mirror of
https://github.com/golang/go
synced 2024-11-25 06:07:58 -07:00
math: add J1, Y1, Jn and Yn (Bessel functions)
Also amend j0.go (variable name conflict, small corrections). R=rsc CC=golang-dev https://golang.org/cl/769041
This commit is contained in:
parent
ad73de2f5f
commit
1ec91c8d1d
@ -57,6 +57,8 @@ ALLGOFILES=\
|
|||||||
hypot.go\
|
hypot.go\
|
||||||
hypot_port.go\
|
hypot_port.go\
|
||||||
j0.go\
|
j0.go\
|
||||||
|
j1.go\
|
||||||
|
jn.go\
|
||||||
logb.go\
|
logb.go\
|
||||||
lgamma.go\
|
lgamma.go\
|
||||||
ldexp.go\
|
ldexp.go\
|
||||||
|
@ -310,6 +310,42 @@ var j0 = []float64{
|
|||||||
3.252650187653420388714693e-01,
|
3.252650187653420388714693e-01,
|
||||||
-8.72218484409407250005360235e-03,
|
-8.72218484409407250005360235e-03,
|
||||||
}
|
}
|
||||||
|
var j1 = []float64{
|
||||||
|
-3.251526395295203422162967e-01,
|
||||||
|
1.893581711430515718062564e-01,
|
||||||
|
-1.3711761352467242914491514e-01,
|
||||||
|
3.287486536269617297529617e-01,
|
||||||
|
1.3133899188830978473849215e-01,
|
||||||
|
3.660243417832986825301766e-01,
|
||||||
|
-3.4436769271848174665420672e-01,
|
||||||
|
4.329481396640773768835036e-01,
|
||||||
|
5.8181350531954794639333955e-01,
|
||||||
|
-2.7030574577733036112996607e-01,
|
||||||
|
}
|
||||||
|
var j2 = []float64{
|
||||||
|
5.3837518920137802565192769e-02,
|
||||||
|
-1.7841678003393207281244667e-01,
|
||||||
|
9.521746934916464142495821e-03,
|
||||||
|
4.28958355470987397983072e-02,
|
||||||
|
2.4115371837854494725492872e-01,
|
||||||
|
4.842458532394520316844449e-01,
|
||||||
|
-3.142145220618633390125946e-02,
|
||||||
|
4.720849184745124761189957e-01,
|
||||||
|
3.122312022520957042957497e-01,
|
||||||
|
7.096213118930231185707277e-02,
|
||||||
|
}
|
||||||
|
var jM3 = []float64{
|
||||||
|
-3.684042080996403091021151e-01,
|
||||||
|
2.8157665936340887268092661e-01,
|
||||||
|
4.401005480841948348343589e-04,
|
||||||
|
3.629926999056814081597135e-01,
|
||||||
|
3.123672198825455192489266e-02,
|
||||||
|
-2.958805510589623607540455e-01,
|
||||||
|
-3.2033177696533233403289416e-01,
|
||||||
|
-2.592737332129663376736604e-01,
|
||||||
|
-1.0241334641061485092351251e-01,
|
||||||
|
-2.3762660886100206491674503e-01,
|
||||||
|
}
|
||||||
var lgamma = []fi{
|
var lgamma = []fi{
|
||||||
fi{3.146492141244545774319734e+00, 1},
|
fi{3.146492141244545774319734e+00, 1},
|
||||||
fi{8.003414490659126375852113e+00, 1},
|
fi{8.003414490659126375852113e+00, 1},
|
||||||
@ -514,6 +550,42 @@ var y0 = []float64{
|
|||||||
4.8290004112497761007536522e-01,
|
4.8290004112497761007536522e-01,
|
||||||
2.7036697826604756229601611e-01,
|
2.7036697826604756229601611e-01,
|
||||||
}
|
}
|
||||||
|
var y1 = []float64{
|
||||||
