mirror of
https://github.com/golang/go
synced 2024-11-19 18:44:41 -07:00
math: improve Atan, Asin and Acos accuracy
pkg/math/all_test.go tests Atan (and therefore Asin and Acos) to a relative accuracy of 4e-16, but the test vector misses values where the old algorithm was in error by more than that. For example: x newError oldError 0.414215746 1.41e-16 -4.24e-16 0.414216076 1.41e-16 -4.24e-16 0.414217632 1.41e-16 -4.24e-16 0.414218770 1.41e-16 -4.24e-16 0.414225466 0 -5.65e-16 0.414226244 1.41e-16 -4.24e-16 0.414228756 0 -5.65e-16 0.414235089 0 -5.65e-16 0.414237070 0 -5.65e-16 R=rsc, golang-dev CC=golang-dev https://golang.org/cl/6302093
This commit is contained in:
parent
d36c095da9
commit
35c3afdb62
@ -6,51 +6,92 @@ package math
|
||||
|
||||
/*
|
||||
Floating-point arctangent.
|
||||
|
||||
Atan returns the value of the arctangent of its
|
||||
argument in the range [-pi/2,pi/2].
|
||||
There are no error returns.
|
||||
Coefficients are #5077 from Hart & Cheney. (19.56D)
|
||||
*/
|
||||
|
||||
// xatan evaluates a series valid in the
|
||||
// range [-0.414...,+0.414...]. (tan(pi/8))
|
||||
func xatan(arg float64) float64 {
|
||||
// The original C code, the long comment, and the constants below were
|
||||
// from http://netlib.sandia.gov/cephes/cmath/atan.c, available from
|
||||
// http://www.netlib.org/cephes/cmath.tgz.
|
||||
// The go code is a version of the original C.
|
||||
//
|
||||
// atan.c
|
||||
// Inverse circular tangent (arctangent)
|
||||
//
|
||||
// SYNOPSIS:
|
||||
// double x, y, atan();
|
||||
// y = atan( x );
|
||||
//
|
||||
// DESCRIPTION:
|
||||
// Returns radian angle between -pi/2 and +pi/2 whose tangent is x.
|
||||
//
|
||||
// Range reduction is from three intervals into the interval from zero to 0.66.
|
||||
// The approximant uses a rational function of degree 4/5 of the form
|
||||
// x + x**3 P(x)/Q(x).
|
||||
//
|
||||
// ACCURACY:
|
||||
// Relative error:
|
||||
// arithmetic domain # trials peak rms
|
||||
// DEC -10, 10 50000 2.4e-17 8.3e-18
|
||||
// IEEE -10, 10 10^6 1.8e-16 5.0e-17
|
||||
//
|
||||
// Cephes Math Library Release 2.8: June, 2000
|
||||
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
|
||||
//
|
||||
// The readme file at http://netlib.sandia.gov/cephes/ says:
|
||||
// Some software in this archive may be from the book _Methods and
|
||||
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
|
||||
// International, 1989) or from the Cephes Mathematical Library, a
|
||||
// commercial product. In either event, it is copyrighted by the author.
|
||||
// What you see here may be used freely but it comes with no support or
|
||||
// guarantee.
|
||||
//
|
||||
// The two known misprints in the book are repaired here in the
|
||||
// source listings for the gamma function and the incomplete beta
|
||||
// integral.
|
||||
//
|
||||
// Stephen L. Moshier
|
||||
// moshier@na-net.ornl.gov
|
||||
|
||||
// xatan evaluates a series valid in the range [0, 0.66].
|
||||
func xatan(x float64) float64 {
|
||||
const (
|
||||
P4 = .161536412982230228262e2
|
||||
P3 = .26842548195503973794141e3
|
||||
P2 = .11530293515404850115428136e4
|
||||
P1 = .178040631643319697105464587e4
|
||||
P0 = .89678597403663861959987488e3
|
||||
Q4 = .5895697050844462222791e2
|
||||
Q3 = .536265374031215315104235e3
|
||||
Q2 = .16667838148816337184521798e4
|
||||
Q1 = .207933497444540981287275926e4
|
||||
Q0 = .89678597403663861962481162e3
|
||||
P0 = -8.750608600031904122785e-01
|
||||
P1 = -1.615753718733365076637e+01
|
||||
P2 = -7.500855792314704667340e+01
|
||||
P3 = -1.228866684490136173410e+02
|
||||
P4 = -6.485021904942025371773e+01
|
||||
Q0 = +2.485846490142306297962e+01
|
||||
Q1 = +1.650270098316988542046e+02
|
||||
Q2 = +4.328810604912902668951e+02
|
||||
Q3 = +4.853903996359136964868e+02
|
||||
Q4 = +1.945506571482613964425e+02
|
||||
)
|
||||
sq := arg * arg
|
||||
value := ((((P4*sq+P3)*sq+P2)*sq+P1)*sq + P0)
|
||||
value = value / (((((sq+Q4)*sq+Q3)*sq+Q2)*sq+Q1)*sq + Q0)
|
||||
return value * arg
|
||||
z := x * x
|
||||
z = z * ((((P0*z+P1)*z+P2)*z+P3)*z + P4) / (((((z+Q0)*z+Q1)*z+Q2)*z+Q3)*z + Q4)
|
||||
z = x*z + x
|
||||
return z
|
||||
}
|
||||
|
||||
// satan reduces its argument (known to be positive)
|
||||
// to the range [0,0.414...] and calls xatan.
|
||||
func satan(arg float64) float64 {
|
||||
if arg < Sqrt2-1 {
|
||||
return xatan(arg)
|
||||
// to the range [0, 0.66] and calls xatan.
|
||||
func satan(x float64) float64 {
|
||||
const (
|
||||
Morebits = 6.123233995736765886130e-17 // pi/2 = PIO2 + Morebits
|
||||
Tan3pio8 = 2.41421356237309504880 // tan(3*pi/8)
|
||||
)
|
||||
if x <= 0.66 {
|
||||
return xatan(x)
|
||||
}
|
||||
if arg > Sqrt2+1 {
|
||||
return Pi/2 - xatan(1/arg)
|
||||
if x > Tan3pio8 {
|
||||
return Pi/2 - xatan(1/x) + Morebits
|
||||
}
|
||||
return Pi/4 + xatan((arg-1)/(arg+1))
|
||||
return Pi/4 + xatan((x-1)/(x+1)) + 0.5*Morebits
|
||||
}
|
||||
|
||||
// Atan returns the arctangent of x.
|
||||
//
|
||||
// Special cases are:
|
||||
// Atan(±0) = ±0
|
||||
// Atan(±Inf) = ±Pi/2
|
||||
// Atan(±0) = ±0
|
||||
// Atan(±Inf) = ±Pi/2
|
||||
func Atan(x float64) float64
|
||||
|
||||
func atan(x float64) float64 {
|
||||
|
Loading…
Reference in New Issue
Block a user