mirror of
https://github.com/golang/go
synced 2024-11-23 17:20:02 -07:00
doc/codewalk: new Markov chain codewalk
R=gri, r, rsc CC=golang-dev https://golang.org/cl/4891041
This commit is contained in:
parent
a22e77e6ae
commit
2a189845b6
130
doc/codewalk/markov.go
Normal file
130
doc/codewalk/markov.go
Normal file
@ -0,0 +1,130 @@
|
||||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
/*
|
||||
Generating random text: a Markov chain algorithm
|
||||
|
||||
Based on the program presented in the "Design and Implementation" chapter
|
||||
of The Practice of Programming (Kernighan and Pike, Addison-Wesley 1999).
|
||||
See also Computer Recreations, Scientific American 260, 122 - 125 (1989).
|
||||
|
||||
A Markov chain algorithm generates text by creating a statistical model of
|
||||
potential textual suffixes for a given prefix. Consider this text:
|
||||
|
||||
I am not a number! I am a free man!
|
||||
|
||||
Our Markov chain algorithm would arrange this text into this set of prefixes
|
||||
and suffixes, or "chain": (This table assumes a prefix length of two words.)
|
||||
|
||||
Prefix Suffix
|
||||
|
||||
"" "" I
|
||||
"" I am
|
||||
I am a
|
||||
I am not
|
||||
a free man!
|
||||
am a free
|
||||
am not a
|
||||
a number! I
|
||||
number! I am
|
||||
not a number!
|
||||
|
||||
To generate text using this table we select an initial prefix ("I am", for
|
||||
example), choose one of the suffixes associated with that prefix at random
|
||||
with probability determined by the input statistics ("a"),
|
||||
and then create a new prefix by removing the first word from the prefix
|
||||
and appending the suffix (making the new prefix is "am a"). Repeat this process
|
||||
until we can't find any suffixes for the current prefix or we exceed the word
|
||||
limit. (The word limit is necessary as the chain table may contain cycles.)
|
||||
|
||||
Our version of this program reads text from standard input, parsing it into a
|
||||
Markov chain, and writes generated text to standard output.
|
||||
The prefix and output lengths can be specified using the -prefix and -words
|
||||
flags on the command-line.
|
||||
*/
|
||||
package main
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"flag"
|
||||
"fmt"
|
||||
"io"
|
||||
"os"
|
||||
"rand"
|
||||
"strings"
|
||||
"time"
|
||||
)
|
||||
|
||||
// Prefix is a Markov chain prefix of one or more words.
|
||||
type Prefix []string
|
||||
|
||||
// String returns the Prefix as a string (for use as a map key).
|
||||
func (p Prefix) String() string {
|
||||
return strings.Join(p, " ")
|
||||
}
|
||||
|
||||
// Shift removes the first word from the Prefix and appends the given word.
|
||||
func (p Prefix) Shift(word string) {
|
||||
copy(p, p[1:])
|
||||
p[len(p)-1] = word
|
||||
}
|
||||
|
||||
// Chain contains a map ("chain") of prefixes to a list of suffixes.
|
||||
// A prefix is a string of prefixLen words joined with spaces.
|
||||
// A suffix is a single word. A prefix can have multiple suffixes.
|
||||
type Chain struct {
|
||||
chain map[string][]string
|
||||
prefixLen int
|
||||
}
|
||||
|
||||
// NewChain returns a new Chain with prefixes of prefixLen words.
|
||||
func NewChain(prefixLen int) *Chain {
|
||||
return &Chain{make(map[string][]string), prefixLen}
|
||||
}
|
||||
|
||||
// Build reads text from the provided Reader and
|
||||
// parses it into prefixes and suffixes that are stored in Chain.
|
||||
func (c *Chain) Build(r io.Reader) {
|
||||
br := bufio.NewReader(r)
|
||||
p := make(Prefix, c.prefixLen)
|
||||
for {
|
||||
var s string
|
||||
if _, err := fmt.Fscan(br, &s); err != nil {
|
||||
break
|
||||
}
|
||||
key := p.String()
|
||||
c.chain[key] = append(c.chain[key], s)
|
||||
p.Shift(s)
|
||||
}
|
||||
}
|
||||
|
||||
// Generate returns a string of at most n words generated from Chain.