|
0.15494213737457922210218611,
|
||||||
|
-0.2165955142081145245075746,
|
||||||
|
-2.4644949631241895201032829,
|
||||||
|
0.1442740489541836405154505,
|
||||||
|
0.2215379960518984777080163,
|
||||||
|
0.3038800915160754150565448,
|
||||||
|
0.0691107642452362383808547,
|
||||||
|
0.2380116417809914424860165,
|
||||||
|
-0.20849492979459761009678934,
|
||||||
|
0.0242503179793232308250804,
|
||||||
|
}
|
||||||
|
var y2 = []float64{
|
||||||
|
0.3675780219390303613394936,
|
||||||
|
-0.23034826393250119879267257,
|
||||||
|
-16.939677983817727205631397,
|
||||||
|
0.367653980523052152867791,
|
||||||
|
-0.0962401471767804440353136,
|
||||||
|
-0.1923169356184851105200523,
|
||||||
|
0.35984072054267882391843766,
|
||||||
|
-0.2794987252299739821654982,
|
||||||
|
-0.7113490692587462579757954,
|
||||||
|
-0.2647831587821263302087457,
|
||||||
|
}
|
||||||
|
var yM3 = []float64{
|
||||||
|
-0.14035984421094849100895341,
|
||||||
|
-0.097535139617792072703973,
|
||||||
|
242.25775994555580176377379,
|
||||||
|
-0.1492267014802818619511046,
|
||||||
|
0.26148702629155918694500469,
|
||||||
|
0.56675383593895176530394248,
|
||||||
|
-0.206150264009006981070575,
|
||||||
|
0.64784284687568332737963658,
|
||||||
|
1.3503631555901938037008443,
|
||||||
|
0.1461869756579956803341844,
|
||||||
|
}
|
||||||
|
|
||||||
// arguments and expected results for special cases
|
// arguments and expected results for special cases
|
||||||
var vfacoshSC = []float64{
|
var vfacoshSC = []float64{
|
||||||
@ -847,6 +919,24 @@ var j0SC = []float64{
|
|||||||
0,
|
0,
|
||||||
NaN(),
|
NaN(),
|
||||||
}
|
}
|
||||||
|
var j1SC = []float64{
|
||||||
|
0,
|
||||||
|
0,
|
||||||
|
0,
|
||||||
|
NaN(),
|
||||||
|
}
|
||||||
|
var j2SC = []float64{
|
||||||
|
0,
|
||||||
|
0,
|
||||||
|
0,
|
||||||
|
NaN(),
|
||||||
|
}
|
||||||
|
var jM3SC = []float64{
|
||||||
|
0,
|
||||||
|
0,
|
||||||
|
0,
|
||||||
|
NaN(),
|
||||||
|
}
|
||||||
|
|
||||||
var vflgammaSC = []float64{
|
var vflgammaSC = []float64{
|
||||||
Inf(-1),
|
Inf(-1),
|
||||||
@ -1042,6 +1132,24 @@ var y0SC = []float64{
|
|||||||
0,
|
0,
|
||||||
NaN(),
|
NaN(),
|
||||||
}
|
}
|
||||||
|
var y1SC = []float64{
|
||||||
|
NaN(),
|
||||||
|
Inf(-1),
|
||||||
|
0,
|
||||||
|
NaN(),
|
||||||
|
}
|
||||||
|
var y2SC = []float64{
|
||||||
|
NaN(),
|
||||||
|
Inf(-1),
|
||||||
|
0,
|
||||||
|
NaN(),
|
||||||
|
}
|
||||||
|
var yM3SC = []float64{
|
||||||
|
NaN(),
|
||||||
|
Inf(1),
|
||||||
|
0,
|
||||||
|
NaN(),
|
||||||
|
}
|
||||||
|
|
||||||
func tolerance(a, b, e float64) bool {
|
func tolerance(a, b, e float64) bool {
|
||||||
d := a - b
|
d := a - b
|
||||||
@ -1065,10 +1173,6 @@ func alike(a, b float64) bool {
|
|||||||
