mirror of
https://github.com/golang/go
synced 2024-11-12 01:10:21 -07:00
strconv: implement faster parsing of decimal numbers.
The algorithm is the same as in the double-conversion library which also implements Florian Loitsch's fast printing algorithm. It uses extended floats with a 64-bit mantissa, but cannot give an answer for all cases. old ns/op new ns/op speedup BenchmarkAtof64Decimal 332 322 1.0x BenchmarkAtof64Float 385 373 1.0x BenchmarkAtof64FloatExp 9777 419 23.3x BenchmarkAtof64Big 3934 691 5.7x BenchmarkAtof64RandomBits 34060 899 37.9x BenchmarkAtof64RandomFloats 1329 680 2.0x See F. Loitsch, ``Printing Floating-Point Numbers Quickly and Accurately with Integers'', Proceedings of the ACM, 2010. R=ality, rsc CC=golang-dev, remy https://golang.org/cl/5494068
This commit is contained in:
parent
c99f4f5bf6
commit
2368b003e0
@ -10,6 +10,7 @@ GOFILES=\
|
||||
atof.go\
|
||||
atoi.go\
|
||||
decimal.go\
|
||||
extfloat.go\
|
||||
ftoa.go\
|
||||
itoa.go\
|
||||
quote.go\
|
||||
|
@ -263,6 +263,18 @@ func (d *decimal) atof32int() float32 {
|
||||
return f
|
||||
}
|
||||
|
||||
// Reads a uint64 decimal mantissa, which might be truncated.
|
||||
func (d *decimal) atou64() (mant uint64, digits int) {
|
||||
const uint64digits = 19
|
||||
for i, c := range d.d[:d.nd] {
|
||||
if i == uint64digits {
|
||||
return mant, i
|
||||
}
|
||||
mant = 10*mant + uint64(c-'0')
|
||||
}
|
||||
return mant, d.nd
|
||||
}
|
||||
|
||||
// Exact powers of 10.
|
||||
var float64pow10 = []float64{
|
||||
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
|
||||
@ -375,6 +387,17 @@ func atof64(s string) (f float64, err error) {
|
||||
if f, ok := d.atof64(); ok {
|
||||
return f, nil
|
||||
}
|
||||
|
||||
// Try another fast path.
|
||||
ext := new(extFloat)
|
||||
if ok := ext.AssignDecimal(&d); ok {
|
||||
b, ovf := ext.floatBits()
|
||||
f = math.Float64frombits(b)
|
||||
if ovf {
|
||||
err = rangeError(fnParseFloat, s)
|
||||
}
|
||||
return f, err
|
||||
}
|
||||
}
|
||||
b, ovf := d.floatBits(&float64info)
|
||||
f = math.Float64frombits(b)
|
||||
|
@ -5,9 +5,12 @@
|
||||
package strconv_test
|
||||
|
||||
import (
|
||||
"math"
|
||||
"math/rand"
|
||||
"reflect"
|
||||
. "strconv"
|
||||
"testing"
|
||||
"time"
|
||||
)
|
||||
|
||||
type atofTest struct {
|
||||
@ -113,6 +116,17 @@ var atoftests = []atofTest{
|
||||
{"2.2250738585072011e-308", "2.225073858507201e-308", nil},
|
||||
}
|
||||
|
||||
type atofSimpleTest struct {
|
||||
x float64
|
||||
s string
|
||||
}
|
||||
|
||||
var (
|
||||
atofRandomTests []atofSimpleTest
|
||||
benchmarksRandomBits [1024]string
|
||||
benchmarksRandomNormal [1024]string
|
||||
)
|
||||
|
||||
func init() {
|
||||
// The atof routines return NumErrors wrapping
|
||||
// the error and the string. Convert the table above.