|
||||
func (c *Chain) Generate(n int) string {
|
||||
p := make(Prefix, c.prefixLen)
|
||||
var words []string
|
||||
for i := 0; i < n; i++ {
|
||||
choices := c.chain[p.String()]
|
||||
if len(choices) == 0 {
|
||||
break
|
||||
}
|
||||
next := choices[rand.Intn(len(choices))]
|
||||
words = append(words, next)
|
||||
p.Shift(next)
|
||||
}
|
||||
return strings.Join(words, " ")
|
||||
}
|
||||
|
||||
func main() {
|
||||
// Register command-line flags.
|
||||
numWords := flag.Int("words", 100, "maximum number of words to print")
|
||||
prefixLen := flag.Int("prefix", 2, "prefix length in words")
|
||||
|
||||
flag.Parse() // Parse command-line flags.
|
||||
rand.Seed(time.Nanoseconds()) // Seed the random number generator.
|
||||
|
||||
c := NewChain(*prefixLen) // Initialize a new Chain.
|
||||
c.Build(os.Stdin) // Build chains from standard input.
|
||||
text := c.Generate(*numWords) // Generate text.
|
||||
fmt.Println(text) // Write text to standard output.
|
||||
}
|
308
doc/codewalk/markov.xml
Normal file
308
doc/codewalk/markov.xml
Normal file
@ -0,0 +1,308 @@
|
||||
<!--
|
||||
Copyright 2011 The Go Authors. All rights reserved.
|
||||
Use of this source code is governed by a BSD-style
|
||||
license that can be found in the LICENSE file.
|
||||
-->
|
||||
|
||||
<codewalk title="Generating arbitrary text: a Markov chain algorithm">
|
||||
|
||||
<step title="Introduction" src="doc/codewalk/markov.go:/Generating/,/line\./">
|
||||
This codewalk describes a program that generates random text using
|
||||
a Markov chain algorithm. The package comment describes the algorithm
|
||||
and the operation of the program. Please read it before continuing.
|
||||
</step>
|
||||
|
||||
<step title="Modeling Markov chains" src="doc/codewalk/markov.go:/ chain/">
|
||||
A chain consists of a prefix and a suffix. Each prefix is a set
|
||||
number of words, while a suffix is a single word.
|
||||
A prefix can have an arbitrary number of suffixes.
|
||||
To model this data, we use a <code>map[string][]string</code>.
|
||||
Each map key is a prefix (a <code>string</code>) and its values are
|
||||
lists of suffixes (a slice of strings, <code>[]string</code>).
|
||||
<br/><br/>
|
||||
Here is the example table from the package comment
|
||||
as modeled by this data structure:
|
||||
<pre>
|
||||
map[string][]string{
|
||||
" ": {"I"},
|
||||
" I": {"am"},
|
||||
"I am": {"a", "not"},
|
||||
"a free": {"man!"},
|
||||
"am a": {"free"},
|
||||
"am not": {"a"},
|
||||
"a number!": {"I"},
|
||||
"number! I": {"am"},
|
||||
"not a": {"number!"},
|
||||
}</pre>
|
||||
While each prefix consists of multiple words, we
|
||||
store prefixes in the map as a single <code>string</code>.
|
||||
It would seem more natural to store the prefix as a
|
||||
<code>[]string</code>, but we can't do this with a map because the
|
||||
key type of a map must implement equality (and slices do not).
|
||||
<br/><br/>
|
||||
Therefore, in most of our code we will model prefixes as a
|
||||
<code>[]string</code> and join the strings together with a space
|
||||
to generate the map key:
|
||||
<pre>
|
||||
Prefix Map key
|
||||
|
||||
[]string{"", ""} " "
|
||||
[]string{"", "I"} " I"
|
||||
[]string{"I", "am"} "I am"
|
||||
</pre>
|
||||
</step>
|
||||
|
||||
<step title="The Chain struct" src="doc/codewalk/markov.go:/type Chain/,/}/">
|
||||
The complete state of the chain table consists of the table itself and
|
||||
the word length of the prefixes. The <code>Chain</code> struct stores
|
||||
this data.
|
||||
</step>
|
||||
|
||||
<step title="The NewChain constructor function" src="doc/codewalk/markov.go:/func New/,/}/">
|
||||
The <code>Chain</code> struct has two unexported fields (those that
|
||||
do not begin with an upper case character), and so we write a
|
||||
<code>NewChain</code> constructor function that initializes the
|
||||
<code>chain</code> map with <code>make</code> and sets the
|
||||
<code>prefixLen</code> field.
