg+"index %s must be integer", &x)
|
||||
return
|
||||
}
|
||||
|
||||
if x.mode != constant_ {
|
||||
return x.typ, -1
|
||||
}
|
||||
|
||||
// a constant index i must be in bounds
|
||||
if constant.Sign(x.val) < 0 {
|
||||
check.errorf(&x, invalidArg+"index %s must not be negative", &x)
|
||||
return
|
||||
}
|
||||
|
||||
v, valid := constant.Int64Val(constant.ToInt(x.val))
|
||||
if !valid || max >= 0 && v >= max {
|
||||
if check.conf.CompilerErrorMessages {
|
||||
check.errorf(&x, "array index %s out of bounds [0:%d]", x.val.String(), max)
|
||||
} else {
|
||||
check.errorf(&x, "index %s is out of bounds", &x)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// 0 <= v [ && v < max ]
|
||||
return Typ[Int], v
|
||||
}
|
||||
|
||||
// indexElts checks the elements (elts) of an array or slice composite literal
|
||||
// against the literal's element type (typ), and the element indices against
|
||||
// the literal length if known (length >= 0). It returns the length of the
|
||||
// literal (maximum index value + 1).
|
||||
//
|
||||
func (check *Checker) indexedElts(elts []syntax.Expr, typ Type, length int64) int64 {
|
||||
visited := make(map[int64]bool, len(elts))
|
||||
var index, max int64
|
||||
for _, e := range elts {
|
||||
// determine and check index
|
||||
validIndex := false
|
||||
eval := e
|
||||
if kv, _ := e.(*syntax.KeyValueExpr); kv != nil {
|
||||
if typ, i := check.index(kv.Key, length); typ != Typ[Invalid] {
|
||||
if i >= 0 {
|
||||
index = i
|
||||
validIndex = true
|
||||
} else {
|
||||
check.errorf(e, "index %s must be integer constant", kv.Key)
|
||||
}
|
||||
}
|
||||
eval = kv.Value
|
||||
} else if length >= 0 && index >= length {
|
||||
check.errorf(e, "index %d is out of bounds (>= %d)", index, length)
|
||||
} else {
|
||||
validIndex = true
|
||||
}
|
||||
|
||||
// if we have a valid index, check for duplicate entries
|
||||
if validIndex {
|
||||
if visited[index] {
|
||||
check.errorf(e, "duplicate index %d in array or slice literal", index)
|
||||
}
|
||||
visited[index] = true
|
||||
}
|
||||
index++
|
||||
if index > max {
|
||||
max = index
|
||||
}
|
||||
|
||||
// check element against composite literal element type
|
||||
var x operand
|
||||
check.exprWithHint(&x, eval, typ)
|
||||
check.assignment(&x, typ, "array or slice literal")
|
||||
}
|
||||
return max
|
||||
}
|
||||
|
||||
// exprKind describes the kind of an expression; the kind
|
||||
// determines if an expression is valid in 'statement context'.
