1
0
mirror of https://github.com/golang/go synced 2024-11-18 16:14:46 -07:00

internal/lsp/fuzzy: add fuzzy matching library

This change uses a fuzzy matching library to score completion results.

Updates golang/go#32754

Change-Id: Ia7771b33534de393a865443e05c0fcbf1e9a969b
Reviewed-on: https://go-review.googlesource.com/c/tools/+/184441
Run-TryBot: Rebecca Stambler <rstambler@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Cottrell <iancottrell@google.com>
This commit is contained in:
Rebecca Stambler 2019-07-01 17:08:29 -04:00
parent 719fbf7c21
commit 2214986f16
6 changed files with 1169 additions and 4 deletions

View File

@ -30,7 +30,7 @@ func (s *Server) completion(ctx context.Context, params *protocol.CompletionPara
if err != nil {
return nil, err
}
items, surrounding, err := source.Completion(ctx, view, f, rng.Start, source.CompletionOptions{
candidates, surrounding, err := source.Completion(ctx, view, f, rng.Start, source.CompletionOptions{
DeepComplete: s.useDeepCompletions,
})
if err != nil {
@ -58,7 +58,7 @@ func (s *Server) completion(ctx context.Context, params *protocol.CompletionPara
}
return &protocol.CompletionList{
IsIncomplete: false,
Items: toProtocolCompletionItems(items, prefix, insertionRng, s.insertTextFormat, s.usePlaceholders, s.useDeepCompletions),
Items: toProtocolCompletionItems(candidates, prefix, insertionRng, s.insertTextFormat, s.usePlaceholders, s.useDeepCompletions),
}, nil
}

185
internal/lsp/fuzzy/input.go Normal file
View File

@ -0,0 +1,185 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fuzzy
import (
"unicode"
)
// Input specifies the type of the input. This influences how the runes are interpreted wrt to
// segmenting the input.
type Input int
const (
// Text represents a text input type. Input is not segmented.
Text Input = iota
// Filename represents a filepath input type with '/' segment delimitors.
Filename
// Symbol represents a symbol input type with '.' and ':' segment delimitors.
Symbol
)
// RuneRole specifies the role of a rune in the context of an input.
type RuneRole byte
const (
// RNone specifies a rune without any role in the input (i.e., whitespace/non-ASCII).
RNone RuneRole = iota
// RSep specifies a rune with the role of segment separator.
RSep
// RTail specifies a rune which is a lower-case tail in a word in the input.
RTail
// RUCTail specifies a rune which is an upper-case tail in a word in the input.
RUCTail
// RHead specifies a rune which is the first character in a word in the input.
RHead
)
// RuneRoles detects the roles of each byte rune in an input string and stores it in the output
// slice. The rune role depends on the input type. Stops when it parsed all the runes in the string
// or when it filled the output. If output is nil, then it gets created.
func RuneRoles(str string, input Input, reuse []RuneRole) []RuneRole {
var output []RuneRole
if cap(reuse) < len(str) {
output = make([]RuneRole, 0, len(str))
} else {
output = reuse[:0]
}
prev, prev2 := rtNone, rtNone
for i := 0; i < len(str); i++ {
r := rune(str[i])
role := RNone
curr := rtLower
if str[i] <= unicode.MaxASCII {
curr = runeType(rt[str[i]] - '0')
}
if curr == rtLower {
if prev == rtNone || prev == rtPunct {
role = RHead
} else {
role = RTail
}
} else if curr == rtUpper {
role = RHead
if prev == rtUpper {
// This and previous characters are both upper case.
if i+1 == len(str) {
// This is last character, previous was also uppercase -> this is UCTail
// i.e., (current char is C): aBC / BC / ABC
role = RUCTail
}
}
} else if curr == rtPunct {
switch {
case input == Filename && r == '/':
role = RSep
case input == Symbol && r == '.':
role = RSep
case input == Symbol && r == ':':
role = RSep
}
}
if curr != rtLower {
if i > 1 && output[i-1] == RHead && prev2 == rtUpper && (output[i-2] == RHead || output[i-2] == RUCTail) {
// The previous two characters were uppercase. The current one is not a lower case, so the
// previous one can't be a HEAD. Make it a UCTail.
// i.e., (last char is current char - B must be a UCTail): ABC / ZABC / AB.
output[i-1] = RUCTail
}
}
output = append(output, role)
prev2 = prev
prev = curr
}
return output
}
type runeType byte
const (
rtNone runeType = iota
rtPunct
rtLower
rtUpper
)
const rt = "00000000000000000000000000000000000000000000001122222222221000000333333333333333333333333330000002222222222222222222222222200000"
// LastSegment returns the substring representing the last segment from the input, where each
// byte has an associated RuneRole in the roles slice. This makes sense only for inputs of Symbol
// or Filename type.
func LastSegment(input string, roles []RuneRole) string {
// Exclude ending separators.
end := len(input) - 1
for end >= 0 && roles[end] == RSep {
end--
}
if end < 0 {
return ""
}
start := end - 1
for start >= 0 && roles[start] != RSep {
start--
}
return input[start+1 : end+1]
}
// ToLower transforms the input string to lower case, which is stored in the output byte slice.
// The lower casing considers only ASCII values - non ASCII values are left unmodified.
// Stops when parsed all input or when it filled the output slice. If output is nil, then it gets
// created.
func ToLower(input string, reuse []byte) []byte {
output := reuse
if cap(reuse) < len(input) {
output = make([]byte, len(input))
}
for i := 0; i < len(input); i++ {
r := rune(input[i])
if r <= unicode.MaxASCII {
if 'A' <= r && r <= 'Z' {
r += 'a' - 'A'
}
}
output[i] = byte(r)
}
return output[:len(input)]
}
// WordConsumer defines a consumer for a word delimited by the [start,end) byte offsets in an input
// (start is inclusive, end is exclusive).
type WordConsumer func(start, end int)
// Words find word delimiters in an input based on its bytes' mappings to rune roles. The offset
// delimiters for each word are fed to the provided consumer function.
func Words(roles []RuneRole, consume WordConsumer) {
var wordStart int
for i, r := range roles {
switch r {
case RUCTail, RTail:
case RHead, RNone, RSep:
if i != wordStart {
consume(wordStart, i)
}
wordStart = i
if r != RHead {
// Skip this character.
wordStart = i + 1
}
}
}
if wordStart != len(roles) {
consume(wordStart, len(roles))
}
}

