1
0
mirror of https://github.com/golang/go synced 2024-11-21 22:14:41 -07:00

sort: use heapsort to bail out quicksort

See http://research.swtch.com/2008/01/killing-quicksort.html for more
info.
Fixes #467.

R=r, rsc
CC=golang-dev
https://golang.org/cl/4591051
This commit is contained in:
Ziad Hatahet 2011-09-07 13:54:33 -04:00 committed by Russ Cox
parent 7b2f214b6c
commit 21e49cbb2d
3 changed files with 128 additions and 12 deletions

View File

@ -0,0 +1,9 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sort
func Heapsort(data Interface) {
heapSort(data, 0, data.Len())
}

View File

@ -37,10 +37,47 @@ func insertionSort(data Interface, a, b int) {
}
}
// siftDown implements the heap property on data[lo, hi).
// first is an offset into the array where the root of the heap lies.
func siftDown(data Interface, lo, hi, first int) {
root := lo
for {
child := 2*root + 1
if child >= hi {
break
}
if child+1 < hi && data.Less(first+child, first+child+1) {
child++
}
if !data.Less(first+root, first+child) {
return
}
data.Swap(first+root, first+child)
root = child
}
}
func heapSort(data Interface, a, b int) {
first := a
lo := 0
hi := b - a
// Build heap with greatest element at top.
for i := (hi - 1) / 2; i >= 0; i-- {
siftDown(data, i, hi, first)
}
// Pop elements, largest first, into end of data.
for i := hi - 1; i >= 0; i-- {
data.Swap(first, first+i)
siftDown(data, lo, i, first)
}
}
// Quicksort, following Bentley and McIlroy,
// ``Engineering a Sort Function,'' SP&E November 1993.
// Move the median of the three values data[a], data[b], data[c] into data[a].
// medianOfThree moves the median of the three values data[a], data[b], data[c] into data[a].
func medianOfThree(data Interface, a, b, c int) {
m0 := b
m1 := a
@ -123,16 +160,21 @@ func doPivot(data Interface, lo, hi int) (midlo, midhi int) {
return lo + b - a, hi - (d - c)
}
func quickSort(data Interface, a, b int) {
func quickSort(data Interface, a, b, maxDepth int) {
for b-a > 7 {
if maxDepth == 0 {
heapSort(data, a, b)
return
}
maxDepth--
mlo, mhi := doPivot(data, a, b)
// Avoiding recursion on the larger subproblem guarantees
// a stack depth of at most lg(b-a).
if mlo-a < b-mhi {
quickSort(data, a, mlo)
quickSort(data, a, mlo, maxDepth)
a = mhi // i.e., quickSort(data, mhi, b)
} else {
quickSort(data, mhi, b)
quickSort(data, mhi, b, maxDepth)
b = mlo // i.e., quickSort(data, a, mlo)
}
}
@ -141,7 +183,16 @@ func quickSort(data Interface, a, b int) {
}
}
func Sort(data Interface) { quickSort(data, 0, data.Len()) }
func Sort(data Interface) {
// Switch to heapsort if depth of 2*ceil(lg(n)) is reached.
n := data.Len()
maxDepth := 0
for 1<<uint(maxDepth) < n {
maxDepth++
}
maxDepth *= 2
quickSort(data, 0, data.Len(), maxDepth)
}
func IsSorted(data Interface) bool {
n := data.Len()

View File

@ -169,6 +169,13 @@ func (d *testingData) Swap(i, j int) {
d.data[i], d.data[j] = d.data[j], d.data[i]
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func lg(n int) int {
i := 0
for 1<<uint(i) < n {
@ -177,7 +184,7 @@ func lg(n int) int {
return i
}
func TestBentleyMcIlroy(t *testing.T) {
func testBentleyMcIlroy(t *testing.T, sort func(Interface)) {
sizes := []int{100, 1023, 1024, 1025}
if testing.Short() {
sizes = []int{100, 127, 128, 129}
@ -253,7 +260,7 @@ func TestBentleyMcIlroy(t *testing.T) {
desc := fmt.Sprintf("n=%d m=%d dist=%s mode=%s", n, m, dists[dist], modes[mode])
d := &testingData{desc, t, mdata[0:n], n * lg(n) * 12 / 10, 0}
Sort(d)
sort(d)
// If we were testing C qsort, we'd have to make a copy
// of the slice and sort it ourselves and then compare
@ -274,9 +281,58 @@ func TestBentleyMcIlroy(t *testing.T) {
}
}
func min(a, b int) int {
if a < b {
return a
}
return b
func TestSortBM(t *testing.T) {
testBentleyMcIlroy(t, Sort)
}
func TestHeapsortBM(t *testing.T) {
testBentleyMcIlroy(t, Heapsort)
}
// This is based on the "antiquicksort" implementation by M. Douglas McIlroy.
// See http://www.cs.dartmouth.edu/~doug/mdmspe.pdf for more info.
type adversaryTestingData struct {
data []int
keys map[int]int
candidate int
}
func (d *adversaryTestingData) Len() int { return len(d.data) }
func (d *adversaryTestingData) Less(i, j int) bool {
if _, present := d.keys[i]; !present {
if _, present := d.keys[j]; !present {
if i == d.candidate {
d.keys[i] = len(d.keys)
} else {
d.keys[j] = len(d.keys)
}
}
}
if _, present := d.keys[i]; !present {
d.candidate = i
return false
}
if _, present := d.keys[j]; !present {
d.candidate = j
return true
}
return d.keys[i] >= d.keys[j]
}
func (d *adversaryTestingData) Swap(i, j int) {
d.data[i], d.data[j] = d.data[j], d.data[i]
}
func TestAdversary(t *testing.T) {
const size = 100
data := make([]int, size)
for i := 0; i < size; i++ {
data[i] = i
}
d := &adversaryTestingData{data, make(map[int]int), 0}
Sort(d) // This should degenerate to heapsort.
}