1
0
mirror of https://github.com/golang/go synced 2024-11-20 06:54:42 -07:00

crypto/elliptic: fix incomplete addition used in CombinedMult.

The optimised P-256 includes a CombinedMult function, which doesn't do
dual-scalar multiplication, but does avoid an affine conversion for
ECDSA verification.

However, it currently uses an assembly point addition function that
doesn't handle exceptional cases.

Fixes #20215.

Change-Id: I4ba2ca1a546d883364a9bb6bf0bdbc7f7b44c94a
Reviewed-on: https://go-review.googlesource.com/42611
Run-TryBot: Adam Langley <agl@golang.org>
Reviewed-by: Adam Langley <agl@golang.org>
This commit is contained in:
Adam Langley 2017-05-03 18:20:12 -07:00
parent 7159ab4871
commit 2d69e9e259
4 changed files with 171 additions and 6 deletions

View File

@ -331,3 +331,25 @@ func TestNegativeInputs(t *testing.T) {
testNegativeInputs(t, elliptic.P384(), "p384")
testNegativeInputs(t, elliptic.P521(), "p521")
}
func TestZeroHashSignature(t *testing.T) {
zeroHash := make([]byte, 64)
for _, curve := range []elliptic.Curve{elliptic.P224(), elliptic.P256(), elliptic.P384(), elliptic.P521()} {
privKey, err := GenerateKey(curve, rand.Reader)
if err != nil {
panic(err)
}
// Sign a hash consisting of all zeros.
r, s, err := Sign(rand.Reader, privKey, zeroHash)
if err != nil {
panic(err)
}
// Confirm that it can be verified.
if !Verify(&privKey.PublicKey, zeroHash, r, s) {
t.Errorf("zero hash signature verify failed for %T", curve)
}
}
}

View File

@ -455,6 +455,69 @@ func TestInfinity(t *testing.T) {
}
}
type synthCombinedMult struct {
Curve
}
func (s synthCombinedMult) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) {
x1, y1 := s.ScalarBaseMult(baseScalar)
x2, y2 := s.ScalarMult(bigX, bigY, scalar)
return s.Add(x1, y1, x2, y2)
}
func TestCombinedMult(t *testing.T) {
type combinedMult interface {
Curve
CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int)
}
p256, ok := P256().(combinedMult)
if !ok {
p256 = &synthCombinedMult{P256()}
}
gx := p256.Params().Gx
gy := p256.Params().Gy
zero := make([]byte, 32)
one := make([]byte, 32)
one[31] = 1
two := make([]byte, 32)
two[31] = 2
// 0×G + 0×G = ∞
x, y := p256.CombinedMult(gx, gy, zero, zero)
if x.Sign() != 0 || y.Sign() != 0 {
t.Errorf("0×G + 0×G = (%d, %d), should be ∞", x, y)
}
// 1×G + 0×G = G
x, y = p256.CombinedMult(gx, gy, one, zero)
if x.Cmp(gx) != 0 || y.Cmp(gy) != 0 {
t.Errorf("1×G + 0×G = (%d, %d), should be (%d, %d)", x, y, gx, gy)
}
// 0×G + 1×G = G
x, y = p256.CombinedMult(gx, gy, zero, one)
if x.Cmp(gx) != 0 || y.Cmp(gy) != 0 {
t.Errorf("0×G + 1×G = (%d, %d), should be (%d, %d)", x, y, gx, gy)
}
// 1×G + 1×G = 2×G
x, y = p256.CombinedMult(gx, gy, one, one)
ggx, ggy := p256.ScalarBaseMult(two)
if x.Cmp(ggx) != 0 || y.Cmp(ggy) != 0 {
t.Errorf("1×G + 1×G = (%d, %d), should be (%d, %d)", x, y, ggx, ggy)
}
minusOne := new(big.Int).Sub(p256.Params().N, big.NewInt(1))
// 1×G + (-1)×G = ∞
x, y = p256.CombinedMult(gx, gy, one, minusOne.Bytes())
if x.Sign() != 0 || y.Sign() != 0 {
t.Errorf("1×G + (-1)×G = (%d, %d), should be ∞", x, y)
}
}
func BenchmarkBaseMult(b *testing.B) {
b.ResetTimer()
p224 := P224()

