1
0
mirror of https://github.com/golang/go synced 2024-11-25 08:07:57 -07:00

Make image.Color.RGBA return 16 bit color instead of 32 bit color.

R=rsc
CC=golang-dev
https://golang.org/cl/1388041
This commit is contained in:
Nigel Tao 2010-05-28 12:59:21 -07:00
parent d5a8647d80
commit 2bb59fd71a
8 changed files with 41 additions and 108 deletions

View File

@ -51,13 +51,9 @@ func (c Color) RGBA() (r, g, b, a uint32) {
x := uint32(c) x := uint32(c)
r, g, b, a = x>>24, (x>>16)&0xFF, (x>>8)&0xFF, x&0xFF r, g, b, a = x>>24, (x>>16)&0xFF, (x>>8)&0xFF, x&0xFF
r |= r << 8 r |= r << 8
r |= r << 16
g |= g << 8 g |= g << 8
g |= g << 16
b |= b << 8 b |= b << 8
b |= b << 16
a |= a << 8 a |= a << 8
a |= a << 16
return return
} }
@ -103,7 +99,7 @@ func toColor(color image.Color) image.Color {
return c return c
} }
r, g, b, a := color.RGBA() r, g, b, a := color.RGBA()
return Color(r>>24<<24 | g>>24<<16 | b>>24<<8 | a>>24) return Color(r>>8<<24 | g>>8<<16 | b>>8<<8 | a>>8)
} }
func (c Color) ColorModel() image.ColorModel { return image.ColorModelFunc(toColor) } func (c Color) ColorModel() image.ColorModel { return image.ColorModelFunc(toColor) }

View File

@ -105,13 +105,10 @@ func DrawMask(dst Image, r Rectangle, src image.Image, sp Point, mask image.Imag
sx := sp.X + x0 - r.Min.X sx := sp.X + x0 - r.Min.X
mx := mp.X + x0 - r.Min.X mx := mp.X + x0 - r.Min.X
for x := x0; x != x1; x, sx, mx = x+dx, sx+dx, mx+dx { for x := x0; x != x1; x, sx, mx = x+dx, sx+dx, mx+dx {
// A nil mask is equivalent to a fully opaque, infinitely large mask.
// We work in 16-bit color, so that multiplying two values does not overflow a uint32.
const M = 1<<16 - 1 const M = 1<<16 - 1
ma := uint32(M) ma := uint32(M)
if mask != nil { if mask != nil {
_, _, _, ma = mask.At(mx, my).RGBA() _, _, _, ma = mask.At(mx, my).RGBA()
ma >>= 16
} }
switch { switch {
case ma == 0: case ma == 0:
@ -124,19 +121,11 @@ func DrawMask(dst Image, r Rectangle, src image.Image, sp Point, mask image.Imag
dst.Set(x, y, src.At(sx, sy)) dst.Set(x, y, src.At(sx, sy))
default: default:
sr, sg, sb, sa := src.At(sx, sy).RGBA() sr, sg, sb, sa := src.At(sx, sy).RGBA()
sr >>= 16
sg >>= 16
sb >>= 16
sa >>= 16
if out == nil { if out == nil {
out = new(image.RGBA64Color) out = new(image.RGBA64Color)
} }
if op == Over { if op == Over {
dr, dg, db, da := dst.At(x, y).RGBA() dr, dg, db, da := dst.At(x, y).RGBA()
dr >>= 16
dg >>= 16
db >>= 16
da >>= 16
a := M - (sa * ma / M) a := M - (sa * ma / M)
out.R = uint16((dr*a + sr*ma) / M) out.R = uint16((dr*a + sr*ma) / M)
out.G = uint16((dg*a + sg*ma) / M) out.G = uint16((dg*a + sg*ma) / M)
@ -158,10 +147,6 @@ func drawGlyphOver(dst *image.RGBA, r Rectangle, src image.ColorImage, mask *ima
x0, x1 := r.Min.X, r.Max.X x0, x1 := r.Min.X, r.Max.X
y0, y1 := r.Min.Y, r.Max.Y y0, y1 := r.Min.Y, r.Max.Y
cr, cg, cb, ca := src.RGBA() cr, cg, cb, ca := src.RGBA()
cr >>= 16
cg >>= 16
cb >>= 16
ca >>= 16
for y, my := y0, mp.Y; y != y1; y, my = y+1, my+1 { for y, my := y0, mp.Y; y != y1; y, my = y+1, my+1 {
p := dst.Pixel[y] p := dst.Pixel[y]
for x, mx := x0, mp.X; x != x1; x, mx = x+1, mx+1 { for x, mx := x0, mp.X; x != x1; x, mx = x+1, mx+1 {
@ -192,7 +177,7 @@ func drawFill(dst *image.RGBA, r Rectangle, src image.ColorImage) {
return return
} }
cr, cg, cb, ca := src.RGBA() cr, cg, cb, ca := src.RGBA()
color := image.RGBAColor{uint8(cr >> 24), uint8(cg >> 24), uint8(cb >> 24), uint8(ca >> 24)} color := image.RGBAColor{uint8(cr >> 8), uint8(cg >> 8), uint8(cb >> 8), uint8(ca >> 8)}
// The built-in copy function is faster than a straightforward for loop to fill the destination with // The built-in copy function is faster than a straightforward for loop to fill the destination with
// the color, but copy requires a slice source. We therefore use a for loop to fill the first row, and // the color, but copy requires a slice source. We therefore use a for loop to fill the first row, and
// then use the first row as the slice source for the remaining rows. // then use the first row as the slice source for the remaining rows.
@ -238,13 +223,8 @@ func drawRGBA(dst *image.RGBA, r Rectangle, src image.Image, sp Point, mask imag
ma := uint32(M) ma := uint32(M)
if mask != nil { if mask != nil {
_, _, _, ma = mask.At(mx, my).RGBA() _, _, _, ma = mask.At(mx, my).RGBA()
ma >>= 16
} }
sr, sg, sb, sa := src.At(sx, sy).RGBA() sr, sg, sb, sa := src.At(sx, sy).RGBA()
sr >>= 16
sg >>= 16
sb >>= 16
sa >>= 16
var dr, dg, db, da uint32 var dr, dg, db, da uint32
if op == Over { if op == Over {
rgba := p[x] rgba := p[x]