|
||||
<br/><br/>
|
||||
This is constructor function is not strictly necessary as this entire
|
||||
program is within a single package (<code>main</code>) and therefore
|
||||
there is little practical difference between exported and unexported
|
||||
fields. We could just as easily write out the contents of this function
|
||||
when we want to construct a new Chain.
|
||||
But using these unexported fields is good practice; it clearly denotes
|
||||
that only methods of Chain and its constructor function should access
|
||||
those fields. Also, structuring <code>Chain</code> like this means we
|
||||
could easily move it into its own package at some later date.
|
||||
</step>
|
||||
|
||||
<step title="The Prefix type" src="doc/codewalk/markov.go:/type Prefix/">
|
||||
Since we'll be working with prefixes often, we define a
|
||||
<code>Prefix</code> type with the concrete type <code>[]string</code>.
|
||||
Defining a named type clearly allows us to be explicit when we are
|
||||
working with a prefix instead of just a <code>[]string</code>.
|
||||
Also, in Go we can define methods on any named type (not just structs),
|
||||
so we can add methods that operate on <code>Prefix</code> if we need to.
|
||||
</step>
|
||||
|
||||
<step title="The String method" src="doc/codewalk/markov.go:/func[^\n]+String/,/}/">
|
||||
The first method we define on <code>Prefix</code> is
|
||||
<code>String</code>. It returns a <code>string</code> representation
|
||||
of a <code>Prefix</code> by joining the slice elements together with
|
||||
spaces. We will use this method to generate keys when working with
|
||||
the chain map.
|
||||
</step>
|
||||
|
||||
<step title="Building the chain" src="doc/codewalk/markov.go:/func[^\n]+Build/,/\n}/">
|
||||
The <code>Build</code> method reads text from an <code>io.Reader</code>
|
||||
and parses it into prefixes and suffixes that are stored in the
|
||||
<code>Chain</code>.
|
||||
<br/><br/>
|
||||
The <code><a href="/pkg/io/#Reader">io.Reader</a></code> is an
|
||||
interface type that is widely used by the standard library and
|
||||
other Go code. Our code uses the
|
||||
<code><a href="/pkg/fmt/#Fscan">fmt.Fscan</a></code> function, which
|
||||
reads space-separated values from an <code>io.Reader</code>.
|
||||
<br/><br/>
|
||||
The <code>Build</code> method returns once the <code>Reader</code>'s
|
||||
<code>Read</code> method returns <code>os.EOF</code> (end of file)
|
||||
or some other read error occurs.
|
||||
</step>
|
||||
|
||||
<step title="Buffering the input" src="doc/codewalk/markov.go:/bufio\.NewReader/">
|
||||
This function does many small reads, which can be inefficient for some
|
||||
<code>Readers</code>. For efficiency we wrap the provided
|
||||
<code>io.Reader</code> with
|
||||
<code><a href="/pkg/bufio/">bufio.NewReader</a></code> to create a
|
||||
new <code>io.Reader</code> that provides buffering.
|
||||
</step>
|
||||
|
||||
<step title="The Prefix variable" src="doc/codewalk/markov.go:/make\(Prefix/">
|
||||
At the top of the function we make a <code>Prefix</code> slice
|
||||
<code>p</code> using the <code>Chain</code>'s <code>prefixLen</code>
|
||||
field as its length.
|
||||
We'll use this variable to hold the current prefix and mutate it with
|
||||
each new word we encounter.
|
||||
</step>
|
||||
|
||||
<step title="Scanning words" src="doc/codewalk/markov.go:/var s string/,/\n }/">
|
||||
In our loop we read words from the <code>Reader</code> into a
|
||||
<code>string</code> variable <code>s</code> using
|
||||
<code>fmt.Fscan</code>. Since <code>Fscan</code> uses space to
|
||||
separate each input value, each call will yield just one word
|
||||
(including punctuation), which is exactly what we need.
|
||||
<br/><br/>
|
||||
<code>Fscan</code> returns an error if it encounters a read error
|
||||
(<code>os.EOF</code>, for example) or if it can't scan the requested
|
||||
value (in our case, a single string). In either case we just want to
|
||||
stop scanning, so we <code>break</code> out of the loop.
|
||||
</step>
|
||||
|
||||
<step title="Adding a prefix and suffix to the chain" src="doc/codewalk/markov.go:/ key/,/key\], s\)">
|
||||
The word stored in <code>s</code> is a new suffix. We add the new
|
||||
prefix/suffix combination to the <code>chain</code> map by computing
|
||||
the map key with <code>p.String</code> and appending the suffix
|
||||
to the slice stored under that key.