View File

@ -86,8 +86,10 @@ func p256OrdSqr(res, in []uint64, n int)
// if zero == 0 -> res = in2
func p256PointAddAffineAsm(res, in1, in2 []uint64, sign, sel, zero int)
// Point add
func p256PointAddAsm(res, in1, in2 []uint64)
// Point add. Returns one if the two input points were equal and zero
// otherwise. (Note that, due to the way that the equations work out, some
// representations of ∞ are considered equal to everything by this function.)
func p256PointAddAsm(res, in1, in2 []uint64) int
// Point double
func p256PointDoubleAsm(res, in []uint64)
@ -213,9 +215,11 @@ func (curve p256Curve) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []by
scalarReversed := make([]uint64, 4)
var r1, r2 p256Point
p256GetScalar(scalarReversed, baseScalar)
r1IsInfinity := scalarIsZero(scalarReversed)
r1.p256BaseMult(scalarReversed)
p256GetScalar(scalarReversed, scalar)
r2IsInfinity := scalarIsZero(scalarReversed)
fromBig(r2.xyz[0:4], maybeReduceModP(bigX))
fromBig(r2.xyz[4:8], maybeReduceModP(bigY))
p256Mul(r2.xyz[0:4], r2.xyz[0:4], rr[:])
@ -228,8 +232,15 @@ func (curve p256Curve) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []by
r2.xyz[11] = 0x00000000fffffffe
r2.p256ScalarMult(scalarReversed)
p256PointAddAsm(r1.xyz[:], r1.xyz[:], r2.xyz[:])
return r1.p256PointToAffine()
var sum, double p256Point
pointsEqual := p256PointAddAsm(sum.xyz[:], r1.xyz[:], r2.xyz[:])
p256PointDoubleAsm(double.xyz[:], r1.xyz[:])
sum.CopyConditional(&double, pointsEqual)
sum.CopyConditional(&r1, r2IsInfinity)
sum.CopyConditional(&r2, r1IsInfinity)
return sum.p256PointToAffine()
}
func (curve p256Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
@ -260,6 +271,24 @@ func (curve p256Curve) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big
return r.p256PointToAffine()
}
// uint64IsZero returns 1 if x is zero and zero otherwise.
func uint64IsZero(x uint64) int {
x = ^x
x &= x >> 32
x &= x >> 16
x &= x >> 8
x &= x >> 4
x &= x >> 2
x &= x >> 1
return int(x&1)
}
// scalarIsZero returns 1 if scalar represents the zero value, and zero
// otherwise.
func scalarIsZero(scalar []uint64) int {
return uint64IsZero(scalar[0] | scalar[1] | scalar[2] | scalar[3])
}
func (p *p256Point) p256PointToAffine() (x, y *big.Int) {
zInv := make([]uint64, 4)
zInvSq := make([]uint64, 4)
@ -281,6 +310,17 @@ func (p *p256Point) p256PointToAffine() (x, y *big.Int) {
return new(big.Int).SetBytes(xOut), new(big.Int).SetBytes(yOut)
}
// CopyConditional copies overwrites p with src if v == 1, and leaves p
// unchanged if v == 0.
func (p *p256Point) CopyConditional(src *p256Point, v int) {
pMask := uint64(v) - 1
srcMask := ^pMask
for i, n := range p.xyz {
p.xyz[i] = (n & pMask) | (src.xyz[i] & srcMask)
}
}
// p256Inverse sets out to in^-1 mod p.
func p256Inverse(out, in []uint64) {
var stack [6 * 4]uint64

View File

@ -1972,6 +1972,36 @@ TEXT ·p256PointAddAffineAsm(SB),0,$512-96
#undef rptr
#undef sel_save
#undef zero_save
// p256IsZero returns 1 in AX if [acc4..acc7] represents zero and zero
// otherwise. It writes to [acc4..acc7], t0 and t1.
TEXT p256IsZero(SB),NOSPLIT,$0
// AX contains a flag that is set if the input is zero.
XORQ AX, AX
MOVQ $1, t1
// Check whether [acc4..acc7] are all zero.
MOVQ acc4, t0
ORQ acc5, t0
ORQ acc6, t0
ORQ acc7, t0
// Set the zero flag if so. (CMOV of a constant to a register doesn't
// appear to be supported in Go. Thus t1 = 1.)
CMOVQEQ t1, AX
// XOR [acc4..acc7] with P and compare with zero again.
XORQ $-1, acc4
XORQ p256const0<>(SB), acc5
XORQ p256const1<>(SB), acc7
ORQ acc5, acc4
ORQ acc6, acc4
ORQ acc7, acc4
// Set the zero flag if so.
CMOVQEQ t1, AX
RET
/* ---------------------------------------*/
#define x1in(off) (32*0 + off)(SP)
#define y1in(off) (32*1 + off)(SP)
@ -1996,9 +2026,11 @@ TEXT ·p256PointAddAffineAsm(SB),0,$512-96
#define rsqr(off) (32*18 + off)(SP)
#define hcub(off) (32*19 + off)(SP)
#define rptr (32*20)(SP)
#define points_eq (32*20+8)(SP)
//func p256PointAddAsm(res, in1, in2 []uint64)
TEXT ·p256PointAddAsm(SB),0,$672-72
//func p256PointAddAsm(res, in1, in2 []uint64) int
TEXT ·p256PointAddAsm(SB),0,$680-80
// See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
// Move input to stack in order to free registers
MOVQ res+0(FP), AX
MOVQ in1+24(FP), BX
@ -2055,6 +2087,8 @@ TEXT ·p256PointAddAsm(SB),0,$672-72
LDt (s1)
CALL p256SubInternal(SB) // r = s2 - s1
ST (r)
CALL p256IsZero(SB)
MOVQ AX, points_eq
LDacc (z2sqr)
LDt (x1in)
@ -2068,6 +2102,9 @@ TEXT ·p256PointAddAsm(SB),0,$672-72
LDt (u1)
CALL p256SubInternal(SB) // h = u2 - u1
ST (h)
CALL p256IsZero(SB)
ANDQ points_eq, AX
MOVQ AX, points_eq
LDacc (r)
CALL p256SqrInternal(SB) // rsqr = rˆ2
@ -2135,6 +2172,9 @@ TEXT ·p256PointAddAsm(SB),0,$672-72
MOVOU X4, (16*4)(AX)
MOVOU X5, (16*5)(AX)
MOVQ points_eq, AX
MOVQ AX, ret+72(FP)
RET
#undef x1in
#undef y1in