View File

@ -106,20 +106,11 @@ func makeGolden(dst image.Image, t drawTest) image.Image {
var dr, dg, db, da uint32 var dr, dg, db, da uint32
if t.op == Over { if t.op == Over {
dr, dg, db, da = dst.At(x, y).RGBA() dr, dg, db, da = dst.At(x, y).RGBA()
dr >>= 16
dg >>= 16
db >>= 16
da >>= 16
} }
sr, sg, sb, sa := t.src.At(sx, sy).RGBA() sr, sg, sb, sa := t.src.At(sx, sy).RGBA()
sr >>= 16
sg >>= 16
sb >>= 16
sa >>= 16
ma := uint32(M) ma := uint32(M)
if t.mask != nil { if t.mask != nil {
_, _, _, ma = t.mask.At(mx, my).RGBA() _, _, _, ma = t.mask.At(mx, my).RGBA()
ma >>= 16
} }
a := M - (sa * ma / M) a := M - (sa * ma / M)
golden.Set(x, y, image.RGBA64Color{ golden.Set(x, y, image.RGBA64Color{

View File

@ -61,16 +61,12 @@ func (p Color) RGBA() (r, g, b, a uint32) {
x := uint32(p) x := uint32(p)
a = x >> 24 a = x >> 24
a |= a << 8 a |= a << 8
a |= a << 16
r = (x >> 16) & 0xFF r = (x >> 16) & 0xFF
r |= r << 8 r |= r << 8
r |= r << 16
g = (x >> 8) & 0xFF g = (x >> 8) & 0xFF
g |= g << 8 g |= g << 8
g |= g << 16
b = x & 0xFF b = x & 0xFF
b |= b << 8 b |= b << 8
b |= b << 16
return return
} }

