mirror of
https://github.com/golang/go
synced 2024-11-24 23:07:56 -07:00
sort: use heapsort to bail out quicksort
See http://research.swtch.com/2008/01/killing-quicksort.html for more info. Fixes #467. R=r, rsc CC=golang-dev https://golang.org/cl/4591051
This commit is contained in:
parent
7b2f214b6c
commit
21e49cbb2d
9
src/pkg/sort/export_test.go
Normal file
9
src/pkg/sort/export_test.go
Normal file
@ -0,0 +1,9 @@
|
||||
// Copyright 2011 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package sort
|
||||
|
||||
func Heapsort(data Interface) {
|
||||
heapSort(data, 0, data.Len())
|
||||
}
|
@ -37,10 +37,47 @@ func insertionSort(data Interface, a, b int) {
|
||||
}
|
||||
}
|
||||
|
||||
// siftDown implements the heap property on data[lo, hi).
|
||||
// first is an offset into the array where the root of the heap lies.
|
||||
func siftDown(data Interface, lo, hi, first int) {
|
||||
root := lo
|
||||
for {
|
||||
child := 2*root + 1
|
||||
if child >= hi {
|
||||
break
|
||||
}
|
||||
if child+1 < hi && data.Less(first+child, first+child+1) {
|
||||
child++
|
||||
}
|
||||
if !data.Less(first+root, first+child) {
|
||||
return
|
||||
}
|
||||
data.Swap(first+root, first+child)
|
||||
root = child
|
||||
}
|
||||
}
|
||||
|
||||
func heapSort(data Interface, a, b int) {
|
||||
first := a
|
||||
lo := 0
|
||||
hi := b - a
|
||||
|
||||
// Build heap with greatest element at top.
|
||||
for i := (hi - 1) / 2; i >= 0; i-- {
|
||||
siftDown(data, i, hi, first)
|
||||
}
|
||||
|
||||
// Pop elements, largest first, into end of data.
|
||||
for i := hi - 1; i >= 0; i-- {
|
||||
data.Swap(first, first+i)
|
||||
siftDown(data, lo, i, first)
|
||||
}
|
||||
}
|
||||
|
||||
// Quicksort, following Bentley and McIlroy,
|
||||
// ``Engineering a Sort Function,'' SP&E November 1993.
|
||||
|
||||
// Move the median of the three values data[a], data[b], data[c] into data[a].
|
||||
// medianOfThree moves the median of the three values data[a], data[b], data[c] into data[a].
|
||||
func medianOfThree(data Interface, a, b, c int) {
|
||||
m0 := b
|
||||
m1 := a
|
||||
@ -123,16 +160,21 @@ func doPivot(data Interface, lo, hi int) (midlo, midhi int) {
|
||||
return lo + b - a, hi - (d - c)
|
||||
}
|
||||
|
||||
func quickSort(data Interface, a, b int) {
|
||||
func quickSort(data Interface, a, b, maxDepth int) {
|
||||
for b-a > 7 {
|
||||
if maxDepth == 0 {
|
||||
heapSort(data, a, b)
|
||||
return
|
||||
}
|
||||
maxDepth--
|
||||
mlo, mhi := doPivot(data, a, b)
|
||||
// Avoiding recursion on the larger subproblem guarantees
|
||||
// a stack depth of at most lg(b-a).
|
||||
if mlo-a < b-mhi {
|
||||
quickSort(data, a, mlo)
|
||||
quickSort(data, a, mlo, maxDepth)
|
||||
a = mhi // i.e., quickSort(data, mhi, b)
|
||||
} else {
|
||||
quickSort(data, mhi, b)
|
||||
quickSort(data, mhi, b, maxDepth)
|
||||
b = mlo // i.e., quickSort(data, a, mlo)
|
||||
}
|
||||
}
|
||||
@ -141,7 +183,16 @@ func quickSort(data Interface, a, b int) {
|
||||
}
|
||||
}
|
||||
|
||||
func Sort(data Interface) { quickSort(data, 0, data.Len()) }
|
||||
func Sort(data Interface) {
|
||||
// Switch to heapsort if depth of 2*ceil(lg(n)) is reached.