switch {
|
switch {
|
||||||
case IsNaN(a) && IsNaN(b):
|
case IsNaN(a) && IsNaN(b):
|
||||||
return true
|
return true
|
||||||
case IsInf(a, 1) && IsInf(b, 1):
|
|
||||||
return true
|
|
||||||
case IsInf(a, -1) && IsInf(b, -1):
|
|
||||||
return true
|
|
||||||
case a == b:
|
case a == b:
|
||||||
return true
|
return true
|
||||||
}
|
}
|
||||||
@ -1409,6 +1513,38 @@ func TestJ0(t *testing.T) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func TestJ1(t *testing.T) {
|
||||||
|
for i := 0; i < len(vf); i++ {
|
||||||
|
if f := J1(vf[i]); !close(j1[i], f) {
|
||||||
|
t.Errorf("J1(%g) = %g, want %g\n", vf[i], f, j1[i])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for i := 0; i < len(vfj0SC); i++ {
|
||||||
|
if f := J1(vfj0SC[i]); !alike(j1SC[i], f) {
|
||||||
|
t.Errorf("J1(%g) = %g, want %g\n", vfj0SC[i], f, j1SC[i])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestJn(t *testing.T) {
|
||||||
|
for i := 0; i < len(vf); i++ {
|
||||||
|
if f := Jn(2, vf[i]); !close(j2[i], f) {
|
||||||
|
t.Errorf("Jn(2, %g) = %g, want %g\n", vf[i], f, j2[i])
|
||||||
|
}
|
||||||
|
if f := Jn(-3, vf[i]); !close(jM3[i], f) {
|
||||||
|
t.Errorf("Jn(-3, %g) = %g, want %g\n", vf[i], f, jM3[i])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for i := 0; i < len(vfj0SC); i++ {
|
||||||
|
if f := Jn(2, vfj0SC[i]); !alike(j2SC[i], f) {
|
||||||
|
t.Errorf("Jn(2, %g) = %g, want %g\n", vfj0SC[i], f, j2SC[i])
|
||||||
|
}
|
||||||
|
if f := Jn(-3, vfj0SC[i]); !alike(jM3SC[i], f) {
|
||||||
|
t.Errorf("Jn(-3, %g) = %g, want %g\n", vfj0SC[i], f, jM3SC[i])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
func TestLdexp(t *testing.T) {
|
func TestLdexp(t *testing.T) {
|
||||||
for i := 0; i < len(vf); i++ {
|
for i := 0; i < len(vf); i++ {
|
||||||
if f := Ldexp(frexp[i].f, frexp[i].i); !veryclose(vf[i], f) {
|
if f := Ldexp(frexp[i].f, frexp[i].i); !veryclose(vf[i], f) {
|
||||||
@ -1654,6 +1790,40 @@ func TestY0(t *testing.T) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func TestY1(t *testing.T) {
|
||||||
|
for i := 0; i < len(vf); i++ {
|
||||||
|
a := Fabs(vf[i])
|
||||||
|
if f := Y1(a); !soclose(y1[i], f, 2e-14) {
|
||||||
|
t.Errorf("Y1(%g) = %g, want %g\n", a, f, y1[i])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for i := 0; i < len(vfy0SC); i++ {
|
||||||
|
if f := Y1(vfy0SC[i]); !alike(y1SC[i], f) {
|
||||||
|
t.Errorf("Y1(%g) = %g, want %g\n", vfy0SC[i], f, y1SC[i])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestYn(t *testing.T) {
|
||||||
|
for i := 0; i < len(vf); i++ {
|
||||||
|
a := Fabs(vf[i])
|
||||||
|
if f := Yn(2, a); !close(y2[i], f) {
|
||||||
|
t.Errorf("Yn(2, %g) = %g, want %g\n", a, f, y2[i])
|
||||||
|
}
|