|
||||
<br/><br/>
|
||||
The built-in <code>append</code> function appends elements to a slice
|
||||
and allocates new storage when necessary. When the provided slice is
|
||||
<code>nil</code>, <code>append</code> allocates a new slice.
|
||||
This behavior conveniently ties in with the semantics of our map:
|
||||
retrieving an unset key returns the zero value of the value type and
|
||||
the zero value of <code>[]string</code> is <code>nil</code>.
|
||||
When our program encounters a new prefix (yielding a <code>nil</code>
|
||||
value in the map) <code>append</code> will allocate a new slice.
|
||||
<br/><br/>
|
||||
For more information about the <code>append</code> function and slices
|
||||
in general see the
|
||||
<a href="http://blog.golang.org/2011/01/go-slices-usage-and-internals.html">Slices: usage and internals</a> article.
|
||||
</step>
|
||||
|
||||
<step title="Pushing the suffix onto the prefix" src="doc/codewalk/markov.go:/p\.Shift/">
|
||||
Before reading the next word our algorithm requires us to drop the
|
||||
first word from the prefix and push the current suffix onto the prefix.
|
||||
<br/><br/>
|
||||
When in this state
|
||||
<pre>
|
||||
p == Prefix{"I", "am"}
|
||||
s == "not" </pre>
|
||||
the new value for <code>p</code> would be
|
||||
<pre>
|
||||
p == Prefix{"am", "not"}</pre>
|
||||
This operation is also required during text generation so we put
|
||||
the code to perform this mutation of the slice inside a method on
|
||||
<code>Prefix</code> named <code>Shift</code>.
|
||||
</step>
|
||||
|
||||
<step title="The Shift method" src="doc/codewalk/markov.go:/func[^\n]+Shift/,/\n}/">
|
||||
The <code>Shift</code> method uses the built-in <code>copy</code>
|
||||
function to copy the last len(p)-1 elements of <code>p</code> to
|
||||
the start of the slice, effectively moving the elements
|
||||
one index to the left (if you consider zero as the leftmost index).
|
||||
<pre>
|
||||
p := Prefix{"I", "am"}
|
||||
copy(p, p[:1])
|
||||
// p == Prefix{"am", "am"}</pre>
|
||||
We then assign the provided <code>word</code> to the last index
|
||||
of the slice:
|
||||
<pre>
|
||||
// suffix == "not"
|
||||
p[len(p)-1] = suffix
|
||||
// p == Prefix{"am", "not"}</pre>
|
||||
</step>
|
||||
|
||||
<step title="Generating text" src="doc/codewalk/markov.go:/func[^\n]+Generate/,/\n}/">
|
||||
The <code>Generate</code> method is similar to <code>Build</code>
|
||||
except that instead of reading words from a <code>Reader</code>
|
||||
and storing them in a map, it reads words from the map and
|
||||
appends them to a slice (<code>words</code>).
|
||||
<br/><br/>
|
||||
<code>Generate</code> uses a conditional for loop to generate
|
||||
up to <code>n</code> words.
|
||||
</step>
|
||||
|
||||
<step title="Getting potential suffixes" src="doc/codewalk/markov.go:/choices/,/}\n/">
|
||||
At each iteration of the loop we retrieve a list of potential suffixes
|
||||
for the current prefix. We access the <code>chain</code> map at key
|
||||
<code>p.String()</code> and assign its contents to <code>choices</code>.
|
||||
<br/><br/>
|
||||
If <code>len(choices)</code> is zero we break out of the loop as there
|
||||
are no potential suffixes for that prefix.
|
||||
This test also works if the key isn't present in the map at all:
|
||||
in that case, <code>choices</code> will be <code>nil</code> and the
|
||||
length of a <code>nil</code> slice is zero.
|
||||
</step>
|
||||
|
||||
<step title="Choosing a suffix at random" src="doc/codewalk/markov.go:/next := choices/,/Shift/">
|
||||
To choose a suffix we use the
|
||||
<code><a href="/pkg/rand/#Intn">rand.Intn</a></code> function.
|
||||
It returns a random integer up to (but not including) the provided
|
||||
value. Passing in <code>len(choices)</code> gives us a random index
|
||||
into the full length of the list.
|
||||
<br/><br/>
|
||||
We use that index to pick our new suffix, assign it to
|
||||
<code>next</code> and append it to the <code>words</code> slice.