View File

@ -4,14 +4,15 @@
package image package image
// TODO(nigeltao): Think about how floating-point color models work. // All Colors can convert themselves, with a possible loss of precision,
// to 64-bit alpha-premultiplied RGBA. Each channel value ranges within
// All Colors can convert themselves, with a possible loss of precision, to 128-bit alpha-premultiplied RGBA. // [0, 0xFFFF].
type Color interface { type Color interface {
RGBA() (r, g, b, a uint32) RGBA() (r, g, b, a uint32)
} }
// An RGBAColor represents a traditional 32-bit alpha-premultiplied color, having 8 bits for each of red, green, blue and alpha. // An RGBAColor represents a traditional 32-bit alpha-premultiplied color,
// having 8 bits for each of red, green, blue and alpha.
type RGBAColor struct { type RGBAColor struct {
R, G, B, A uint8 R, G, B, A uint8
} }
@ -19,34 +20,23 @@ type RGBAColor struct {
func (c RGBAColor) RGBA() (r, g, b, a uint32) { func (c RGBAColor) RGBA() (r, g, b, a uint32) {
r = uint32(c.R) r = uint32(c.R)
r |= r << 8 r |= r << 8
r |= r << 16
g = uint32(c.G) g = uint32(c.G)
g |= g << 8 g |= g << 8
g |= g << 16
b = uint32(c.B) b = uint32(c.B)
b |= b << 8 b |= b << 8
b |= b << 16
a = uint32(c.A) a = uint32(c.A)
a |= a << 8 a |= a << 8
a |= a << 16
return return
} }
// An RGBA64Color represents a 64-bit alpha-premultiplied color, having 16 bits for each of red, green, blue and alpha. // An RGBA64Color represents a 64-bit alpha-premultiplied color,
// having 16 bits for each of red, green, blue and alpha.
type RGBA64Color struct { type RGBA64Color struct {
R, G, B, A uint16 R, G, B, A uint16
} }
func (c RGBA64Color) RGBA() (r, g, b, a uint32) { func (c RGBA64Color) RGBA() (r, g, b, a uint32) {
r = uint32(c.R) return uint32(c.R), uint32(c.G), uint32(c.B), uint32(c.A)
r |= r << 16
g = uint32(c.G)
g |= g << 16
b = uint32(c.B)
b |= b << 16
a = uint32(c.A)
a |= a << 16
return
} }
// An NRGBAColor represents a non-alpha-premultiplied 32-bit color. // An NRGBAColor represents a non-alpha-premultiplied 32-bit color.
@ -59,24 +49,21 @@ func (c NRGBAColor) RGBA() (r, g, b, a uint32) {
r |= r << 8 r |= r << 8
r *= uint32(c.A) r *= uint32(c.A)
r /= 0xff r /= 0xff
r |= r << 16
g = uint32(c.G) g = uint32(c.G)
g |= g << 8 g |= g << 8
g *= uint32(c.A) g *= uint32(c.A)
g /= 0xff g /= 0xff
g |= g << 16
b = uint32(c.B) b = uint32(c.B)
b |= b << 8 b |= b << 8
b *= uint32(c.A) b *= uint32(c.A)
b /= 0xff b /= 0xff
b |= b << 16
a = uint32(c.A) a = uint32(c.A)
a |= a << 8 a |= a << 8
a |= a << 16
return return
} }
// An NRGBA64Color represents a non-alpha-premultiplied 64-bit color, having 16 bits for each of red, green, blue and alpha. // An NRGBA64Color represents a non-alpha-premultiplied 64-bit color,
// having 16 bits for each of red, green, blue and alpha.
type NRGBA64Color struct { type NRGBA64Color struct {
R, G, B, A uint16 R, G, B, A uint16
} }
@ -85,18 +72,13 @@ func (c NRGBA64Color) RGBA() (r, g, b, a uint32) {
r = uint32(c.R) r = uint32(c.R)
r *= uint32(c.A) r *= uint32(c.A)
r /= 0xffff r /= 0xffff
r |= r << 16
g = uint32(c.G) g = uint32(c.G)
g *= uint32(c.A) g *= uint32(c.A)
g /= 0xffff g /= 0xffff
g |= g << 16
b = uint32(c.B) b = uint32(c.B)
b *= uint32(c.A) b *= uint32(c.A)
b /= 0xffff b /= 0xffff
b |= b << 16