||||||
|
if f := Yn(-3, a); !close(yM3[i], f) {
|
||||||
|
t.Errorf("Yn(-3, %g) = %g, want %g\n", a, f, yM3[i])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for i := 0; i < len(vfy0SC); i++ {
|
||||||
|
if f := Yn(2, vfy0SC[i]); !alike(y2SC[i], f) {
|
||||||
|
t.Errorf("Yn(2, %g) = %g, want %g\n", vfy0SC[i], f, y2SC[i])
|
||||||
|
}
|
||||||
|
if f := Yn(-3, vfy0SC[i]); !alike(yM3SC[i], f) {
|
||||||
|
t.Errorf("Yn(-3, %g) = %g, want %g\n", vfy0SC[i], f, yM3SC[i])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// Check that math functions of high angle values
|
// Check that math functions of high angle values
|
||||||
// return similar results to low angle values
|
// return similar results to low angle values
|
||||||
func TestLargeCos(t *testing.T) {
|
func TestLargeCos(t *testing.T) {
|
||||||
@ -1896,6 +2066,18 @@ func BenchmarkJ0(b *testing.B) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func BenchmarkJ1(b *testing.B) {
|
||||||
|
for i := 0; i < b.N; i++ {
|
||||||
|
J1(2.5)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func BenchmarkJn(b *testing.B) {
|
||||||
|
for i := 0; i < b.N; i++ {
|
||||||
|
Jn(2, 2.5)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
func BenchmarkLdexp(b *testing.B) {
|
func BenchmarkLdexp(b *testing.B) {
|
||||||
for i := 0; i < b.N; i++ {
|
for i := 0; i < b.N; i++ {
|
||||||
Ldexp(.5, 2)
|
Ldexp(.5, 2)
|
||||||
@ -2020,3 +2202,15 @@ func BenchmarkY0(b *testing.B) {
|
|||||||
Y0(2.5)
|
Y0(2.5)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func BenchmarkY1(b *testing.B) {
|
||||||
|
for i := 0; i < b.N; i++ {
|
||||||
|
Y1(2.5)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func BenchmarkYn(b *testing.B) {
|
||||||
|
for i := 0; i < b.N; i++ {
|
||||||
|
Yn(2, 2.5)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
@ -70,9 +70,8 @@ package math
|
|||||||
// J0 returns the order-zero Bessel function of the first kind.
|
// J0 returns the order-zero Bessel function of the first kind.
|
||||||
//
|
//
|
||||||
// Special cases are:
|
// Special cases are:
|
||||||
// J0(Inf) = 0
|
// J0(±Inf) = 0
|
||||||
// J0(0) = 1
|
// J0(0) = 1
|
||||||
// J0(-Inf) = 0
|
|
||||||
// J0(NaN) = NaN
|
// J0(NaN) = NaN
|
||||||
func J0(x float64) float64 {
|
func J0(x float64) float64 {
|
||||||
const (
|
const (
|
||||||
@ -178,15 +177,12 @@ func Y0(x float64) float64 {
|
|||||||
switch {
|
switch {
|
||||||
case x < 0 || x != x: // x < 0 || IsNaN(x):
|
case x < 0 || x != x: // x < 0 || IsNaN(x):
|
||||||
return NaN()
|
return NaN()
|
||||||
case x < -MaxFloat64 || x > MaxFloat64: // IsInf(x, 0):
|
case x > MaxFloat64: // IsInf(x, 1):
|
||||||
return 0
|
return 0
|
||||||
case x == 0:
|
case x == 0:
|