|
||||
type exprKind int
|
||||
@ -1485,291 +1387,17 @@ func (check *Checker) exprInternal(x *operand, e syntax.Expr, hint Type) exprKin
|
||||
check.selector(x, e)
|
||||
|
||||
case *syntax.IndexExpr:
|
||||
check.exprOrType(x, e.X)
|
||||
check.indexExpr(x, e)
|
||||
if x.mode == invalid {
|
||||
check.use(e.Index)
|
||||
goto Error
|
||||
}
|
||||
|
||||
if x.mode == typexpr {
|
||||
// type instantiation
|
||||
x.mode = invalid
|
||||
x.typ = check.varType(e)
|
||||
if x.typ != Typ[Invalid] {
|
||||
x.mode = typexpr
|
||||
}
|
||||
return expression
|
||||
}
|
||||
|
||||
if x.mode == value {
|
||||
if sig := asSignature(x.typ); sig != nil && len(sig.tparams) > 0 {
|
||||
// function instantiation
|
||||
check.funcInst(x, e)
|
||||
return expression
|
||||
}
|
||||
}
|
||||
|
||||
// ordinary index expression
|
||||
valid := false
|
||||
length := int64(-1) // valid if >= 0
|
||||
switch typ := optype(x.typ).(type) {
|
||||
case *Basic:
|
||||
if isString(typ) {
|
||||
valid = true
|
||||
if x.mode == constant_ {
|
||||
length = int64(len(constant.StringVal(x.val)))
|
||||
}
|
||||
// an indexed string always yields a byte value
|
||||
// (not a constant) even if the string and the
|
||||
// index are constant
|
||||
x.mode = value
|
||||
x.typ = universeByte // use 'byte' name
|
||||
}
|
||||
|
||||
case *Array:
|
||||
valid = true
|
||||
length = typ.len
|
||||
if x.mode != variable {
|
||||
x.mode = value
|
||||
}
|
||||
x.typ = typ.elem
|
||||
|
||||
case *Pointer:
|
||||
if typ := asArray(typ.base); typ != nil {
|
||||
valid = true
|
||||
length = typ.len
|
||||
x.mode = variable
|
||||
x.typ = typ.elem
|
||||
}
|
||||
|
||||
case *Slice:
|
||||
valid = true
|
||||
x.mode = variable
|
||||
x.typ = typ.elem
|
||||
|
||||
case *Map:
|
||||
var key operand
|
||||
check.expr(&key, e.Index)
|
||||
check.assignment(&key, typ.key, "map index")
|
||||
// ok to continue even if indexing failed - map element type is known
|
||||
x.mode = mapindex
|
||||
x.typ = typ.elem
|
||||
x.expr = e
|
||||
return expression
|
||||
|
||||
case *Sum:
|
||||
// A sum type can be indexed if all of the sum's types
|
||||
// support indexing and have the same index and element
|
||||
// type. Special rules apply for maps in the sum type.
|
||||
var tkey, telem Type // key is for map types only
|
||||
nmaps := 0 // number of map types in sum type
|
||||
if typ.is(func(t Type) bool {
|
||||
var e Type
|
||||
switch t := under(t).(type) {
|
||||
case *Basic:
|
||||
if isString(t) {
|
||||
e = universeByte
|
||||
}
|
||||
case *Array:
|
||||
e = t.elem
|
||||
case *Pointer:
|
||||
if t := asArray(t.base); t != nil {
|
||||
e = t.elem
|
||||
}
|
||||
case *Slice:
|
||||
e = t.elem
|
||||
case *Map:
|
||||
// If there are multiple maps in the sum type,
|
||||
// they must have identical key types.
|
||||
// TODO(gri) We may be able to relax this rule
|
||||
// but it becomes complicated very quickly.
|
||||
if tkey != nil && !Identical(t.key, tkey) {
|
||||
return false
|
||||
}
|
||||
tkey = t.key
|
||||
e = t.elem
|
||||
nmaps++
|
||||
case *TypeParam:
|
||||
check.errorf(x, "type of %s contains a type parameter - cannot index (implementation restriction)", x)
|
||||
case *instance:
|
||||
panic("unimplemented")
|
||||
}
|
||||
if e == nil || telem != nil && !Identical(e, telem) {
|
||||
return false
|
||||
}
|
||||
telem = e
|
||||
return true
|
||||
}) {
|
||||
// If there are maps, the index expression must be assignable
|
||||
// to the map key type (as for simple map index expressions).
|
||||
if nmaps > 0 {
|
||||
var key operand
|
||||
check.expr(&key, e.Index)
|
||||
check.assignment(&key, tkey, "map index")
|
||||
// ok to continue even if indexing failed - map element type is known
|
||||
|
||||
// If there are only maps, we are done.
|
||||
if nmaps == len(typ.types) {
|
||||
x.mode = mapindex
|
||||
x.typ = telem
|
||||
x.expr = e
|
||||
return expression
|
||||
}
|
||||
|
||||
// Otherwise we have mix of maps and other types. For
|
||||
// now we require that the map key be an integer type.
|
||||
// TODO(gri) This is probably not good enough.