View File

@ -0,0 +1,186 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fuzzy_test
import (
"bytes"
"sort"
"testing"
"golang.org/x/tools/internal/lsp/fuzzy"
)
var rolesTests = []struct {
str string
input fuzzy.Input
want string
}{
{str: "abc", want: "Ccc", input: fuzzy.Text},
{str: ".abc", want: " Ccc", input: fuzzy.Text},
{str: "abc def", want: "Ccc Ccc", input: fuzzy.Text},
{str: "SWT MyID", want: "Cuu CcCu", input: fuzzy.Text},
{str: "ID", want: "Cu", input: fuzzy.Text},
{str: "IDD", want: "Cuu", input: fuzzy.Text},
{str: " ID ", want: " Cu ", input: fuzzy.Text},
{str: "IDSome", want: "CuCccc", input: fuzzy.Text},
{str: "0123456789", want: "Cccccccccc", input: fuzzy.Text},
{str: "abcdefghigklmnopqrstuvwxyz", want: "Cccccccccccccccccccccccccc", input: fuzzy.Text},
{str: "ABCDEFGHIGKLMNOPQRSTUVWXYZ", want: "Cuuuuuuuuuuuuuuuuuuuuuuuuu", input: fuzzy.Text},
{str: "こんにちは", want: "Ccccccccccccccc", input: fuzzy.Text}, // We don't parse unicode
{str: ":/.", want: " ", input: fuzzy.Text},
// Filenames
{str: "abc/def", want: "Ccc/Ccc", input: fuzzy.Filename},
{str: " abc_def", want: " Ccc Ccc", input: fuzzy.Filename},
{str: " abc_DDf", want: " Ccc CCc", input: fuzzy.Filename},
{str: ":.", want: " ", input: fuzzy.Filename},
// Symbols
{str: "abc::def::goo", want: "Ccc//Ccc//Ccc", input: fuzzy.Symbol},
{str: "proto::Message", want: "Ccccc//Ccccccc", input: fuzzy.Symbol},
{str: "AbstractSWTFactory", want: "CcccccccCuuCcccccc", input: fuzzy.Symbol},
{str: "Abs012", want: "Cccccc", input: fuzzy.Symbol},
{str: "/", want: " ", input: fuzzy.Symbol},
{str: "fOO", want: "CCu", input: fuzzy.Symbol},
{str: "fo_oo.o_oo", want: "Cc Cc/C Cc", input: fuzzy.Symbol},
}
func rolesString(roles []fuzzy.RuneRole) string {
var buf bytes.Buffer
for _, r := range roles {
buf.WriteByte(" /cuC"[int(r)])
}
return buf.String()
}
func TestRoles(t *testing.T) {
for _, tc := range rolesTests {
gotRoles := make([]fuzzy.RuneRole, len(tc.str))
fuzzy.RuneRoles(tc.str, tc.input, gotRoles)
got := rolesString(gotRoles)
if got != tc.want {
t.Errorf("roles(%s) = %v; want %v", tc.str, got, tc.want)
}
}
}
func words(strWords ...string) [][]byte {
var ret [][]byte
for _, w := range strWords {
ret = append(ret, []byte(w))
}
return ret
}
var wordSplitTests = []struct {
input string
want []string
}{
{
input: "foo bar baz",
want: []string{"foo", "bar", "baz"},
},
{
input: "fooBarBaz",
want: []string{"foo", "Bar", "Baz"},
},
{
input: "FOOBarBAZ",
want: []string{"FOO", "Bar", "BAZ"},
},
{
input: "foo123_bar2Baz3",
want: []string{"foo123", "bar2", "Baz3"},
},
}
func TestWordSplit(t *testing.T) {
for _, tc := range wordSplitTests {
roles := fuzzy.RuneRoles(tc.input, fuzzy.Symbol, nil)
var got []string
consumer := func(i, j int) {
got = append(got, tc.input[i:j])
}
fuzzy.Words(roles, consumer)
if eq := diffStringLists(tc.want, got); !eq {
t.Errorf("input %v: (want %v -> got %v)", tc.input, tc.want, got)
}
}
}
func diffStringLists(a, b []string) bool {
if len(a) != len(b) {
return false
}
sort.Strings(a)
sort.Strings(b)
for i := range a {
if a[i] != b[i] {
return false
}
}
return true
}
var lastSegmentSplitTests = []struct {
str string
input fuzzy.Input
want string
}{
{
str: "identifier",
input: fuzzy.Symbol,
want: "identifier",
},
{
str: "two_words",
input: fuzzy.Symbol,
want: "two_words",
},
{
str: "first::second",
input: fuzzy.Symbol,
want: "second",
},
{
str: "foo.bar.FOOBar_buz123_test",
input: fuzzy.Symbol,
want: "FOOBar_buz123_test",
},
{
str: "golang.org/x/tools/internal/lsp/fuzzy_matcher.go",
input: fuzzy.Filename,
want: "fuzzy_matcher.go",
},
{
str: "golang.org/x/tools/internal/lsp/fuzzy_matcher.go",
input: fuzzy.Text,
want: "golang.org/x/tools/internal/lsp/fuzzy_matcher.go",
},
}
func TestLastSegment(t *testing.T) {
for _, tc := range lastSegmentSplitTests {
roles := fuzzy.RuneRoles(tc.str, tc.input, nil)
got := fuzzy.LastSegment(tc.str, roles)
if got != tc.want {
t.Errorf("str %v: want %v; got %v", tc.str, tc.want, got)
}
}
}
func BenchmarkRoles(b *testing.B) {
str := "AbstractSWTFactory"
out := make([]fuzzy.RuneRole, len(str))
for i := 0; i < b.N; i++ {
fuzzy.RuneRoles(str, fuzzy.Symbol, out)
}
b.SetBytes(int64(len(str)))
}