|
||||
@ -122,6 +136,31 @@ func init() {
|
||||
test.err = &NumError{"ParseFloat", test.in, test.err}
|
||||
}
|
||||
}
|
||||
|
||||
// Generate random inputs for tests and benchmarks
|
||||
rand.Seed(time.Now().UnixNano())
|
||||
if testing.Short() {
|
||||
atofRandomTests = make([]atofSimpleTest, 100)
|
||||
} else {
|
||||
atofRandomTests = make([]atofSimpleTest, 10000)
|
||||
}
|
||||
for i := range atofRandomTests {
|
||||
n := uint64(rand.Uint32())<<32 | uint64(rand.Uint32())
|
||||
x := math.Float64frombits(n)
|
||||
s := FormatFloat(x, 'g', -1, 64)
|
||||
atofRandomTests[i] = atofSimpleTest{x, s}
|
||||
}
|
||||
|
||||
for i := range benchmarksRandomBits {
|
||||
bits := uint64(rand.Uint32())<<32 | uint64(rand.Uint32())
|
||||
x := math.Float64frombits(bits)
|
||||
benchmarksRandomBits[i] = FormatFloat(x, 'g', -1, 64)
|
||||
}
|
||||
|
||||
for i := range benchmarksRandomNormal {
|
||||
x := rand.NormFloat64()
|
||||
benchmarksRandomNormal[i] = FormatFloat(x, 'g', -1, 64)
|
||||
}
|
||||
}
|
||||
|
||||
func testAtof(t *testing.T, opt bool) {
|
||||
@ -156,6 +195,19 @@ func TestAtof(t *testing.T) { testAtof(t, true) }
|
||||
|
||||
func TestAtofSlow(t *testing.T) { testAtof(t, false) }
|
||||
|
||||
func TestAtofRandom(t *testing.T) {
|
||||
for _, test := range atofRandomTests {
|
||||
x, _ := ParseFloat(test.s, 64)
|
||||
switch {
|
||||
default:
|
||||
t.Errorf("number %s badly parsed as %b (expected %b)", test.s, test.x, x)
|
||||
case x == test.x:
|
||||
case math.IsNaN(test.x) && math.IsNaN(x):
|
||||
}
|
||||
}
|
||||
t.Logf("tested %d random numbers", len(atofRandomTests))
|
||||
}
|
||||
|
||||
func BenchmarkAtof64Decimal(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
ParseFloat("33909", 64)
|
||||
@ -179,3 +231,15 @@ func BenchmarkAtof64Big(b *testing.B) {
|
||||
ParseFloat("123456789123456789123456789", 64)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkAtof64RandomBits(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
ParseFloat(benchmarksRandomBits[i%1024], 64)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkAtof64RandomFloats(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
ParseFloat(benchmarksRandomNormal[i%1024], 64)
|
||||
}
|
||||
}
|
||||
|
311
src/pkg/strconv/extfloat.go
Normal file
311
src/pkg/strconv/extfloat.go
Normal file
@ -0,0 +1,311 @@
|
||||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package strconv
|
||||
|
||||
import "math"
|
||||
|
||||
// An extFloat represents an extended floating-point number, with more
|
||||
// precision than a float64. It does not try to save bits: the
|
||||
// number represented by the structure is mant*(2^exp), with a negative
|
||||
// sign if neg is true.
|
||||
type extFloat struct {
|
||||
mant uint64
|
||||
exp int
|
||||
neg bool
|
||||
}
|
||||
|
||||
// Powers of ten taken from double-conversion library.
|
||||
// http://code.google.com/p/double-conversion/
|
||||
const (
|
||||
firstPowerOfTen = -348
|
||||
stepPowerOfTen = 8
|
||||
)
|
||||
|
||||
var smallPowersOfTen = [...]extFloat{
|
||||
{1 << 63, -63, false}, // 1
|
||||
{0xa << 60, -60, false}, // 1e1
|
||||
{0x64 << 57, -57, false}, // 1e2
|
||||
{0x3e8 << 54, -54, false}, // 1e3
|
||||
{0x2710 << 50, -50, false}, // 1e4
|
||||