|
||||
valid = isInteger(tkey)
|
||||
// avoid 2nd indexing error if indexing failed above
|
||||
if !valid && key.mode == invalid {
|
||||
goto Error
|
||||
}
|
||||
x.mode = value // map index expressions are not addressable
|
||||
} else {
|
||||
// no maps
|
||||
valid = true
|
||||
x.mode = variable
|
||||
}
|
||||
x.typ = telem
|
||||
}
|
||||
}
|
||||
|
||||
if !valid {
|
||||
check.errorf(x, invalidOp+"cannot index %s", x)
|
||||
goto Error
|
||||
}
|
||||
|
||||
if e.Index == nil {
|
||||
check.errorf(e, invalidAST+"missing index for %s", x)
|
||||
goto Error
|
||||
}
|
||||
|
||||
index := e.Index
|
||||
if l, _ := index.(*syntax.ListExpr); l != nil {
|
||||
if n := len(l.ElemList); n <= 1 {
|
||||
check.errorf(e, invalidAST+"invalid use of ListExpr for index expression %v with %d indices", e, n)
|
||||
goto Error
|
||||
}
|
||||
// len(l.ElemList) > 1
|
||||
check.error(l.ElemList[1], invalidOp+"more than one index")
|
||||
index = l.ElemList[0] // continue with first index
|
||||
}
|
||||
|
||||
// In pathological (invalid) cases (e.g.: type T1 [][[]T1{}[0][0]]T0)
|
||||
// the element type may be accessed before it's set. Make sure we have
|
||||
// a valid type.
|
||||
if x.typ == nil {
|
||||
x.typ = Typ[Invalid]
|
||||
}
|
||||
|
||||
check.index(index, length)
|
||||
// ok to continue
|
||||
|
||||
case *syntax.SliceExpr:
|
||||
check.expr(x, e.X)
|
||||
check.sliceExpr(x, e)
|
||||
if x.mode == invalid {
|
||||
check.use(e.Index[:]...)
|
||||
goto Error
|
||||
}
|
||||
|
||||
valid := false
|
||||
length := int64(-1) // valid if >= 0
|
||||
switch typ := optype(x.typ).(type) {
|
||||
case *Basic:
|
||||
if isString(typ) {
|
||||
if e.Full {
|
||||
check.error(x, invalidOp+"3-index slice of string")
|
||||
goto Error
|
||||
}
|
||||
valid = true
|
||||
if x.mode == constant_ {
|
||||
length = int64(len(constant.StringVal(x.val)))
|
||||
}
|
||||
// spec: "For untyped string operands the result
|
||||
// is a non-constant value of type string."
|
||||
if typ.kind == UntypedString {
|
||||
x.typ = Typ[String]
|
||||
}
|
||||
}
|
||||
|
||||
case *Array:
|
||||
valid = true
|
||||
length = typ.len
|
||||
if x.mode != variable {
|
||||
check.errorf(x, invalidOp+"%s (slice of unaddressable value)", x)
|
||||
goto Error
|
||||
}
|
||||
x.typ = &Slice{elem: typ.elem}
|
||||
|
||||
case *Pointer:
|
||||
if typ := asArray(typ.base); typ != nil {
|
||||
valid = true
|
||||
length = typ.len
|
||||
x.typ = &Slice{elem: typ.elem}
|
||||
}
|
||||
|
||||
case *Slice:
|
||||
valid = true
|
||||
// x.typ doesn't change
|
||||
|
||||
case *Sum, *TypeParam:
|
||||
check.error(x, "generic slice expressions not yet implemented")
|
||||
goto Error
|
||||
}
|
||||
|
||||
if !valid {
|
||||
check.errorf(x, invalidOp+"cannot slice %s", x)
|
||||
goto Error
|
||||
}
|
||||
|
||||
x.mode = value
|
||||
|
||||
// spec: "Only the first index may be omitted; it defaults to 0."