View File

@ -0,0 +1,437 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package fuzzy implements a fuzzy matching algorithm.
package fuzzy
import (
"bytes"
"fmt"
)
const (
// MaxInputSize is the maximum size of the input scored against the fuzzy matcher. Longer inputs
// will be truncated to this size.
MaxInputSize = 127
// MaxPatternSize is the maximum size of the pattern used to construct the fuzzy matcher. Longer
// inputs are truncated to this size.
MaxPatternSize = 63
)
type scoreVal int
func (s scoreVal) val() int {
return int(s) >> 1
}
func (s scoreVal) prevK() int {
return int(s) & 1
}
func score(val int, prevK int /*0 or 1*/) scoreVal {
return scoreVal(val<<1 + prevK)
}
// Matcher implements a fuzzy matching algorithm for scoring candidates against a pattern.
// The matcher does not support parallel usage.
type Matcher struct {
input Input
pattern string
patternLower []byte // lower-case version of the pattern
patternShort []byte // first characters of the pattern
caseSensitive bool // set if the pattern is mix-cased
patternRoles []RuneRole // the role of each character in the pattern
roles []RuneRole // the role of each character in the tested string
scores [MaxInputSize + 1][MaxPatternSize + 1][2]scoreVal
scoreScale float32
lastCandidateLen int // in bytes
lastCandidateMatched bool
// Here we save the last candidate in lower-case. This is basically a byte slice we reuse for
// performance reasons, so the slice is not reallocated for every candidate.
lowerBuf [MaxInputSize]byte
rolesBuf [MaxInputSize]RuneRole
}
func (m *Matcher) bestK(i, j int) int {
if m.scores[i][j][0].val() < m.scores[i][j][1].val() {
return 1
}
return 0
}
// NewMatcher returns a new fuzzy matcher for scoring candidates against the provided pattern.
func NewMatcher(pattern string, input Input) *Matcher {
if len(pattern) > MaxPatternSize {
pattern = pattern[:MaxPatternSize]
}
m := &Matcher{
input: input,
pattern: pattern,
patternLower: ToLower(pattern, nil),
}
for i, c := range m.patternLower {
if pattern[i] != c {
m.caseSensitive = true
break
}
}
if len(pattern) > 3 {
m.patternShort = m.patternLower[:3]
} else {
m.patternShort = m.patternLower
}
m.patternRoles = RuneRoles(pattern, input, nil)
if len(pattern) > 0 {
maxCharScore := 4
if input == Text {
maxCharScore = 6
}
m.scoreScale = 1 / float32(maxCharScore*len(pattern))
}
return m
}
// SetInput updates the input type for subsequent scoring attempts.
func (m *Matcher) SetInput(input Input) {
if m.input == input {
return
}
m.input = input
m.patternRoles = RuneRoles(m.pattern, input, m.patternRoles)
}
// Score returns the score returned by matching the candidate to the pattern.
// This is not designed for parallel use. Multiple candidates must be scored sequentally.
// Returns a score between 0 and 1 (0 - no match, 1 - perfect match).
func (m *Matcher) Score(candidate string) float32 {
if len(candidate) > MaxInputSize {
candidate = candidate[:MaxInputSize]
}
lower := ToLower(candidate, m.lowerBuf[:])
m.lastCandidateLen = len(candidate)
if len(m.pattern) == 0 {
// Empty patterns perfectly match candidates.
return 1
}
if m.match(candidate, lower) {
sc := m.computeScore(candidate, lower)
if sc > minScore/2 && !m.poorMatch() {
m.lastCandidateMatched = true
if len(m.pattern) == len(candidate) {
// Perfect match.
return 1
}
if sc < 0 {
sc = 0
}
normalizedScore := float32(sc) * m.scoreScale
if normalizedScore > 1 {
normalizedScore = 1
}