|
||||
n := data.Len()
|
||||
maxDepth := 0
|
||||
for 1<<uint(maxDepth) < n {
|
||||
maxDepth++
|
||||
}
|
||||
maxDepth *= 2
|
||||
quickSort(data, 0, data.Len(), maxDepth)
|
||||
}
|
||||
|
||||
func IsSorted(data Interface) bool {
|
||||
n := data.Len()
|
||||
|
@ -169,6 +169,13 @@ func (d *testingData) Swap(i, j int) {
|
||||
d.data[i], d.data[j] = d.data[j], d.data[i]
|
||||
}
|
||||
|
||||
func min(a, b int) int {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
func lg(n int) int {
|
||||
i := 0
|
||||
for 1<<uint(i) < n {
|
||||
@ -177,7 +184,7 @@ func lg(n int) int {
|
||||
return i
|
||||
}
|
||||
|
||||
func TestBentleyMcIlroy(t *testing.T) {
|
||||
func testBentleyMcIlroy(t *testing.T, sort func(Interface)) {
|
||||
sizes := []int{100, 1023, 1024, 1025}
|
||||
if testing.Short() {
|
||||
sizes = []int{100, 127, 128, 129}
|
||||
@ -253,7 +260,7 @@ func TestBentleyMcIlroy(t *testing.T) {
|
||||
|
||||
desc := fmt.Sprintf("n=%d m=%d dist=%s mode=%s", n, m, dists[dist], modes[mode])
|
||||
d := &testingData{desc, t, mdata[0:n], n * lg(n) * 12 / 10, 0}
|
||||
Sort(d)
|
||||
sort(d)
|
||||
|
||||
// If we were testing C qsort, we'd have to make a copy
|
||||
// of the slice and sort it ourselves and then compare
|
||||
@ -274,9 +281,58 @@ func TestBentleyMcIlroy(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func min(a, b int) int {
|
||||
if a < b {
|
||||
return a
|
||||
func TestSortBM(t *testing.T) {
|
||||
testBentleyMcIlroy(t, Sort)
|
||||
}
|
||||
return b
|
||||
|
||||
func TestHeapsortBM(t *testing.T) {
|
||||
testBentleyMcIlroy(t, Heapsort)
|
||||
}
|
||||
|
||||
// This is based on the "antiquicksort" implementation by M. Douglas McIlroy.
|
||||
// See http://www.cs.dartmouth.edu/~doug/mdmspe.pdf for more info.
|
||||
type adversaryTestingData struct {
|
||||
data []int
|
||||
keys map[int]int
|
||||
candidate int
|
||||
}
|
||||
|
||||
func (d *adversaryTestingData) Len() int { return len(d.data) }
|
||||
|
||||
func (d *adversaryTestingData) Less(i, j int) bool {
|
||||
if _, present := d.keys[i]; !present {
|
||||
if _, present := d.keys[j]; !present {
|
||||
if i == d.candidate {
|
||||
d.keys[i] = len(d.keys)
|
||||
} else {
|
||||
d.keys[j] = len(d.keys)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if _, present := d.keys[i]; !present {
|
||||
d.candidate = i
|
||||
return false
|
||||
}
|
||||
if _, present := d.keys[j]; !present {
|
||||
d.candidate = j
|
||||
return true
|
||||
}
|
||||
|
||||
return d.keys[i] >= d.keys[j]
|
||||
}
|
||||
|
||||
func (d *adversaryTestingData) Swap(i, j int) {
|
||||
d.data[i], d.data[j] = d.data[j], d.data[i]
|
||||
}
|
||||
|
||||
func TestAdversary(t *testing.T) {
|
||||
const size = 100
|
||||
data := make([]int, size)
|
||||
for i := 0; i < size; i++ {
|
||||
data[i] = i
|
||||
}
|
||||
|
||||
d := &adversaryTestingData{data, make(map[int]int), 0}
|
||||
Sort(d) // This should degenerate to heapsort.
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user