1
0
mirror of https://github.com/golang/go synced 2024-11-23 17:20:02 -07:00

doc/codewalk: new Markov chain codewalk

R=gri, r, rsc
CC=golang-dev
https://golang.org/cl/4891041
This commit is contained in:
Andrew Gerrand 2011-08-17 15:53:17 +10:00
parent a22e77e6ae
commit 2a189845b6
2 changed files with 438 additions and 0 deletions

130
doc/codewalk/markov.go Normal file
View File

@ -0,0 +1,130 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Generating random text: a Markov chain algorithm
Based on the program presented in the "Design and Implementation" chapter
of The Practice of Programming (Kernighan and Pike, Addison-Wesley 1999).
See also Computer Recreations, Scientific American 260, 122 - 125 (1989).
A Markov chain algorithm generates text by creating a statistical model of
potential textual suffixes for a given prefix. Consider this text:
I am not a number! I am a free man!
Our Markov chain algorithm would arrange this text into this set of prefixes
and suffixes, or "chain": (This table assumes a prefix length of two words.)
Prefix Suffix
"" "" I
"" I am
I am a
I am not
a free man!
am a free
am not a
a number! I
number! I am
not a number!
To generate text using this table we select an initial prefix ("I am", for
example), choose one of the suffixes associated with that prefix at random
with probability determined by the input statistics ("a"),
and then create a new prefix by removing the first word from the prefix
and appending the suffix (making the new prefix is "am a"). Repeat this process
until we can't find any suffixes for the current prefix or we exceed the word
limit. (The word limit is necessary as the chain table may contain cycles.)
Our version of this program reads text from standard input, parsing it into a
Markov chain, and writes generated text to standard output.
The prefix and output lengths can be specified using the -prefix and -words
flags on the command-line.
*/
package main
import (
"bufio"
"flag"
"fmt"
"io"
"os"
"rand"
"strings"
"time"
)
// Prefix is a Markov chain prefix of one or more words.
type Prefix []string
// String returns the Prefix as a string (for use as a map key).
func (p Prefix) String() string {
return strings.Join(p, " ")
}
// Shift removes the first word from the Prefix and appends the given word.
func (p Prefix) Shift(word string) {
copy(p, p[1:])
p[len(p)-1] = word
}
// Chain contains a map ("chain") of prefixes to a list of suffixes.
// A prefix is a string of prefixLen words joined with spaces.
// A suffix is a single word. A prefix can have multiple suffixes.
type Chain struct {
chain map[string][]string
prefixLen int
}
// NewChain returns a new Chain with prefixes of prefixLen words.
func NewChain(prefixLen int) *Chain {
return &Chain{make(map[string][]string), prefixLen}
}
// Build reads text from the provided Reader and
// parses it into prefixes and suffixes that are stored in Chain.
func (c *Chain) Build(r io.Reader) {
br := bufio.NewReader(r)
p := make(Prefix, c.prefixLen)
for {
var s string
if _, err := fmt.Fscan(br, &s); err != nil {
break
}
key := p.String()
c.chain[key] = append(c.chain[key], s)
p.Shift(s)
}
}
// Generate returns a string of at most n words generated from Chain.
func (c *Chain) Generate(n int) string {
p := make(Prefix, c.prefixLen)
var words []string
for i := 0; i < n; i++ {
choices := c.chain[p.String()]
if len(choices) == 0 {
break
}
next := choices[rand.Intn(len(choices))]
words = append(words, next)
p.Shift(next)
}
return strings.Join(words, " ")
}
func main() {
// Register command-line flags.
numWords := flag.Int("words", 100, "maximum number of words to print")
prefixLen := flag.Int("prefix", 2, "prefix length in words")
flag.Parse() // Parse command-line flags.
rand.Seed(time.Nanoseconds()) // Seed the random number generator.
c := NewChain(*prefixLen) // Initialize a new Chain.
c.Build(os.Stdin) // Build chains from standard input.
text := c.Generate(*numWords) // Generate text.
fmt.Println(text) // Write text to standard output.
}

308
doc/codewalk/markov.xml Normal file
View File

@ -0,0 +1,308 @@
<!--
Copyright 2011 The Go Authors. All rights reserved.