return normalizedScore
}
}
m.lastCandidateMatched = false
return -1
}
const minScore = -10000
// MatchedRanges returns matches ranges for the last scored string as a flattened array of
// [begin, end) byte offset pairs.
func (m *Matcher) MatchedRanges() []int {
if len(m.pattern) == 0 || !m.lastCandidateMatched {
return nil
}
i, j := m.lastCandidateLen, len(m.pattern)
if m.scores[i][j][0].val() < minScore/2 && m.scores[i][j][1].val() < minScore/2 {
return nil
}
var ret []int
k := m.bestK(i, j)
for i > 0 {
take := (k == 1)
k = m.scores[i][j][k].prevK()
if take {
if len(ret) == 0 || ret[len(ret)-1] != i {
ret = append(ret, i)
ret = append(ret, i-1)
} else {
ret[len(ret)-1] = i - 1
}
j--
}
i--
}
// Reverse slice.
for i := 0; i < len(ret)/2; i++ {
ret[i], ret[len(ret)-1-i] = ret[len(ret)-1-i], ret[i]
}
return ret
}
func (m *Matcher) match(candidate string, candidateLower []byte) bool {
i, j := 0, 0
for ; i < len(candidateLower) && j < len(m.patternLower); i++ {
if candidateLower[i] == m.patternLower[j] {
j++
}
}
if j != len(m.patternLower) {
return false
}
// The input passes the simple test against pattern, so it is time to classify its characters.
// Character roles are used below to find the last segment.
m.roles = RuneRoles(candidate, m.input, m.rolesBuf[:])
if m.input != Text {
sep := len(candidateLower) - 1
for sep >= i && m.roles[sep] != RSep {
sep--
}
if sep >= i {
// We are not in the last segment, check that we have at least one character match in the last
// segment of the candidate.
return bytes.IndexByte(candidateLower[sep:], m.patternLower[len(m.pattern)-1]) != -1
}
}
return true
}
func (m *Matcher) computeScore(candidate string, candidateLower []byte) int {
pattLen, candLen := len(m.pattern), len(candidate)
for j := 0; j <= len(m.pattern); j++ {
m.scores[0][j][0] = minScore << 1
m.scores[0][j][1] = minScore << 1
}
m.scores[0][0][0] = score(0, 0) // Start with 0.
segmentsLeft, lastSegStart := 1, 0
for i := 0; i < candLen; i++ {
if m.roles[i] == RSep {
segmentsLeft++
lastSegStart = i + 1
}
}
// A per-character bonus for a consecutive match.
consecutiveBonus := 2
if m.input == Text {
// Consecutive matches for text are more important.
consecutiveBonus = 4
}
wordIdx := 0 // Word count within segment.
for i := 1; i <= candLen; i++ {
role := m.roles[i-1]
isHead := role == RHead
if isHead {
wordIdx++
} else if role == RSep && segmentsLeft > 1 {
wordIdx = 0
segmentsLeft--
}
var skipPenalty int
if segmentsLeft == 1 && isHead && m.input != Text {
// Skipping a word.
skipPenalty++
}
if i-1 == lastSegStart {
// Skipping the start of the last segment.
skipPenalty += 3
}
for j := 0; j <= pattLen; j++ {
// By default, we don't have a match. Fill in the skip data.
m.scores[i][j][1] = minScore << 1
if segmentsLeft > 1 && j == pattLen {
// The very last pattern character can only be matched in the last segment.
m.scores[i][j][0] = minScore << 1
continue
}
// Compute the skip score.
k := 0
if m.scores[i-1][j][0].val() < m.scores[i-1][j][1].val() {
k = 1
}
skipScore := m.scores[i-1][j][k].val()
// Do not penalize missing characters after the last matched segment.
if j != pattLen {
skipScore -= skipPenalty
}
m.scores[i][j][0] = score(skipScore, k)
if j == 0 || candidateLower[i-1] != m.patternLower[j-1] {
// Not a match.
continue
}
pRole := m.patternRoles[j-1]
if role == RTail && pRole == RHead {
if j > 1 {
// Not a match: a head in the pattern matches a tail character in the candidate.