|
||||
<br/><br/>
|
||||
Next, we <code>Shift</code> the new suffix onto the prefix just as
|
||||
we did in the <code>Build</code> method.
|
||||
</step>
|
||||
|
||||
<step title="Returning the generated text" src="doc/codewalk/markov.go:/Join\(words/">
|
||||
Before returning the generated text as a string, we use the
|
||||
<code>strings.Join</code> function to join the elements of
|
||||
the <code>words</code> slice together, separated by spaces.
|
||||
</step>
|
||||
|
||||
<step title="Command-line flags" src="doc/codewalk/markov.go:/Register command-line flags/,/prefixLen/">
|
||||
To make it easy to tweak the prefix and generated text lengths we
|
||||
use the <code><a href="/pkg/flag/">flag</a></code> package to parse
|
||||
command-line flags.
|
||||
<br/><br/>
|
||||
These calls to <code>flag.Int</code> register new flags with the
|
||||
<code>flag</code> package. The arguments to <code>Int</code> are the
|
||||
flag name, its default value, and a description. The <code>Int</code>
|
||||
function returns a pointer to an integer that will contain the
|
||||
user-supplied value (or the default value if the flag was omitted on
|
||||
the command-line).
|
||||
</step>
|
||||
|
||||
<step title="Program set up" src="doc/codewalk/markov.go:/flag.Parse/,/rand.Seed/">
|
||||
The <code>main</code> function begins by parsing the command-line
|
||||
flags with <code>flag.Parse</code> and seeding the <code>rand</code>
|
||||
package's random number generator with the current time.
|
||||
<br/><br/>
|
||||
If the command-line flags provided by the user are invalid the
|
||||
<code>flag.Parse</code> function will print an informative usage
|
||||
message and terminate the program.
|
||||
</step>
|
||||
|
||||
<step title="Creating and building a new Chain" src="doc/codewalk/markov.go:/c := NewChain/,/c\.Build/">
|
||||
To create the new <code>Chain</code> we call <code>NewChain</code>
|
||||
with the value of the <code>prefix</code> flag.
|
||||
<br/><br/>
|
||||
To build the chain we call <code>Build</code> with
|
||||
<code>os.Stdin</code> (which implements <code>io.Reader</code>) so
|
||||
that it will read its input from standard input.
|
||||
</step>
|
||||
|
||||
<step title="Generating and printing text" src="doc/codewalk/markov.go:/c\.Generate/,/fmt.Println/">
|
||||
Finally, to generate text we call <code>Generate</code> with
|
||||
the value of the <code>words</code> flag and assigning the result
|
||||
to the variable <code>text</code>.
|
||||
<br/><br/>
|
||||
Then we call <code>fmt.Println</code> to write the text to standard
|
||||
output, followed by a carriage return.
|
||||
</step>
|
||||
|
||||
<step title="Using this program" src="doc/codewalk/markov.go">
|
||||
To use this program, first compile and link it.
|
||||
If you are using <code>6g</code> as your compiler, the command
|
||||
would look something like this:
|
||||
<pre>
|
||||
$ 6g markov.go && 6l -o markov markov.6</pre>
|
||||
And then execute it while piping in some input text:
|
||||
<pre>
|
||||
$ echo "a man a plan a canal panama" | ./markov -prefix=1
|
||||
a plan a man a plan a canal panama
|
||||
</pre>
|
||||
Here's a transcript of generating some text using the Go distribution's
|
||||
README file as source material:
|
||||
<pre>
|
||||
$ ./markov -words=10 < $GOROOT/go/README
|
||||
This is the source code repository for the Go source
|
||||
$ ./markov -prefix=1 -words=10 < $GOROOT/go/README
|
||||
This is the go directory (the one containing this README).
|
||||
$ ./markov -prefix=1 -words=10 < $GOROOT/go/README
|
||||
This is the variable if you have just untarred a</pre>
|
||||
</step>
|
||||
|
||||
<step title="An exercise for the reader" src="doc/codewalk/markov.go">
|
||||
The <code>Generate</code> function does a lot of allocations when it
|
||||
builds the <code>words</code> slice. As an exercise, modify it to
|
||||
take an <code>io.Writer</code> to which it incrementally writes the
|
||||
generated text with <code>Fprint</code>.
|
||||
Aside from being more efficient this makes <code>Generate</code>
|
||||
more symmetrical to <code>Build</code>.
|
||||
</step>
|
||||
|
||||
</codewalk>
|
Loading…
Reference in New Issue
Block a user