{0x186a0 << 47, -47, false}, // 1e5
|
||||
{0xf4240 << 44, -44, false}, // 1e6
|
||||
{0x989680 << 40, -40, false}, // 1e7
|
||||
}
|
||||
|
||||
var powersOfTen = [...]extFloat{
|
||||
{0xfa8fd5a0081c0288, -1220, false}, // 10^-348
|
||||
{0xbaaee17fa23ebf76, -1193, false}, // 10^-340
|
||||
{0x8b16fb203055ac76, -1166, false}, // 10^-332
|
||||
{0xcf42894a5dce35ea, -1140, false}, // 10^-324
|
||||
{0x9a6bb0aa55653b2d, -1113, false}, // 10^-316
|
||||
{0xe61acf033d1a45df, -1087, false}, // 10^-308
|
||||
{0xab70fe17c79ac6ca, -1060, false}, // 10^-300
|
||||
{0xff77b1fcbebcdc4f, -1034, false}, // 10^-292
|
||||
{0xbe5691ef416bd60c, -1007, false}, // 10^-284
|
||||
{0x8dd01fad907ffc3c, -980, false}, // 10^-276
|
||||
{0xd3515c2831559a83, -954, false}, // 10^-268
|
||||
{0x9d71ac8fada6c9b5, -927, false}, // 10^-260
|
||||
{0xea9c227723ee8bcb, -901, false}, // 10^-252
|
||||
{0xaecc49914078536d, -874, false}, // 10^-244
|
||||
{0x823c12795db6ce57, -847, false}, // 10^-236
|
||||
{0xc21094364dfb5637, -821, false}, // 10^-228
|
||||
{0x9096ea6f3848984f, -794, false}, // 10^-220
|
||||
{0xd77485cb25823ac7, -768, false}, // 10^-212
|
||||
{0xa086cfcd97bf97f4, -741, false}, // 10^-204
|
||||
{0xef340a98172aace5, -715, false}, // 10^-196
|
||||
{0xb23867fb2a35b28e, -688, false}, // 10^-188
|
||||
{0x84c8d4dfd2c63f3b, -661, false}, // 10^-180
|
||||
{0xc5dd44271ad3cdba, -635, false}, // 10^-172
|
||||
{0x936b9fcebb25c996, -608, false}, // 10^-164
|
||||
{0xdbac6c247d62a584, -582, false}, // 10^-156
|
||||
{0xa3ab66580d5fdaf6, -555, false}, // 10^-148
|
||||
{0xf3e2f893dec3f126, -529, false}, // 10^-140
|
||||
{0xb5b5ada8aaff80b8, -502, false}, // 10^-132
|
||||
{0x87625f056c7c4a8b, -475, false}, // 10^-124
|
||||
{0xc9bcff6034c13053, -449, false}, // 10^-116
|
||||
{0x964e858c91ba2655, -422, false}, // 10^-108
|
||||
{0xdff9772470297ebd, -396, false}, // 10^-100
|
||||
{0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92
|
||||
{0xf8a95fcf88747d94, -343, false}, // 10^-84
|
||||
{0xb94470938fa89bcf, -316, false}, // 10^-76
|
||||
{0x8a08f0f8bf0f156b, -289, false}, // 10^-68
|
||||
{0xcdb02555653131b6, -263, false}, // 10^-60
|
||||
{0x993fe2c6d07b7fac, -236, false}, // 10^-52
|
||||
{0xe45c10c42a2b3b06, -210, false}, // 10^-44
|
||||
{0xaa242499697392d3, -183, false}, // 10^-36
|
||||
{0xfd87b5f28300ca0e, -157, false}, // 10^-28
|
||||
{0xbce5086492111aeb, -130, false}, // 10^-20
|
||||
{0x8cbccc096f5088cc, -103, false}, // 10^-12
|
||||
{0xd1b71758e219652c, -77, false}, // 10^-4
|
||||
{0x9c40000000000000, -50, false}, // 10^4
|
||||
{0xe8d4a51000000000, -24, false}, // 10^12
|
||||
{0xad78ebc5ac620000, 3, false}, // 10^20
|
||||
{0x813f3978f8940984, 30, false}, // 10^28
|
||||
{0xc097ce7bc90715b3, 56, false}, // 10^36
|
||||
{0x8f7e32ce7bea5c70, 83, false}, // 10^44
|
||||
{0xd5d238a4abe98068, 109, false}, // 10^52
|
||||
{0x9f4f2726179a2245, 136, false}, // 10^60
|
||||
{0xed63a231d4c4fb27, 162, false}, // 10^68
|
||||
{0xb0de65388cc8ada8, 189, false}, // 10^76
|
||||
{0x83c7088e1aab65db, 216, false}, // 10^84
|
||||
{0xc45d1df942711d9a, 242, false}, // 10^92
|
||||
{0x924d692ca61be758, 269, false}, // 10^100
|
||||
{0xda01ee641a708dea, 295, false}, // 10^108
|
||||
{0xa26da3999aef774a, 322, false}, // 10^116
|
||||