continue
}
// Special treatment for the first character of the pattern. We allow
// matches in the middle of a word if they are long enough, at least
// min(3, pattern.length) characters.
if !bytes.HasPrefix(candidateLower[i-1:], m.patternShort) {
continue
}
}
// Compute the char score.
var charScore int
// Bonus 1: the char is in the candidate's last segment.
if segmentsLeft <= 1 {
charScore++
}
// Bonus 2: Case match or a Head in the pattern aligns with one in the word.
// Single-case patterns lack segmentation signals and we assume any character
// can be a head of a segment.
if candidate[i-1] == m.pattern[j-1] || role == RHead && (!m.caseSensitive || pRole == RHead) {
charScore++
}
// Penalty 1: pattern char is Head, candidate char is Tail.
if role == RTail && pRole == RHead {
charScore--
}
// Penalty 2: first pattern character matched in the middle of a word.
if j == 1 && role == RTail {
charScore -= 4
}
// Third dimension encodes whether there is a gap between the previous match and the current
// one.
for k := 0; k < 2; k++ {
sc := m.scores[i-1][j-1][k].val() + charScore
isConsecutive := k == 1 || i-1 == 0 || i-1 == lastSegStart
if isConsecutive || (m.input == Text && j-1 == 0) {
// Bonus 3: a consecutive match. First character match also gets a bonus to
// ensure prefix final match score normalizes to 1.0.
// Logically, this is a part of charScore, but we have to compute it here because it
// only applies for consecutive matches (k == 1).
sc += consecutiveBonus
}
if k == 0 {
// Penalty 3: Matching inside a segment (and previous char wasn't matched). Penalize for the lack
// of alignment.
if role == RTail || role == RUCTail {
sc -= 3
}
}
if sc > m.scores[i][j][1].val() {
m.scores[i][j][1] = score(sc, k)
}
}
}
}
result := m.scores[len(candidate)][len(m.pattern)][m.bestK(len(candidate), len(m.pattern))].val()
return result
}
// ScoreTable returns the score table computed for the provided candidate. Used only for debugging.
func (m *Matcher) ScoreTable(candidate string) string {
var buf bytes.Buffer
var line1, line2, separator bytes.Buffer
line1.WriteString("\t")
line2.WriteString("\t")
for j := 0; j < len(m.pattern); j++ {
line1.WriteString(fmt.Sprintf("%c\t\t", m.pattern[j]))
separator.WriteString("----------------")
}
buf.WriteString(line1.String())
buf.WriteString("\n")
buf.WriteString(separator.String())
buf.WriteString("\n")
for i := 1; i <= len(candidate); i++ {
line1.Reset()
line2.Reset()
line1.WriteString(fmt.Sprintf("%c\t", candidate[i-1]))
line2.WriteString("\t")
for j := 1; j <= len(m.pattern); j++ {
line1.WriteString(fmt.Sprintf("M%6d(%c)\t", m.scores[i][j][0].val(), dir(m.scores[i][j][0].prevK())))
line2.WriteString(fmt.Sprintf("H%6d(%c)\t", m.scores[i][j][1].val(), dir(m.scores[i][j][1].prevK())))
}
buf.WriteString(line1.String())
buf.WriteString("\n")
buf.WriteString(line2.String())
buf.WriteString("\n")
buf.WriteString(separator.String())
buf.WriteString("\n")
}
return buf.String()
}
func dir(prevK int) rune {
if prevK == 0 {
return 'M'
}
return 'H'
}
func (m *Matcher) poorMatch() bool {
if len(m.pattern) < 2 {
return false
}
i, j := m.lastCandidateLen, len(m.pattern)
k := m.bestK(i, j)
var counter, len int
for i > 0 {
take := (k == 1)
k = m.scores[i][j][k].prevK()
if take {
len++
if k == 0 && len < 3 && m.roles[i-1] == RTail {
// Short match in the middle of a word
counter++
if counter > 1 {
return true
}
}
j--
} else {
len = 0
}
i--
}
return false
}