Use of this source code is governed by a BSD-style
license that can be found in the LICENSE file.
-->
<codewalk title="Generating arbitrary text: a Markov chain algorithm">
<step title="Introduction" src="doc/codewalk/markov.go:/Generating/,/line\./">
This codewalk describes a program that generates random text using
a Markov chain algorithm. The package comment describes the algorithm
and the operation of the program. Please read it before continuing.
</step>
<step title="Modeling Markov chains" src="doc/codewalk/markov.go:/ chain/">
A chain consists of a prefix and a suffix. Each prefix is a set
number of words, while a suffix is a single word.
A prefix can have an arbitrary number of suffixes.
To model this data, we use a <code>map[string][]string</code>.
Each map key is a prefix (a <code>string</code>) and its values are
lists of suffixes (a slice of strings, <code>[]string</code>).
<br/><br/>
Here is the example table from the package comment
as modeled by this data structure:
<pre>
map[string][]string{
" ": {"I"},
" I": {"am"},
"I am": {"a", "not"},
"a free": {"man!"},
"am a": {"free"},
"am not": {"a"},
"a number!": {"I"},
"number! I": {"am"},
"not a": {"number!"},
}</pre>
While each prefix consists of multiple words, we
store prefixes in the map as a single <code>string</code>.
It would seem more natural to store the prefix as a
<code>[]string</code>, but we can't do this with a map because the
key type of a map must implement equality (and slices do not).
<br/><br/>
Therefore, in most of our code we will model prefixes as a
<code>[]string</code> and join the strings together with a space
to generate the map key:
<pre>
Prefix Map key
[]string{"", ""} " "
[]string{"", "I"} " I"
[]string{"I", "am"} "I am"
</pre>
</step>
<step title="The Chain struct" src="doc/codewalk/markov.go:/type Chain/,/}/">
The complete state of the chain table consists of the table itself and
the word length of the prefixes. The <code>Chain</code> struct stores
this data.
</step>
<step title="The NewChain constructor function" src="doc/codewalk/markov.go:/func New/,/}/">
The <code>Chain</code> struct has two unexported fields (those that
do not begin with an upper case character), and so we write a
<code>NewChain</code> constructor function that initializes the
<code>chain</code> map with <code>make</code> and sets the
<code>prefixLen</code> field.
<br/><br/>
This is constructor function is not strictly necessary as this entire
program is within a single package (<code>main</code>) and therefore
there is little practical difference between exported and unexported
fields. We could just as easily write out the contents of this function
when we want to construct a new Chain.
But using these unexported fields is good practice; it clearly denotes
that only methods of Chain and its constructor function should access
those fields. Also, structuring <code>Chain</code> like this means we
could easily move it into its own package at some later date.
</step>
<step title="The Prefix type" src="doc/codewalk/markov.go:/type Prefix/">
Since we'll be working with prefixes often, we define a
<code>Prefix</code> type with the concrete type <code>[]string</code>.
Defining a named type clearly allows us to be explicit when we are
working with a prefix instead of just a <code>[]string</code>.
Also, in Go we can define methods on any named type (not just structs),
so we can add methods that operate on <code>Prefix</code> if we need to.
</step>
<step title="The String method" src="doc/codewalk/markov.go:/func[^\n]+String/,/}/">
The first method we define on <code>Prefix</code> is
<code>String</code>. It returns a <code>string</code> representation
of a <code>Prefix</code> by joining the slice elements together with
spaces. We will use this method to generate keys when working with
the chain map.
</step>
<step title="Building the chain" src="doc/codewalk/markov.go:/func[^\n]+Build/,/\n}/">
The <code>Build</code> method reads text from an <code>io.Reader</code>
and parses it into prefixes and suffixes that are stored in the
<code>Chain</code>.
<br/><br/>
The <code><a href="/pkg/io/#Reader">io.Reader</a></code> is an
interface type that is widely used by the standard library and
other Go code. Our code uses the
<code><a href="/pkg/fmt/#Fscan">fmt.Fscan</a></code> function, which
reads space-separated values from an <code>io.Reader</code>.
<br/><br/>
The <code>Build</code> method returns once the <code>Reader</code>'s
<code>Read</code> method returns <code>os.EOF</code> (end of file)
or some other read error occurs.