|
||||
if e.Full && (e.Index[1] == nil || e.Index[2] == nil) {
|
||||
check.error(e, invalidAST+"2nd and 3rd index required in 3-index slice")
|
||||
goto Error
|
||||
}
|
||||
|
||||
// check indices
|
||||
var ind [3]int64
|
||||
for i, expr := range e.Index {
|
||||
x := int64(-1)
|
||||
switch {
|
||||
case expr != nil:
|
||||
// The "capacity" is only known statically for strings, arrays,
|
||||
// and pointers to arrays, and it is the same as the length for
|
||||
// those types.
|
||||
max := int64(-1)
|
||||
if length >= 0 {
|
||||
max = length + 1
|
||||
}
|
||||
if _, v := check.index(expr, max); v >= 0 {
|
||||
x = v
|
||||
}
|
||||
case i == 0:
|
||||
// default is 0 for the first index
|
||||
x = 0
|
||||
case length >= 0:
|
||||
// default is length (== capacity) otherwise
|
||||
x = length
|
||||
}
|
||||
ind[i] = x
|
||||
}
|
||||
|
||||
// constant indices must be in range
|
||||
// (check.index already checks that existing indices >= 0)
|
||||
L:
|
||||
for i, x := range ind[:len(ind)-1] {
|
||||
if x > 0 {
|
||||
for _, y := range ind[i+1:] {
|
||||
if y >= 0 && x > y {
|
||||
check.errorf(e, "invalid slice indices: %d > %d", x, y)
|
||||
break L // only report one error, ok to continue
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
case *syntax.AssertExpr:
|
||||
check.expr(x, e.X)
|
||||
if x.mode == invalid {
|
||||
|
405
src/cmd/compile/internal/types2/index.go
Normal file
405
src/cmd/compile/internal/types2/index.go
Normal file
@ -0,0 +1,405 @@
|
||||
// Copyright 2021 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// This file implements typechecking of index/slice expressions.
|
||||
|
||||
package types2
|
||||
|
||||
import (
|
||||
"cmd/compile/internal/syntax"
|
||||
"go/constant"
|
||||
)
|
||||
|
||||
func (check *Checker) indexExpr(x *operand, e *syntax.IndexExpr) {
|
||||
check.exprOrType(x, e.X)
|
||||
if x.mode == invalid {
|
||||
check.use(e.Index)
|
||||
return
|
||||
}
|
||||
|
||||
if x.mode == typexpr {
|
||||
// type instantiation
|
||||
x.mode = invalid
|
||||
x.typ = check.varType(e)
|
||||
if x.typ != Typ[Invalid] {
|
||||
x.mode = typexpr
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
if x.mode == value {
|
||||
if sig := asSignature(x.typ); sig != nil && len(sig.tparams) > 0 {
|
||||
// function instantiation
|
||||
check.funcInst(x, e)
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// ordinary index expression
|
||||
valid := false
|
||||
length := int64(-1) // valid if >= 0
|
||||
switch typ := optype(x.typ).(type) {
|
||||
case *Basic:
|
||||
if isString(typ) {
|
||||
valid = true
|
||||
if x.mode == constant_ {
|
||||
length = int64(len(constant.StringVal(x.val)))
|
||||
}
|
||||
// an indexed string always yields a byte value
|
||||
// (not a constant) even if the string and the
|
||||
// index are constant
|
||||
x.mode = value
|
||||
x.typ = universeByte // use 'byte' name
|
||||
}
|
||||
|
||||
case *Array:
|
||||
valid = true
|
||||
length = typ.len
|
||||
if x.mode != variable {
|
||||
x.mode = value
|
||||
}
|
||||
x.typ = typ.elem
|
||||
|
||||
case *Pointer:
|
||||
if typ := asArray(typ.base); typ != nil {
|
||||
valid = true
|
||||
length = typ.len
|
||||
x.mode = variable
|
||||
x.typ = typ.elem
|
||||
}
|
||||
|
||||
case *Slice:
|
||||
valid = true
|
||||
x.mode = variable
|
||||
x.typ = typ.elem
|
||||
|
||||
case *Map:
|
||||
var key operand
|
||||
check.expr(&key, e.Index)
|
||||
check.assignment(&key, typ.key, "map index")
|
||||
// ok to continue even if indexing failed - map element type is known
|
||||
x.mode = mapindex
|
||||
x.typ = typ.elem
|
||||
x.expr = e
|
||||
return
|
||||
|
||||
case *Sum:
|
||||
// A sum type can be indexed if all of the sum's types
|
||||
// support indexing and have the same index and element
|
||||
// type. Special rules apply for maps in the sum type.