{0xf209787bb47d6b85, 348, false}, // 10^124
|
||||
{0xb454e4a179dd1877, 375, false}, // 10^132
|
||||
{0x865b86925b9bc5c2, 402, false}, // 10^140
|
||||
{0xc83553c5c8965d3d, 428, false}, // 10^148
|
||||
{0x952ab45cfa97a0b3, 455, false}, // 10^156
|
||||
{0xde469fbd99a05fe3, 481, false}, // 10^164
|
||||
{0xa59bc234db398c25, 508, false}, // 10^172
|
||||
{0xf6c69a72a3989f5c, 534, false}, // 10^180
|
||||
{0xb7dcbf5354e9bece, 561, false}, // 10^188
|
||||
{0x88fcf317f22241e2, 588, false}, // 10^196
|
||||
{0xcc20ce9bd35c78a5, 614, false}, // 10^204
|
||||
{0x98165af37b2153df, 641, false}, // 10^212
|
||||
{0xe2a0b5dc971f303a, 667, false}, // 10^220
|
||||
{0xa8d9d1535ce3b396, 694, false}, // 10^228
|
||||
{0xfb9b7cd9a4a7443c, 720, false}, // 10^236
|
||||
{0xbb764c4ca7a44410, 747, false}, // 10^244
|
||||
{0x8bab8eefb6409c1a, 774, false}, // 10^252
|
||||
{0xd01fef10a657842c, 800, false}, // 10^260
|
||||
{0x9b10a4e5e9913129, 827, false}, // 10^268
|
||||
{0xe7109bfba19c0c9d, 853, false}, // 10^276
|
||||
{0xac2820d9623bf429, 880, false}, // 10^284
|
||||
{0x80444b5e7aa7cf85, 907, false}, // 10^292
|
||||
{0xbf21e44003acdd2d, 933, false}, // 10^300
|
||||
{0x8e679c2f5e44ff8f, 960, false}, // 10^308
|
||||
{0xd433179d9c8cb841, 986, false}, // 10^316
|
||||
{0x9e19db92b4e31ba9, 1013, false}, // 10^324
|
||||
{0xeb96bf6ebadf77d9, 1039, false}, // 10^332
|
||||
{0xaf87023b9bf0ee6b, 1066, false}, // 10^340
|
||||
}
|
||||
|
||||
// floatBits returns the bits of the float64 that best approximates
|
||||
// the extFloat passed as receiver. Overflow is set to true if
|
||||
// the resulting float64 is ±Inf.
|
||||
func (f *extFloat) floatBits() (bits uint64, overflow bool) {
|
||||
flt := &float64info
|
||||
f.Normalize()
|
||||
|
||||
exp := f.exp + 63
|
||||
|
||||
// Exponent too small.
|
||||
if exp < flt.bias+1 {
|
||||
n := flt.bias + 1 - exp
|
||||
f.mant >>= uint(n)
|
||||
exp += n
|
||||
}
|
||||
|
||||
// Extract 1+flt.mantbits bits.
|
||||
mant := f.mant >> (63 - flt.mantbits)
|
||||
if f.mant&(1<<(62-flt.mantbits)) != 0 {
|
||||
// Round up.
|
||||
mant += 1
|
||||
}
|
||||
|
||||
// Rounding might have added a bit; shift down.
|
||||
if mant == 2<<flt.mantbits {
|
||||
mant >>= 1
|
||||
exp++
|
||||
}
|
||||
|
||||
// Infinities.
|
||||
if exp-flt.bias >= 1<<flt.expbits-1 {
|
||||
goto overflow
|
||||
}
|
||||
|
||||
// Denormalized?
|
||||
if mant&(1<<flt.mantbits) == 0 {
|
||||
exp = flt.bias
|
||||
}
|
||||
goto out
|
||||
|
||||
overflow:
|
||||
// ±Inf
|
||||
mant = 0
|
||||
exp = 1<<flt.expbits - 1 + flt.bias
|
||||
overflow = true
|
||||
|
||||
out:
|
||||
// Assemble bits.
|
||||
bits = mant & (uint64(1)<<flt.mantbits - 1)
|
||||
bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
|
||||
if f.neg {
|
||||
bits |= 1 << (flt.mantbits + flt.expbits)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Assign sets f to the value of x.
|
||||
func (f *extFloat) Assign(x float64) {
|
||||
if x < 0 {
|
||||
x = -x
|
||||
f.neg = true
|
||||
}
|
||||
x, f.exp = math.Frexp(x)
|
||||
f.mant = uint64(x * float64(1<<64))
|
||||
f.exp -= 64
|
||||
}
|
||||
|
||||
// Normalize normalizes f so that the highest bit of the mantissa is
|
||||
// set, and returns the number by which the mantissa was left-shifted.