</step>
<step title="Buffering the input" src="doc/codewalk/markov.go:/bufio\.NewReader/">
This function does many small reads, which can be inefficient for some
<code>Readers</code>. For efficiency we wrap the provided
<code>io.Reader</code> with
<code><a href="/pkg/bufio/">bufio.NewReader</a></code> to create a
new <code>io.Reader</code> that provides buffering.
</step>
<step title="The Prefix variable" src="doc/codewalk/markov.go:/make\(Prefix/">
At the top of the function we make a <code>Prefix</code> slice
<code>p</code> using the <code>Chain</code>'s <code>prefixLen</code>
field as its length.
We'll use this variable to hold the current prefix and mutate it with
each new word we encounter.
</step>
<step title="Scanning words" src="doc/codewalk/markov.go:/var s string/,/\n }/">
In our loop we read words from the <code>Reader</code> into a
<code>string</code> variable <code>s</code> using
<code>fmt.Fscan</code>. Since <code>Fscan</code> uses space to
separate each input value, each call will yield just one word
(including punctuation), which is exactly what we need.
<br/><br/>
<code>Fscan</code> returns an error if it encounters a read error
(<code>os.EOF</code>, for example) or if it can't scan the requested
value (in our case, a single string). In either case we just want to
stop scanning, so we <code>break</code> out of the loop.
</step>
<step title="Adding a prefix and suffix to the chain" src="doc/codewalk/markov.go:/ key/,/key\], s\)">
The word stored in <code>s</code> is a new suffix. We add the new
prefix/suffix combination to the <code>chain</code> map by computing
the map key with <code>p.String</code> and appending the suffix
to the slice stored under that key.
<br/><br/>
The built-in <code>append</code> function appends elements to a slice
and allocates new storage when necessary. When the provided slice is
<code>nil</code>, <code>append</code> allocates a new slice.
This behavior conveniently ties in with the semantics of our map:
retrieving an unset key returns the zero value of the value type and
the zero value of <code>[]string</code> is <code>nil</code>.
When our program encounters a new prefix (yielding a <code>nil</code>
value in the map) <code>append</code> will allocate a new slice.
<br/><br/>
For more information about the <code>append</code> function and slices
in general see the
<a href="http://blog.golang.org/2011/01/go-slices-usage-and-internals.html">Slices: usage and internals</a> article.
</step>
<step title="Pushing the suffix onto the prefix" src="doc/codewalk/markov.go:/p\.Shift/">
Before reading the next word our algorithm requires us to drop the
first word from the prefix and push the current suffix onto the prefix.
<br/><br/>
When in this state
<pre>
p == Prefix{"I", "am"}
s == "not" </pre>
the new value for <code>p</code> would be
<pre>
p == Prefix{"am", "not"}</pre>
This operation is also required during text generation so we put
the code to perform this mutation of the slice inside a method on
<code>Prefix</code> named <code>Shift</code>.
</step>
<step title="The Shift method" src="doc/codewalk/markov.go:/func[^\n]+Shift/,/\n}/">
The <code>Shift</code> method uses the built-in <code>copy</code>
function to copy the last len(p)-1 elements of <code>p</code> to
the start of the slice, effectively moving the elements
one index to the left (if you consider zero as the leftmost index).
<pre>
p := Prefix{"I", "am"}
copy(p, p[:1])
// p == Prefix{"am", "am"}</pre>
We then assign the provided <code>word</code> to the last index
of the slice:
<pre>
// suffix == "not"
p[len(p)-1] = suffix
// p == Prefix{"am", "not"}</pre>
</step>
<step title="Generating text" src="doc/codewalk/markov.go:/func[^\n]+Generate/,/\n}/">
The <code>Generate</code> method is similar to <code>Build</code>
except that instead of reading words from a <code>Reader</code>
and storing them in a map, it reads words from the map and
appends them to a slice (<code>words</code>).
<br/><br/>
<code>Generate</code> uses a conditional for loop to generate
up to <code>n</code> words.
</step>
<step title="Getting potential suffixes" src="doc/codewalk/markov.go:/choices/,/}\n/">
At each iteration of the loop we retrieve a list of potential suffixes
for the current prefix. We access the <code>chain</code> map at key
<code>p.String()</code> and assign its contents to <code>choices</code>.