|
||||
var tkey, telem Type // key is for map types only
|
||||
nmaps := 0 // number of map types in sum type
|
||||
if typ.is(func(t Type) bool {
|
||||
var e Type
|
||||
switch t := under(t).(type) {
|
||||
case *Basic:
|
||||
if isString(t) {
|
||||
e = universeByte
|
||||
}
|
||||
case *Array:
|
||||
e = t.elem
|
||||
case *Pointer:
|
||||
if t := asArray(t.base); t != nil {
|
||||
e = t.elem
|
||||
}
|
||||
case *Slice:
|
||||
e = t.elem
|
||||
case *Map:
|
||||
// If there are multiple maps in the sum type,
|
||||
// they must have identical key types.
|
||||
// TODO(gri) We may be able to relax this rule
|
||||
// but it becomes complicated very quickly.
|
||||
if tkey != nil && !Identical(t.key, tkey) {
|
||||
return false
|
||||
}
|
||||
tkey = t.key
|
||||
e = t.elem
|
||||
nmaps++
|
||||
case *TypeParam:
|
||||
check.errorf(x, "type of %s contains a type parameter - cannot index (implementation restriction)", x)
|
||||
case *instance:
|
||||
panic("unimplemented")
|
||||
}
|
||||
if e == nil || telem != nil && !Identical(e, telem) {
|
||||
return false
|
||||
}
|
||||
telem = e
|
||||
return true
|
||||
}) {
|
||||
// If there are maps, the index expression must be assignable
|
||||
// to the map key type (as for simple map index expressions).
|
||||
if nmaps > 0 {
|
||||
var key operand
|
||||
check.expr(&key, e.Index)
|
||||
check.assignment(&key, tkey, "map index")
|
||||
// ok to continue even if indexing failed - map element type is known
|
||||
|
||||
// If there are only maps, we are done.
|
||||
if nmaps == len(typ.types) {
|
||||
x.mode = mapindex
|
||||
x.typ = telem
|
||||
x.expr = e
|
||||
return
|
||||
}
|
||||
|
||||
// Otherwise we have mix of maps and other types. For
|
||||
// now we require that the map key be an integer type.
|
||||
// TODO(gri) This is probably not good enough.
|
||||
valid = isInteger(tkey)
|
||||
// avoid 2nd indexing error if indexing failed above
|
||||
if !valid && key.mode == invalid {
|
||||
x.mode = invalid
|
||||
return
|
||||
}
|
||||
x.mode = value // map index expressions are not addressable
|
||||
} else {
|
||||
// no maps
|
||||
valid = true
|
||||
x.mode = variable
|
||||
}
|
||||
x.typ = telem
|
||||
}
|
||||
}
|
||||
|
||||
if !valid {
|
||||
check.errorf(x, invalidOp+"cannot index %s", x)
|
||||
x.mode = invalid
|
||||
return
|
||||
}
|
||||
|
||||
if e.Index == nil {
|
||||
check.errorf(e, invalidAST+"missing index for %s", x)
|
||||
x.mode = invalid
|
||||
return
|
||||
}
|
||||
|
||||
index := e.Index
|
||||
if l, _ := index.(*syntax.ListExpr); l != nil {
|
||||
if n := len(l.ElemList); n <= 1 {
|
||||
check.errorf(e, invalidAST+"invalid use of ListExpr for index expression %v with %d indices", e, n)
|
||||
x.mode = invalid
|
||||
return
|
||||
}
|
||||
// len(l.ElemList) > 1
|
||||
check.error(l.ElemList[1], invalidOp+"more than one index")
|
||||
index = l.ElemList[0] // continue with first index
|
||||
}
|
||||
|
||||
// In pathological (invalid) cases (e.g.: type T1 [][[]T1{}[0][0]]T0)
|
||||
// the element type may be accessed before it's set. Make sure we have
|
||||
// a valid type.