View File

@ -0,0 +1,352 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Benchmark results:
//
// BenchmarkMatcher-12 1000000 1615 ns/op 30.95 MB/s 0 B/op 0 allocs/op
//
package fuzzy_test
import (
"bytes"
"fmt"
"math"
"testing"
"golang.org/x/tools/internal/lsp/fuzzy"
)
func ExampleFuzzyMatcher() {
pattern := "TEdit"
candidates := []string{"fuzzy.TextEdit", "ArtEdit", "TED talks about IT"}
// Create a fuzzy matcher for the pattern.
matcher := fuzzy.NewMatcher(pattern, fuzzy.Text)
for _, candidate := range candidates {
// Compute candidate's score against the matcher.
score := matcher.Score(candidate)
if score > -1 {
// Get the substrings in the candidate matching the pattern.
ranges := matcher.MatchedRanges()
fmt.Println(ranges) // Do something with the ranges.
}
}
}
type comparator struct {
f func(val, ref float32) bool
descr string
}
var (
eq = comparator{
f: func(val, ref float32) bool {
return val == ref
},
descr: "==",
}
ge = comparator{
f: func(val, ref float32) bool {
return val >= ref
},
descr: ">=",
}
)
func (c comparator) eval(val, ref float32) bool {
return c.f(val, ref)
}
func (c comparator) String() string {
return c.descr
}
type scoreTest struct {
candidate string
comparator
ref float32
}
var matcherTests = []struct {
pattern string
input fuzzy.Input
tests []scoreTest
}{
{
pattern: "",
input: fuzzy.Text,
tests: []scoreTest{
{"def", eq, 1},
{"Ab stuff c", eq, 1},
},
},
{
pattern: "abc",
input: fuzzy.Text,
tests: []scoreTest{
{"def", eq, -1},
{"abd", eq, -1},
{"abc", ge, 0},
{"Abc", ge, 0},
{"Ab stuff c", ge, 0},
},
},
{
pattern: "Abc",
input: fuzzy.Text,
tests: []scoreTest{
{"def", eq, -1},
{"abd", eq, -1},
{"abc", ge, 0},
{"Abc", ge, 0},
{"Ab stuff c", ge, 0},
},
},
{
pattern: "subs",
input: fuzzy.Filename,
tests: []scoreTest{
{"sub/seq", ge, 0},
{"sub/seq/end", eq, -1},
{"sub/seq/base", ge, 0},
},
},
{
pattern: "subs",
input: fuzzy.Filename,
tests: []scoreTest{
{"//sub/seq", ge, 0},
{"//sub/seq/end", eq, -1},
{"//sub/seq/base", ge, 0},
},
},
}
func TestScore(t *testing.T) {
for _, tc := range matcherTests {
m := fuzzy.NewMatcher(tc.pattern, tc.input)
for _, sct := range tc.tests {
score := m.Score(sct.candidate)
if !sct.comparator.eval(score, sct.ref) {
t.Errorf("not true that m.Score(%s)[=%v] %s %v", sct.candidate, score, sct.comparator, sct.ref)
}
}
}
}
type candidateCompTest struct {
c1 string
comparator comparator
c2 string
}
var compareCandidatesTestCases = []struct {
pattern string
input fuzzy.Input
orderedCandidates []string
}{
{
pattern: "aa",
input: fuzzy.Filename,
orderedCandidates: []string{
"baab",
"bb_aa",
"a/a/a",
"aa_bb",
"aa_b",
"aabb",
"aab",
"b/aa",
},
},
{
pattern: "Foo",
input: fuzzy.Text,
orderedCandidates: []string{
"Barfoo",
"F_o_o",
"Faoo",
"F__oo",
"F_oo",
"FaoFooa",
"BarFoo",
"FooA",
"FooBar",
"Foo",
},
},
}
func TestCompareCandidateScores(t *testing.T) {
for _, tc := range compareCandidatesTestCases {
m := fuzzy.NewMatcher(tc.pattern, tc.input)
var prevScore float32
prevCand := "MIN_SCORE"
for _, cand := range tc.orderedCandidates {
score := m.Score(cand)
if prevScore > score {
t.Errorf("%s[=%v] is scored lower than %s[=%v]", cand, score, prevCand, prevScore)
}
if score < -1 || score > 1 {
t.Errorf("%s score is %v; want value between [-1, 1]", cand, score)
}
prevScore = score