<br/><br/>
If <code>len(choices)</code> is zero we break out of the loop as there
are no potential suffixes for that prefix.
This test also works if the key isn't present in the map at all:
in that case, <code>choices</code> will be <code>nil</code> and the
length of a <code>nil</code> slice is zero.
</step>
<step title="Choosing a suffix at random" src="doc/codewalk/markov.go:/next := choices/,/Shift/">
To choose a suffix we use the
<code><a href="/pkg/rand/#Intn">rand.Intn</a></code> function.
It returns a random integer up to (but not including) the provided
value. Passing in <code>len(choices)</code> gives us a random index
into the full length of the list.
<br/><br/>
We use that index to pick our new suffix, assign it to
<code>next</code> and append it to the <code>words</code> slice.
<br/><br/>
Next, we <code>Shift</code> the new suffix onto the prefix just as
we did in the <code>Build</code> method.
</step>
<step title="Returning the generated text" src="doc/codewalk/markov.go:/Join\(words/">
Before returning the generated text as a string, we use the
<code>strings.Join</code> function to join the elements of
the <code>words</code> slice together, separated by spaces.
</step>
<step title="Command-line flags" src="doc/codewalk/markov.go:/Register command-line flags/,/prefixLen/">
To make it easy to tweak the prefix and generated text lengths we
use the <code><a href="/pkg/flag/">flag</a></code> package to parse
command-line flags.
<br/><br/>
These calls to <code>flag.Int</code> register new flags with the
<code>flag</code> package. The arguments to <code>Int</code> are the
flag name, its default value, and a description. The <code>Int</code>
function returns a pointer to an integer that will contain the
user-supplied value (or the default value if the flag was omitted on
the command-line).
</step>
<step title="Program set up" src="doc/codewalk/markov.go:/flag.Parse/,/rand.Seed/">
The <code>main</code> function begins by parsing the command-line
flags with <code>flag.Parse</code> and seeding the <code>rand</code>
package's random number generator with the current time.
<br/><br/>
If the command-line flags provided by the user are invalid the
<code>flag.Parse</code> function will print an informative usage
message and terminate the program.
</step>
<step title="Creating and building a new Chain" src="doc/codewalk/markov.go:/c := NewChain/,/c\.Build/">
To create the new <code>Chain</code> we call <code>NewChain</code>
with the value of the <code>prefix</code> flag.
<br/><br/>
To build the chain we call <code>Build</code> with
<code>os.Stdin</code> (which implements <code>io.Reader</code>) so
that it will read its input from standard input.
</step>
<step title="Generating and printing text" src="doc/codewalk/markov.go:/c\.Generate/,/fmt.Println/">
Finally, to generate text we call <code>Generate</code> with
the value of the <code>words</code> flag and assigning the result
to the variable <code>text</code>.
<br/><br/>
Then we call <code>fmt.Println</code> to write the text to standard
output, followed by a carriage return.
</step>
<step title="Using this program" src="doc/codewalk/markov.go">
To use this program, first compile and link it.
If you are using <code>6g</code> as your compiler, the command
would look something like this:
<pre>
$ 6g markov.go &amp;&amp; 6l -o markov markov.6</pre>
And then execute it while piping in some input text:
<pre>
$ echo "a man a plan a canal panama" | ./markov -prefix=1
a plan a man a plan a canal panama
</pre>
Here's a transcript of generating some text using the Go distribution's
README file as source material:
<pre>
$ ./markov -words=10 &lt $GOROOT/go/README
This is the source code repository for the Go source
$ ./markov -prefix=1 -words=10 &lt $GOROOT/go/README
This is the go directory (the one containing this README).
$ ./markov -prefix=1 -words=10 &lt $GOROOT/go/README
This is the variable if you have just untarred a</pre>
</step>
<step title="An exercise for the reader" src="doc/codewalk/markov.go">
The <code>Generate</code> function does a lot of allocations when it
builds the <code>words</code> slice. As an exercise, modify it to
take an <code>io.Writer</code> to which it incrementally writes the
generated text with <code>Fprint</code>.
Aside from being more efficient this makes <code>Generate</code>
more symmetrical to <code>Build</code>.
</step>
</codewalk>