|
||||
if x.typ == nil {
|
||||
x.typ = Typ[Invalid]
|
||||
}
|
||||
|
||||
check.index(index, length)
|
||||
}
|
||||
|
||||
func (check *Checker) sliceExpr(x *operand, e *syntax.SliceExpr) {
|
||||
check.expr(x, e.X)
|
||||
if x.mode == invalid {
|
||||
check.use(e.Index[:]...)
|
||||
return
|
||||
}
|
||||
|
||||
valid := false
|
||||
length := int64(-1) // valid if >= 0
|
||||
switch typ := optype(x.typ).(type) {
|
||||
case *Basic:
|
||||
if isString(typ) {
|
||||
if e.Full {
|
||||
check.error(x, invalidOp+"3-index slice of string")
|
||||
x.mode = invalid
|
||||
return
|
||||
}
|
||||
valid = true
|
||||
if x.mode == constant_ {
|
||||
length = int64(len(constant.StringVal(x.val)))
|
||||
}
|
||||
// spec: "For untyped string operands the result
|
||||
// is a non-constant value of type string."
|
||||
if typ.kind == UntypedString {
|
||||
x.typ = Typ[String]
|
||||
}
|
||||
}
|
||||
|
||||
case *Array:
|
||||
valid = true
|
||||
length = typ.len
|
||||
if x.mode != variable {
|
||||
check.errorf(x, invalidOp+"%s (slice of unaddressable value)", x)
|
||||
x.mode = invalid
|
||||
return
|
||||
}
|
||||
x.typ = &Slice{elem: typ.elem}
|
||||
|
||||
case *Pointer:
|
||||
if typ := asArray(typ.base); typ != nil {
|
||||
valid = true
|
||||
length = typ.len
|
||||
x.typ = &Slice{elem: typ.elem}
|
||||
}
|
||||
|
||||
case *Slice:
|
||||
valid = true
|
||||
// x.typ doesn't change
|
||||
|
||||
case *Sum, *TypeParam:
|
||||
check.error(x, "generic slice expressions not yet implemented")
|
||||
x.mode = invalid
|
||||
return
|
||||
}
|
||||
|
||||
if !valid {
|
||||
check.errorf(x, invalidOp+"cannot slice %s", x)
|
||||
x.mode = invalid
|
||||
return
|
||||
}
|
||||
|
||||
x.mode = value
|
||||
|
||||
// spec: "Only the first index may be omitted; it defaults to 0."
|
||||
if e.Full && (e.Index[1] == nil || e.Index[2] == nil) {
|
||||
check.error(e, invalidAST+"2nd and 3rd index required in 3-index slice")
|
||||
x.mode = invalid
|
||||
return
|
||||
}
|
||||
|
||||
// check indices
|
||||
var ind [3]int64
|
||||
for i, expr := range e.Index {
|
||||
x := int64(-1)
|
||||
switch {
|
||||
case expr != nil:
|
||||
// The "capacity" is only known statically for strings, arrays,
|
||||
// and pointers to arrays, and it is the same as the length for
|
||||
// those types.
|
||||
max := int64(-1)
|
||||
if length >= 0 {
|
||||
max = length + 1
|
||||
}
|
||||
if _, v := check.index(expr, max); v >= 0 {
|
||||
x = v
|
||||
}
|
||||
case i == 0:
|
||||
// default is 0 for the first index
|
||||
x = 0
|
||||
case length >= 0:
|
||||
// default is length (== capacity) otherwise
|
||||
x = length
|
||||
}
|
||||
ind[i] = x
|
||||
}
|
||||
|
||||
// constant indices must be in range
|
||||
// (check.index already checks that existing indices >= 0)
|
||||
L:
|
||||
for i, x := range ind[:len(ind)-1] {
|
||||
if x > 0 {
|
||||
for _, y := range ind[i+1:] {
|
||||
if y >= 0 && x > y {
|
||||
check.errorf(e, "invalid slice indices: %d > %d", x, y)
|
||||
break L // only report one error, ok to continue
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// index checks an index expression for validity.
