1
0
mirror of https://github.com/golang/go synced 2024-11-18 09:04:49 -07:00

go/ssa: eliminate dead φ-nodes in cycles

The previous "dead φ" check was simple and naive but left cycles of
dead φ-nodes.  This confused some downstream static analysis tools.
This change makes the φ-nodes liveness check transitive.

+ Test.

Also, number phi nodes so they're not all called t0 during debugging.

Reduces memory consumption by  1%.
Increases execution time   by <1%.

Change-Id: I2908662c1478d455fdf4a179f4a12d6184a456c0
Reviewed-on: https://go-review.googlesource.com/37157
Reviewed-by: Robert Griesemer <gri@golang.org>
This commit is contained in:
Alan Donovan 2017-02-17 10:35:14 -05:00
parent 8e779ee0a4
commit 219e654bb7
2 changed files with 163 additions and 41 deletions

View File

@ -11,6 +11,7 @@ import (
"go/parser"
"go/token"
"go/types"
"os"
"reflect"
"sort"
"strings"
@ -417,3 +418,83 @@ var (
t.Errorf("want func: %q: %q", fn, descr)
}
}
// TestPhiElimination ensures that dead phis, including those that
// participate in a cycle, are properly eliminated.
func TestPhiElimination(t *testing.T) {
const input = `
package p
func f() error
func g(slice []int) {
for {
for range slice {
// e should not be lifted to a dead φ-node.
e := f()
h(e)
}
}
}
func h(error)
`
// The SSA code for this function should look something like this:
// 0:
// jump 1
// 1:
// t0 = len(slice)
// jump 2
// 2:
// t1 = phi [1: -1:int, 3: t2]
// t2 = t1 + 1:int
// t3 = t2 < t0
// if t3 goto 3 else 1
// 3:
// t4 = f()
// t5 = h(t4)
// jump 2
//
// But earlier versions of the SSA construction algorithm would
// additionally generate this cycle of dead phis:
//
// 1:
// t7 = phi [0: nil:error, 2: t8] #e
// ...
// 2:
// t8 = phi [1: t7, 3: t4] #e
// ...
// Parse
var conf loader.Config
f, err := conf.ParseFile("<input>", input)
if err != nil {
t.Fatalf("parse: %v", err)
}
conf.CreateFromFiles("p", f)
// Load
lprog, err := conf.Load()
if err != nil {
t.Fatalf("Load: %v", err)
}
// Create and build SSA
prog := ssautil.CreateProgram(lprog, 0)
p := prog.Package(lprog.Package("p").Pkg)
p.Build()
g := p.Func("g")
phis := 0
for _, b := range g.Blocks {
for _, instr := range b.Instrs {
if _, ok := instr.(*ssa.Phi); ok {
phis++
}
}
}
if phis != 1 {
g.WriteTo(os.Stderr)
t.Errorf("expected a single Phi (for the range index), got %d", phis)
}
}