||||||
return Inf(-1)
|
return Inf(-1)
|
||||||
}
|
}
|
||||||
|
|
||||||
if x < 0 {
|
|
||||||
x = -x
|
|
||||||
}
|
|
||||||
if x >= 2 { // |x| >= 2.0
|
if x >= 2 { // |x| >= 2.0
|
||||||
|
|
||||||
// y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
|
// y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
|
||||||
@ -245,7 +241,7 @@ func Y0(x float64) float64 {
|
|||||||
// | pzero(x)-1-R/S | <= 2 ** ( -60.26)
|
// | pzero(x)-1-R/S | <= 2 ** ( -60.26)
|
||||||
|
|
||||||
// for x in [inf, 8]=1/[0,0.125]
|
// for x in [inf, 8]=1/[0,0.125]
|
||||||
var pR8 = [6]float64{
|
var p0R8 = [6]float64{
|
||||||
0.00000000000000000000e+00, // 0x0000000000000000
|
0.00000000000000000000e+00, // 0x0000000000000000
|
||||||
-7.03124999999900357484e-02, // 0xBFB1FFFFFFFFFD32
|
-7.03124999999900357484e-02, // 0xBFB1FFFFFFFFFD32
|
||||||
-8.08167041275349795626e+00, // 0xC02029D0B44FA779
|
-8.08167041275349795626e+00, // 0xC02029D0B44FA779
|
||||||
@ -253,7 +249,7 @@ var pR8 = [6]float64{
|
|||||||
-2.48521641009428822144e+03, // 0xC0A36A6ECD4DCAFC
|
-2.48521641009428822144e+03, // 0xC0A36A6ECD4DCAFC
|
||||||
-5.25304380490729545272e+03, // 0xC0B4850B36CC643D
|
-5.25304380490729545272e+03, // 0xC0B4850B36CC643D
|
||||||
}
|
}
|
||||||
var pS8 = [5]float64{
|
var p0S8 = [5]float64{
|
||||||
1.16534364619668181717e+02, // 0x405D223307A96751
|
1.16534364619668181717e+02, // 0x405D223307A96751
|
||||||
3.83374475364121826715e+03, // 0x40ADF37D50596938
|
3.83374475364121826715e+03, // 0x40ADF37D50596938
|
||||||
4.05978572648472545552e+04, // 0x40E3D2BB6EB6B05F
|
4.05978572648472545552e+04, // 0x40E3D2BB6EB6B05F
|
||||||
@ -262,7 +258,7 @@ var pS8 = [5]float64{
|
|||||||
}
|
}
|
||||||
|
|
||||||
// for x in [8,4.5454]=1/[0.125,0.22001]
|
// for x in [8,4.5454]=1/[0.125,0.22001]
|
||||||
var pR5 = [6]float64{
|
var p0R5 = [6]float64{
|
||||||
-1.14125464691894502584e-11, // 0xBDA918B147E495CC
|
-1.14125464691894502584e-11, // 0xBDA918B147E495CC
|
||||||
-7.03124940873599280078e-02, // 0xBFB1FFFFE69AFBC6
|
-7.03124940873599280078e-02, // 0xBFB1FFFFE69AFBC6
|
||||||
-4.15961064470587782438e+00, // 0xC010A370F90C6BBF
|
-4.15961064470587782438e+00, // 0xC010A370F90C6BBF
|
||||||
@ -270,7 +266,7 @@ var pR5 = [6]float64{
|
|||||||
-3.31231299649172967747e+02, // 0xC074B3B36742CC63
|
-3.31231299649172967747e+02, // 0xC074B3B36742CC63
|
||||||
-3.46433388365604912451e+02, // 0xC075A6EF28A38BD7
|
-3.46433388365604912451e+02, // 0xC075A6EF28A38BD7
|
||||||
}
|
}
|
||||||
var pS5 = [5]float64{
|
var p0S5 = [5]float64{
|
||||||
6.07539382692300335975e+01, // 0x404E60810C98C5DE
|
6.07539382692300335975e+01, // 0x404E60810C98C5DE
|
||||||
1.05125230595704579173e+03, // 0x40906D025C7E2864