a = uint32(c.A) a = uint32(c.A)
a |= a << 8
a |= a << 16
return return
} }
@ -108,12 +90,11 @@ type AlphaColor struct {
func (c AlphaColor) RGBA() (r, g, b, a uint32) { func (c AlphaColor) RGBA() (r, g, b, a uint32) {
a = uint32(c.A) a = uint32(c.A)
a |= a << 8 a |= a << 8
a |= a << 16
return a, a, a, a return a, a, a, a
} }
// A ColorModel can convert foreign Colors, with a possible loss of precision, to a Color // A ColorModel can convert foreign Colors, with a possible loss of precision,
// from its own color model. // to a Color from its own color model.
type ColorModel interface { type ColorModel interface {
Convert(c Color) Color Convert(c Color) Color
} }
@ -129,36 +110,32 @@ func (f ColorModelFunc) Convert(c Color) Color {
} }
func toRGBAColor(c Color) Color { func toRGBAColor(c Color) Color {
if _, ok := c.(RGBAColor); ok { // no-op conversion if _, ok := c.(RGBAColor); ok {
return c return c
} }
r, g, b, a := c.RGBA() r, g, b, a := c.RGBA()
return RGBAColor{uint8(r >> 24), uint8(g >> 24), uint8(b >> 24), uint8(a >> 24)} return RGBAColor{uint8(r >> 8), uint8(g >> 8), uint8(b >> 8), uint8(a >> 8)}
} }
func toRGBA64Color(c Color) Color { func toRGBA64Color(c Color) Color {
if _, ok := c.(RGBA64Color); ok { // no-op conversion if _, ok := c.(RGBA64Color); ok {
return c return c
} }
r, g, b, a := c.RGBA() r, g, b, a := c.RGBA()
return RGBA64Color{uint16(r >> 16), uint16(g >> 16), uint16(b >> 16), uint16(a >> 16)} return RGBA64Color{uint16(r), uint16(g), uint16(b), uint16(a)}
} }
func toNRGBAColor(c Color) Color { func toNRGBAColor(c Color) Color {
if _, ok := c.(NRGBAColor); ok { // no-op conversion if _, ok := c.(NRGBAColor); ok {
return c return c
} }
r, g, b, a := c.RGBA() r, g, b, a := c.RGBA()
a >>= 16
if a == 0xffff { if a == 0xffff {
return NRGBAColor{uint8(r >> 24), uint8(g >> 24), uint8(b >> 24), 0xff} return NRGBAColor{uint8(r >> 8), uint8(g >> 8), uint8(b >> 8), 0xff}
} }
if a == 0 { if a == 0 {
return NRGBAColor{0, 0, 0, 0} return NRGBAColor{0, 0, 0, 0}
} }
r >>= 16
g >>= 16
b >>= 16
// Since Color.RGBA returns a alpha-premultiplied color, we should have r <= a && g <= a && b <= a. // Since Color.RGBA returns a alpha-premultiplied color, we should have r <= a && g <= a && b <= a.
r = (r * 0xffff) / a r = (r * 0xffff) / a
g = (g * 0xffff) / a g = (g * 0xffff) / a
@ -167,14 +144,10 @@ func toNRGBAColor(c Color) Color {
} }
func toNRGBA64Color(c Color) Color { func toNRGBA64Color(c Color) Color {
if _, ok := c.(NRGBA64Color); ok { // no-op conversion if _, ok := c.(NRGBA64Color); ok {
return c return c
} }
r, g, b, a := c.RGBA() r, g, b, a := c.RGBA()
a >>= 16
r >>= 16
g >>= 16
b >>= 16
if a == 0xffff { if a == 0xffff {
return NRGBA64Color{uint16(r), uint16(g), uint16(b), 0xffff} return NRGBA64Color{uint16(r), uint16(g), uint16(b), 0xffff}
} }
@ -189,11 +162,11 @@ func toNRGBA64Color(c Color) Color {
} }
func toAlphaColor(c Color) Color { func toAlphaColor(c Color) Color {
if _, ok := c.(AlphaColor); ok { // no-op conversion if _, ok := c.(AlphaColor); ok {
return c return c
} }
_, _, _, a := c.RGBA() _, _, _, a := c.RGBA()
return AlphaColor{uint8(a >> 24)} return AlphaColor{uint8(a >> 8)}
} }
// The ColorModel associated with RGBAColor. // The ColorModel associated with RGBAColor.