View File

@ -36,9 +36,6 @@ package ssa
// Consider exploiting liveness information to avoid creating dead
// φ-nodes which we then immediately remove.
//
// Integrate lifting with scalar replacement of aggregates (SRA) since
// the two are synergistic.
//
// Also see many other "TODO: opt" suggestions in the code.
import (
@ -49,8 +46,8 @@ import (
"os"
)
// If true, perform sanity checking and show diagnostic information at
// each step of lifting. Very verbose.
// If true, show diagnostic information at each step of lifting.
// Very verbose.
const debugLifting = false
// domFrontier maps each block to the set of blocks in its dominance
@ -122,7 +119,7 @@ func removeInstr(refs []Instruction, instr Instruction) []Instruction {
return refs[:i]
}
// lift attempts to replace local and new Allocs accessed only with
// lift replaces local and new Allocs accessed only with
// load/store by SSA registers, inserting φ-nodes where necessary.
// The result is a program in classical pruned SSA form.
//
@ -178,6 +175,11 @@ func lift(fn *Function) {
// instructions.
usesDefer := false
// A counter used to generate ~unique ids for Phi nodes, as an
// aid to debugging. We use large numbers to make them highly
// visible. All nodes are renumbered later.
fresh := 1000
// Determine which allocs we can lift and number them densely.
// The renaming phase uses this numbering for compact maps.
numAllocs := 0
@ -188,7 +190,7 @@ func lift(fn *Function) {
switch instr := instr.(type) {
case *Alloc:
index := -1
if liftAlloc(df, instr, newPhis) {
if liftAlloc(df, instr, newPhis, &fresh) {
index = numAllocs
numAllocs++
}
@ -211,29 +213,13 @@ func lift(fn *Function) {
// Renaming.
rename(fn.Blocks[0], renaming, newPhis)
// Eliminate dead new phis, then prepend the live ones to each block.
for _, b := range fn.Blocks {
// Eliminate dead φ-nodes.
removeDeadPhis(newPhis)
// Compress the newPhis slice to eliminate unused phis.
// TODO(adonovan): opt: compute liveness to avoid
// placing phis in blocks for which the alloc cell is
// not live.
// Prepend remaining live φ-nodes to each block.
for _, b := range fn.Blocks {
nps := newPhis[b]
j := 0
for _, np := range nps {
if !phiIsLive(np.phi) {
// discard it, first removing it from referrers
for _, newval := range np.phi.Edges {
if refs := newval.Referrers(); refs != nil {
*refs = removeInstr(*refs, np.phi)
}
}
continue
}
nps[j] = np
j++
}
nps = nps[:j]
j := len(nps)
rundefersToKill := b.rundefers
if usesDefer {
@ -245,8 +231,8 @@ func lift(fn *Function) {
}
// Compact nps + non-nil Instrs into a new slice.
// TODO(adonovan): opt: compact in situ if there is
// sufficient space or slack in the slice.
// TODO(adonovan): opt: compact in situ (rightwards)
// if Instrs has sufficient space or slack.
dst := make([]Instruction, len(b.Instrs)+j-b.gaps-rundefersToKill)
for i, np := range nps {
dst[i] = np.phi
@ -263,9 +249,6 @@ func lift(fn *Function) {
dst[j] = instr
j++
}
for i, np := range nps {
dst[i] = np.phi
}
b.Instrs = dst
}
@ -284,15 +267,67 @@ func lift(fn *Function) {
fn.Locals = fn.Locals[:j]
}
func phiIsLive(phi *Phi) bool {
// removeDeadPhis removes φ-nodes not transitively needed by a
// non-Phi, non-DebugRef instruction.
func removeDeadPhis(newPhis newPhiMap) {
// First pass: compute reachability from non-Phi/DebugRef instructions.
livePhis := make(map[*Phi]bool)
for _, npList := range newPhis {
for _, np := range npList {
phi := np.phi
if !livePhis[phi] && phiHasDirectReferrer(phi) {
markLivePhi(livePhis, phi)
}
}
}
// Second pass: eliminate unused phis from newPhis.
for block, npList := range newPhis {
j := 0
for _, np := range npList {
if livePhis[np.phi] {
npList[j] = np
j++
} else {
// discard it, first removing it from referrers
for _, val := range np.phi.Edges {
if refs := val.Referrers(); refs != nil {
*refs = removeInstr(*refs, np.phi)
}
}
// This may leave DebugRef instructions referring to
// Phis that aren't in the control flow graph.
// TODO(adonovan): we should delete them.
}
}
newPhis[block] = npList[:j]
}
}
// markLivePhi marks phi, and all φ-nodes transitively reachable via
// its Operands, live.
func markLivePhi(livePhis map[*Phi]bool, phi *Phi) {
livePhis[phi] = true
for _, rand := range phi.Operands(nil) {
if q, ok := (*rand).(*Phi); ok {
if !livePhis[q] {
markLivePhi(livePhis, q)
}
}
}
}
// phiHasDirectReferrer reports whether phi is directly referred to by
// a non-Phi, non-DebugRef instruction. Such instructions are the
// roots of the liveness traversal.
func phiHasDirectReferrer(phi *Phi) bool {
for _, instr := range *phi.Referrers() {
if instr == phi {
continue // self-refs don't count
switch instr.(type) {
case *Phi, *DebugRef:
// ignore
default:
return true
}
if _, ok := instr.(*DebugRef); ok {
continue // debug refs don't count
}
return true
}
return false
}
@ -337,7 +372,9 @@ type newPhiMap map[*BasicBlock][]newPhi
// and if so, it populates newPhis with all the φ-nodes it may require
// and returns true.
//
func liftAlloc(df domFrontier, alloc *Alloc, newPhis newPhiMap) bool {
// fresh is a source of fresh ids for phi nodes.
//
func liftAlloc(df domFrontier, alloc *Alloc, newPhis newPhiMap, fresh *int) bool {
// Don't lift aggregates into registers, because we don't have
// a way to express their zero-constants.
switch deref(alloc.Type()).Underlying().(type) {
@ -420,6 +457,10 @@ func liftAlloc(df domFrontier, alloc *Alloc, newPhis newPhiMap) bool {
Edges: make([]Value, len(v.Preds)),
Comment: alloc.Comment,
}
// This is merely a debugging aid:
phi.setNum(*fresh)
*fresh++
phi.pos = alloc.Pos()
phi.setType(deref(alloc.Type()))
phi.block = v