prevCand = cand
}
}
}
var fuzzyMatcherTestCases = []struct {
p string
str string
want string
input fuzzy.Input
}{
// fuzzy.Filename
{p: "aa", str: "a_a/a_a", want: "[a]_a/[a]_a", input: fuzzy.Filename},
{p: "aaaa", str: "a_a/a_a", want: "[a]_[a]/[a]_[a]", input: fuzzy.Filename},
{p: "aaaa", str: "aaaa", want: "[aaaa]", input: fuzzy.Filename},
{p: "aaaa", str: "a_a/a_aaaa", want: "a_a/[a]_[aaa]a", input: fuzzy.Filename},
{p: "aaaa", str: "a_a/aaaaa", want: "a_a/[aaaa]a", input: fuzzy.Filename},
{p: "aaaa", str: "aabaaa", want: "[aa]b[aa]a", input: fuzzy.Filename},
{p: "aaaa", str: "a/baaa", want: "[a]/b[aaa]", input: fuzzy.Filename},
{p: "abcxz", str: "d/abc/abcd/oxz", want: "d/[abc]/abcd/o[xz]", input: fuzzy.Filename},
{p: "abcxz", str: "d/abcd/abc/oxz", want: "d/[abc]d/abc/o[xz]", input: fuzzy.Filename},
// fuzzy.Symbol
{p: "foo", str: "abc::foo", want: "abc::[foo]", input: fuzzy.Symbol},
{p: "foo", str: "foo.foo", want: "foo.[foo]", input: fuzzy.Symbol},
{p: "foo", str: "fo_oo.o_oo", want: "[fo]_oo.[o]_oo", input: fuzzy.Symbol},
{p: "foo", str: "fo_oo.fo_oo", want: "fo_oo.[fo]_[o]o", input: fuzzy.Symbol},
{p: "fo_o", str: "fo_oo.o_oo", want: "[f]o_oo.[o_o]o", input: fuzzy.Symbol},
{p: "fOO", str: "fo_oo.o_oo", want: "[f]o_oo.[o]_[o]o", input: fuzzy.Symbol},
{p: "tedit", str: "foo.TextEdit", want: "foo.[T]ext[Edit]", input: fuzzy.Symbol},
{p: "TEdit", str: "foo.TextEdit", want: "foo.[T]ext[Edit]", input: fuzzy.Symbol},
{p: "Tedit", str: "foo.TextEdit", want: "foo.[T]ext[Edit]", input: fuzzy.Symbol},
{p: "Tedit", str: "foo.Textedit", want: "foo.[Te]xte[dit]", input: fuzzy.Symbol},
{p: "TEdit", str: "foo.Textedit", want: "", input: fuzzy.Symbol},
{p: "te", str: "foo.Textedit", want: "foo.[Te]xtedit", input: fuzzy.Symbol},
{p: "ee", str: "foo.Textedit", want: "", input: fuzzy.Symbol}, // short middle of the word match
{p: "ex", str: "foo.Textedit", want: "foo.T[ex]tedit", input: fuzzy.Symbol},
{p: "exdi", str: "foo.Textedit", want: "", input: fuzzy.Symbol}, // short middle of the word match
{p: "exdit", str: "foo.Textedit", want: "", input: fuzzy.Symbol}, // short middle of the word match
{p: "extdit", str: "foo.Textedit", want: "foo.T[ext]e[dit]", input: fuzzy.Symbol},
{p: "e", str: "foo.Textedit", want: "foo.T[e]xtedit", input: fuzzy.Symbol},
{p: "E", str: "foo.Textedit", want: "foo.T[e]xtedit", input: fuzzy.Symbol},
{p: "ed", str: "foo.Textedit", want: "foo.Text[ed]it", input: fuzzy.Symbol},
{p: "edt", str: "foo.Textedit", want: "", input: fuzzy.Symbol}, // short middle of the word match
{p: "edit", str: "foo.Textedit", want: "foo.Text[edit]", input: fuzzy.Symbol},
{p: "edin", str: "foo.TexteditNum", want: "foo.Text[edi]t[N]um", input: fuzzy.Symbol},
{p: "n", str: "node.GoNodeMax", want: "node.Go[N]odeMax", input: fuzzy.Symbol},
{p: "N", str: "node.GoNodeMax", want: "node.Go[N]odeMax", input: fuzzy.Symbol},
{p: "completio", str: "completion", want: "[completio]n", input: fuzzy.Symbol},
{p: "completio", str: "completion.None", want: "[completi]on.N[o]ne", input: fuzzy.Symbol},
}
func TestFuzzyMatcherRanges(t *testing.T) {
for _, tc := range fuzzyMatcherTestCases {
matcher := fuzzy.NewMatcher(tc.p, tc.input)
score := matcher.Score(tc.str)
if tc.want == "" {
if score >= 0 {
t.Errorf("Score(%s, %s) = %v; want: <= 0", tc.p, tc.str, score)