|
||||
func (f *extFloat) Normalize() uint {
|
||||
if f.mant == 0 {
|
||||
return 0
|
||||
}
|
||||
exp_before := f.exp
|
||||
for f.mant < (1 << 55) {
|
||||
f.mant <<= 8
|
||||
f.exp -= 8
|
||||
}
|
||||
for f.mant < (1 << 63) {
|
||||
f.mant <<= 1
|
||||
f.exp -= 1
|
||||
}
|
||||
return uint(exp_before - f.exp)
|
||||
}
|
||||
|
||||
// Multiply sets f to the product f*g: the result is correctly rounded,
|
||||
// but not normalized.
|
||||
func (f *extFloat) Multiply(g extFloat) {
|
||||
fhi, flo := f.mant>>32, uint64(uint32(f.mant))
|
||||
ghi, glo := g.mant>>32, uint64(uint32(g.mant))
|
||||
|
||||
// Cross products.
|
||||
cross1 := fhi * glo
|
||||
cross2 := flo * ghi
|
||||
|
||||
// f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo
|
||||
f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32)
|
||||
rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32)
|
||||
// Round up.
|
||||
rem += (1 << 31)
|
||||
|
||||
f.mant += (rem >> 32)
|
||||
f.exp = f.exp + g.exp + 64
|
||||
}
|
||||
|
||||
var uint64pow10 = [...]uint64{
|
||||
1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
|
||||
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
|
||||
}
|
||||
|
||||
// AssignDecimal sets f to an approximate value of the decimal d. It
|
||||
// returns true if the value represented by f is guaranteed to be the
|
||||
// best approximation of d after being rounded to a float64.
|
||||
func (f *extFloat) AssignDecimal(d *decimal) (ok bool) {
|
||||
const uint64digits = 19
|
||||
const errorscale = 8
|
||||
mant10, digits := d.atou64()
|
||||
exp10 := d.dp - digits
|
||||
errors := 0 // An upper bound for error, computed in errorscale*ulp.
|
||||
|
||||
if digits < d.nd {
|
||||
// the decimal number was truncated.
|
||||
errors += errorscale / 2
|
||||
}
|
||||
|
||||
f.mant = mant10
|
||||
f.exp = 0
|
||||
f.neg = d.neg
|
||||
|
||||
// Multiply by powers of ten.
|
||||
i := (exp10 - firstPowerOfTen) / stepPowerOfTen
|
||||
if exp10 < firstPowerOfTen || i >= len(powersOfTen) {
|
||||
return false
|
||||
}
|
||||
adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen
|
||||
|
||||
// We multiply by exp%step
|
||||
if digits+adjExp <= uint64digits {
|
||||
// We can multiply the mantissa
|
||||
f.mant *= uint64(float64pow10[adjExp])
|
||||
f.Normalize()
|
||||
} else {
|
||||
f.Normalize()
|
||||
f.Multiply(smallPowersOfTen[adjExp])
|
||||
errors += errorscale / 2
|
||||
}
|
||||
|
||||
// We multiply by 10 to the exp - exp%step.
|
||||
f.Multiply(powersOfTen[i])
|
||||
if errors > 0 {
|
||||
errors += 1
|
||||
}
|
||||
errors += errorscale / 2
|
||||
|
||||
// Normalize
|
||||
shift := f.Normalize()
|
||||
errors <<= shift
|
||||
|
||||
// Now f is a good approximation of the decimal.
|
||||
// Check whether the error is too large: that is, if the mantissa
|
||||
// is perturbated by the error, the resulting float64 will change.
|
||||
// The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits.
|
||||
//
|
||||
// In many cases the approximation will be good enough.
|
||||
const denormalExp = -1023 - 63
|
||||
flt := &float64info
|
||||
var extrabits uint
|
||||
if f.exp <= denormalExp || f.exp >= 1023-64 {
|
||||
extrabits = uint(63 - flt.mantbits + 1 + uint(denormalExp-f.exp))
|
||||
} else {
|
||||
extrabits = uint(63 - flt.mantbits)
|
||||
}
|
||||
|
||||
halfway := uint64(1) << (extrabits - 1)
|
||||
mant_extra := f.mant & (1<<extrabits - 1)
|
||||
|
||||
// Do a signed comparison here! If the error estimate could make
|
||||
// the mantissa round differently for the conversion to double,
|
||||
// then we can't give a definite answer.
|
||||
if int64(halfway)-int64(errors) < int64(mant_extra) &&
|
||||
int64(mant_extra) < int64(halfway)+int64(errors) {
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}
|
Loading…
Reference in New Issue
Block a user