|
||||
// If max >= 0, it is the upper bound for index.
|
||||
// If the result typ is != Typ[Invalid], index is valid and typ is its (possibly named) integer type.
|
||||
// If the result val >= 0, index is valid and val is its constant int value.
|
||||
func (check *Checker) index(index syntax.Expr, max int64) (typ Type, val int64) {
|
||||
typ = Typ[Invalid]
|
||||
val = -1
|
||||
|
||||
var x operand
|
||||
check.expr(&x, index)
|
||||
if x.mode == invalid {
|
||||
return
|
||||
}
|
||||
|
||||
// an untyped constant must be representable as Int
|
||||
check.convertUntyped(&x, Typ[Int])
|
||||
if x.mode == invalid {
|
||||
return
|
||||
}
|
||||
|
||||
// the index must be of integer type
|
||||
if !isInteger(x.typ) {
|
||||
check.errorf(&x, invalidArg+"index %s must be integer", &x)
|
||||
return
|
||||
}
|
||||
|
||||
if x.mode != constant_ {
|
||||
return x.typ, -1
|
||||
}
|
||||
|
||||
// a constant index i must be in bounds
|
||||
if constant.Sign(x.val) < 0 {
|
||||
check.errorf(&x, invalidArg+"index %s must not be negative", &x)
|
||||
return
|
||||
}
|
||||
|
||||
v, valid := constant.Int64Val(constant.ToInt(x.val))
|
||||
if !valid || max >= 0 && v >= max {
|
||||
if check.conf.CompilerErrorMessages {
|
||||
check.errorf(&x, "array index %s out of bounds [0:%d]", x.val.String(), max)
|
||||
} else {
|
||||
check.errorf(&x, "index %s is out of bounds", &x)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// 0 <= v [ && v < max ]
|
||||
return Typ[Int], v
|
||||
}
|
||||
|
||||
// indexElts checks the elements (elts) of an array or slice composite literal
|
||||
// against the literal's element type (typ), and the element indices against
|
||||
// the literal length if known (length >= 0). It returns the length of the
|
||||
// literal (maximum index value + 1).
|
||||
func (check *Checker) indexedElts(elts []syntax.Expr, typ Type, length int64) int64 {
|
||||
visited := make(map[int64]bool, len(elts))
|
||||
var index, max int64
|
||||
for _, e := range elts {
|
||||
// determine and check index
|
||||
validIndex := false
|
||||
eval := e
|
||||
if kv, _ := e.(*syntax.KeyValueExpr); kv != nil {
|
||||
if typ, i := check.index(kv.Key, length); typ != Typ[Invalid] {
|
||||
if i >= 0 {
|
||||
index = i
|
||||
validIndex = true
|
||||
} else {
|
||||
check.errorf(e, "index %s must be integer constant", kv.Key)
|
||||
}
|
||||
}
|
||||
eval = kv.Value
|
||||
} else if length >= 0 && index >= length {
|
||||
check.errorf(e, "index %d is out of bounds (>= %d)", index, length)
|
||||
} else {
|
||||
validIndex = true
|
||||
}
|
||||
|
||||
// if we have a valid index, check for duplicate entries
|
||||
if validIndex {
|
||||
if visited[index] {
|
||||
check.errorf(e, "duplicate index %d in array or slice literal", index)
|
||||
}
|
||||
visited[index] = true
|
||||
}
|
||||
index++
|
||||
if index > max {
|
||||
max = index
|
||||
}
|
||||
|
||||
// check element against composite literal element type
|
||||
var x operand
|
||||
check.exprWithHint(&x, eval, typ)
|
||||
check.assignment(&x, typ, "array or slice literal")
|
||||
}
|
||||
return max
|
||||
}
|
Loading…
Reference in New Issue
Block a user