}
continue
}
if score < 0 {
t.Errorf("Score(%s, %s) = %v, want: > 0", tc.p, tc.str, score)
continue
}
got := highlightMatches(tc.str, matcher)
if tc.want != got {
t.Errorf("highlightMatches(%s, %s) = %v, want: %v", tc.p, tc.str, got, tc.want)
}
}
}
var scoreTestCases = []struct {
p string
str string
want float64
}{
// Score precision up to five digits. Modify if changing the score, but make sure the new values
// are reasonable.
{p: "abc", str: "abc", want: 1},
{p: "abc", str: "Abc", want: 1},
{p: "abc", str: "Abcdef", want: 1},
{p: "strc", str: "StrCat", want: 1},
{p: "abc_def", str: "abc_def_xyz", want: 1},
{p: "abcdef", str: "abc_def_xyz", want: 0.91667},
{p: "abcxyz", str: "abc_def_xyz", want: 0.875},
{p: "sc", str: "StrCat", want: 0.75},
{p: "abc", str: "AbstrBasicCtor", want: 0.75},
{p: "foo", str: "abc::foo", want: 1},
{p: "afoo", str: "abc::foo", want: 0.9375},
{p: "abr", str: "abc::bar", want: 0.5},
{p: "br", str: "abc::bar", want: 0.375},
{p: "aar", str: "abc::bar", want: 0.16667},
{p: "edin", str: "foo.TexteditNum", want: 0},
{p: "ediu", str: "foo.TexteditNum", want: 0},
// We want the next two items to have roughly similar scores.
{p: "up", str: "unique_ptr", want: 0.75},
{p: "up", str: "upper_bound", want: 1},
}
func TestScores(t *testing.T) {
for _, tc := range scoreTestCases {
matcher := fuzzy.NewMatcher(tc.p, fuzzy.Symbol)
got := math.Round(float64(matcher.Score(tc.str))*1e5) / 1e5
if got != tc.want {
t.Errorf("Score(%s, %s) = %v, want: %v", tc.p, tc.str, got, tc.want)
}
}
}
func highlightMatches(str string, matcher *fuzzy.Matcher) string {
matches := matcher.MatchedRanges()
var buf bytes.Buffer
index := 0
for i := 0; i < len(matches)-1; i += 2 {
s, e := matches[i], matches[i+1]
fmt.Fprintf(&buf, "%s[%s]", str[index:s], str[s:e])
index = e
}
buf.WriteString(str[index:])
return buf.String()
}
func BenchmarkMatcher(b *testing.B) {
pattern := "Foo"
candidates := []string{
"F_o_o",
"Barfoo",
"Faoo",
"F__oo",
"F_oo",
"FaoFooa",
"BarFoo",
"FooA",
"FooBar",
"Foo",
}
matcher := fuzzy.NewMatcher(pattern, fuzzy.Text)
b.ResetTimer()
for i := 0; i < b.N; i++ {
for _, c := range candidates {
matcher.Score(c)
}
}
var numBytes int
for _, c := range candidates {
numBytes += len(c)
}
b.SetBytes(int64(numBytes))
}

View File

@ -12,6 +12,7 @@ import (
"go/types"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/internal/lsp/fuzzy"
"golang.org/x/tools/internal/lsp/snippet"
"golang.org/x/tools/internal/lsp/telemetry/trace"
"golang.org/x/tools/internal/span"
@ -149,6 +150,9 @@ type completer struct {
// deepState contains the current state of our deep completion search.
deepState deepCompletionState
// matcher does fuzzy matching of the candidates for the surrounding prefix.
matcher *fuzzy.Matcher
}
type compLitInfo struct {
@ -187,16 +191,17 @@ func (c *completer) setSurrounding(ident *ast.Ident) {
if c.surrounding != nil {
return
}
if !(ident.Pos() <= c.pos && c.pos <= ident.End()) {
return
}
c.surrounding = &Selection{
Content: ident.Name,
Range: span.NewRange(c.view.Session().Cache().FileSet(), ident.Pos(), ident.End()),
Cursor: c.pos,
}
if c.surrounding.Prefix() != "" {
c.matcher = fuzzy.NewMatcher(c.surrounding.Prefix(), fuzzy.Symbol)
}
}
// found adds a candidate completion. We will also search through the object's