View File

@ -185,21 +185,18 @@ func (p PalettedColorModel) Convert(c Color) Color {
if len(p) == 0 { if len(p) == 0 {
return nil return nil
} }
// TODO(nigeltao): Revisit the "pick the palette color which minimizes sum-squared-difference"
// algorithm when the premultiplied vs unpremultiplied issue is resolved.
// Currently, we only compare the R, G and B values, and ignore A.
cr, cg, cb, _ := c.RGBA() cr, cg, cb, _ := c.RGBA()
// Shift by 17 bits to avoid potential uint32 overflow in sum-squared-difference. // Shift by 1 bit to avoid potential uint32 overflow in sum-squared-difference.
cr >>= 17 cr >>= 1
cg >>= 17 cg >>= 1
cb >>= 17 cb >>= 1
result := Color(nil) result := Color(nil)
bestSSD := uint32(1<<32 - 1) bestSSD := uint32(1<<32 - 1)
for _, v := range p { for _, v := range p {
vr, vg, vb, _ := v.RGBA() vr, vg, vb, _ := v.RGBA()
vr >>= 17 vr >>= 1
vg >>= 17 vg >>= 1
vb >>= 17 vb >>= 1
dr, dg, db := diff(cr, vr), diff(cg, vg), diff(cb, vb) dr, dg, db := diff(cr, vr), diff(cg, vg), diff(cb, vb)
ssd := (dr * dr) + (dg * dg) + (db * db) ssd := (dr * dr) + (dg * dg) + (db * db)
if ssd < bestSSD { if ssd < bestSSD {

View File

@ -76,9 +76,9 @@ func sng(w io.WriteCloser, filename string, png image.Image) {
io.WriteString(w, "PLTE {\n") io.WriteString(w, "PLTE {\n")
for i := 0; i < len(cpm); i++ { for i := 0; i < len(cpm); i++ {
r, g, b, _ := cpm[i].RGBA() r, g, b, _ := cpm[i].RGBA()
r >>= 24 r >>= 8
g >>= 24 g >>= 8
b >>= 24 b >>= 8
fmt.Fprintf(w, " (%3d,%3d,%3d) # rgb = (0x%02x,0x%02x,0x%02x)\n", r, g, b, r, g, b) fmt.Fprintf(w, " (%3d,%3d,%3d) # rgb = (0x%02x,0x%02x,0x%02x)\n", r, g, b, r, g, b)
} }
io.WriteString(w, "}\n") io.WriteString(w, "}\n")

View File

@ -37,7 +37,7 @@ func opaque(m image.Image) bool {
for y := 0; y < m.Height(); y++ { for y := 0; y < m.Height(); y++ {
for x := 0; x < m.Width(); x++ { for x := 0; x < m.Width(); x++ {
_, _, _, a := m.At(x, y).RGBA() _, _, _, a := m.At(x, y).RGBA()
if a != 0xffffffff { if a != 0xffff {
return false return false
} }
} }
@ -101,13 +101,13 @@ func (e *encoder) writePLTE(p image.PalettedColorModel) {
} }
for i := 0; i < len(p); i++ { for i := 0; i < len(p); i++ {
r, g, b, a := p[i].RGBA() r, g, b, a := p[i].RGBA()
if a != 0xffffffff { if a != 0xffff {
e.err = UnsupportedError("non-opaque palette color") e.err = UnsupportedError("non-opaque palette color")
return return
} }
e.tmp[3*i+0] = uint8(r >> 24) e.tmp[3*i+0] = uint8(r >> 8)
e.tmp[3*i+1] = uint8(g >> 24) e.tmp[3*i+1] = uint8(g >> 8)
e.tmp[3*i+2] = uint8(b >> 24) e.tmp[3*i+2] = uint8(b >> 8)
} }
e.writeChunk(e.tmp[0:3*len(p)], "PLTE") e.writeChunk(e.tmp[0:3*len(p)], "PLTE")
} }
@ -261,9 +261,9 @@ func writeImage(w io.Writer, m image.Image, ct uint8) os.Error {
for x := 0; x < m.Width(); x++ { for x := 0; x < m.Width(); x++ {
// We have previously verified that the alpha value is fully opaque. // We have previously verified that the alpha value is fully opaque.
r, g, b, _ := m.At(x, y).RGBA() r, g, b, _ := m.At(x, y).RGBA()
cr[0][3*x+1] = uint8(r >> 24) cr[0][3*x+1] = uint8(r >> 8)
cr[0][3*x+2] = uint8(g >> 24) cr[0][3*x+2] = uint8(g >> 8)
cr[0][3*x+3] = uint8(b >> 24) cr[0][3*x+3] = uint8(b >> 8)
} }
case ctPaletted: case ctPaletted:
for x := 0; x < m.Width(); x++ { for x := 0; x < m.Width(); x++ {