|
1.05125230595704579173e+03, // 0x40906D025C7E2864
|
||||||
5.97897094333855784498e+03, // 0x40B75AF88FBE1D60
|
5.97897094333855784498e+03, // 0x40B75AF88FBE1D60
|
||||||
@ -279,7 +275,7 @@ var pS5 = [5]float64{
|
|||||||
}
|
}
|
||||||
|
|
||||||
// for x in [4.547,2.8571]=1/[0.2199,0.35001]
|
// for x in [4.547,2.8571]=1/[0.2199,0.35001]
|
||||||
var pR3 = [6]float64{
|
var p0R3 = [6]float64{
|
||||||
-2.54704601771951915620e-09, // 0xBE25E1036FE1AA86
|
-2.54704601771951915620e-09, // 0xBE25E1036FE1AA86
|
||||||
-7.03119616381481654654e-02, // 0xBFB1FFF6F7C0E24B
|
-7.03119616381481654654e-02, // 0xBFB1FFF6F7C0E24B
|
||||||
-2.40903221549529611423e+00, // 0xC00345B2AEA48074
|
-2.40903221549529611423e+00, // 0xC00345B2AEA48074
|
||||||
@ -287,7 +283,7 @@ var pR3 = [6]float64{
|
|||||||
-5.80791704701737572236e+01, // 0xC04D0A22420A1A45
|
-5.80791704701737572236e+01, // 0xC04D0A22420A1A45
|
||||||
-3.14479470594888503854e+01, // 0xC03F72ACA892D80F
|
-3.14479470594888503854e+01, // 0xC03F72ACA892D80F
|
||||||
}
|
}
|
||||||
var pS3 = [5]float64{
|
var p0S3 = [5]float64{
|
||||||
3.58560338055209726349e+01, // 0x4041ED9284077DD3
|
3.58560338055209726349e+01, // 0x4041ED9284077DD3
|
||||||
3.61513983050303863820e+02, // 0x40769839464A7C0E
|
3.61513983050303863820e+02, // 0x40769839464A7C0E
|
||||||
1.19360783792111533330e+03, // 0x4092A66E6D1061D6
|
1.19360783792111533330e+03, // 0x4092A66E6D1061D6
|
||||||
@ -296,7 +292,7 @@ var pS3 = [5]float64{
|
|||||||
}
|
}
|
||||||
|
|
||||||
// for x in [2.8570,2]=1/[0.3499,0.5]
|
// for x in [2.8570,2]=1/[0.3499,0.5]
|
||||||
var pR2 = [6]float64{
|
var p0R2 = [6]float64{
|
||||||
-8.87534333032526411254e-08, // 0xBE77D316E927026D
|
-8.87534333032526411254e-08, // 0xBE77D316E927026D
|
||||||
-7.03030995483624743247e-02, // 0xBFB1FF62495E1E42
|
-7.03030995483624743247e-02, // 0xBFB1FF62495E1E42
|
||||||
-1.45073846780952986357e+00, // 0xBFF736398A24A843
|
-1.45073846780952986357e+00, // 0xBFF736398A24A843
|
||||||
@ -304,7 +300,7 @@ var pR2 = [6]float64{
|
|||||||
-1.11931668860356747786e+01, // 0xC02662E6C5246303
|
-1.11931668860356747786e+01, // 0xC02662E6C5246303
|
||||||
-3.23364579351335335033e+00, // 0xC009DE81AF8FE70F
|
-3.23364579351335335033e+00, // 0xC009DE81AF8FE70F
|
||||||
}
|
}
|
||||||
var pS2 = [5]float64{
|
var p0S2 = [5]float64{
|
||||||
2.22202997532088808441e+01, // 0x40363865908B5959
|
2.22202997532088808441e+01, // 0x40363865908B5959
|
||||||
1.36206794218215208048e+02, // 0x4061069E0EE8878F
|
1.36206794218215208048e+02, // 0x4061069E0EE8878F
|
||||||
2.70470278658083486789e+02, // 0x4070E78642EA079B
|
2.70470278658083486789e+02, // 0x4070E78642EA079B
|
||||||
@ -316,17 +312,17 @@ func pzero(x float64) float64 {
|
|||||||
var p [6]float64
|
var p [6]float64
|
||||||
var q [5]float64
|
var q [5]float64
|
||||||
if x >= 8 {
|
if x >= 8 {
|
||||||
p = pR8
|
p = p0R8
|
||||||
q = pS8
|
q = p0S8
|
||||||
} else if x >= 4.5454 {
|
} else if x >= 4.5454 {
|
||||||
p = pR5
|
p = p0R5
|
||||||
q = pS5
|
q = p0S5
|
||||||
} else if x >= 2.8571 {
|
} else if x >= 2.8571 {
|
||||||
p = pR3
|
p = p0R3
|
||||||
q = pS3
|
q = p0S3
|
||||||
} else if x >= 2 {
|
} else if x >= 2 {
|
||||||
p = pR2
|
p = p0R2
|
||||||
q = pS2
|
q = p0S2
|
||||||
}
|
}
|
||||||
z := 1 / (x * x)
|
z := 1 / (x * x)
|
||||||
r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
|
r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
|
||||||
@ -344,7 +340,7 @@ func pzero(x float64) float64 {
|
|||||||
// | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
|
// | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
|
||||||
|
|
||||||
// for x in [inf, 8]=1/[0,0.125]
|
// for x in [inf, 8]=1/[0,0.125]
|
||||||
var qR8 = [6]float64{
|
var q0R8 = [6]float64{
|
||||||
0.00000000000000000000e+00, // 0x0000000000000000
|
0.00000000000000000000e+00, // 0x0000000000000000
|
||||||
7.32421874999935051953e-02, // 0x3FB2BFFFFFFFFE2C
|
7.32421874999935051953e-02, // 0x3FB2BFFFFFFFFE2C
|
||||||
1.17682064682252693899e+01, // 0x402789525BB334D6
|
1.17682064682252693899e+01, // 0x402789525BB334D6
|
||||||
@ -352,7 +348,7 @@ var qR8 = [6]float64{
|
|||||||
8.85919720756468632317e+03, // 0x40C14D993E18F46D
|
8.85919720756468632317e+03, // 0x40C14D993E18F46D
|
||||||
3.70146267776887834771e+04, // 0x40E212D40E901566
|
3.70146267776887834771e+04, // 0x40E212D40E901566
|
||||||
}
|
}
|
||||||
var qS8 = [6]float64{
|
var q0S8 = [6]float64{
|
||||||
1.63776026895689824414e+02, // 0x406478D5365B39BC
|
1.63776026895689824414e+02, // 0x406478D5365B39BC
|
||||||
8.09834494656449805916e+03, // 0x40BFA2584E6B0563
|
8.09834494656449805916e+03, // 0x40BFA2584E6B0563
|
||||||
1.42538291419120476348e+05, // 0x4101665254D38C3F
|
1.42538291419120476348e+05, // 0x4101665254D38C3F
|
||||||
@ -362,7 +358,7 @@ var qS8 = [6]float64{
|
|||||||
}
|
}
|
||||||
|
|
||||||
// for x in [8,4.5454]=1/[0.125,0.22001]
|
// for x in [8,4.5454]=1/[0.125,0.22001]
|
||||||
var qR5 = [6]float64{
|
var q0R5 = [6]float64{
|
||||||
1.84085963594515531381e-11, // 0x3DB43D8F29CC8CD9
|
1.84085963594515531381e-11, // 0x3DB43D8F29CC8CD9
|
||||||
7.32421766612684765896e-02, // 0x3FB2BFFFD172B04C
|
7.32421766612684765896e-02, // 0x3FB2BFFFD172B04C
|
||||||
5.83563508962056953777e+00, // 0x401757B0B9953DD3
|
5.83563508962056953777e+00, // 0x401757B0B9953DD3
|
||||||
@ -370,7 +366,7 @@ var qR5 = [6]float64{
|
|||||||
1.02724376596164097464e+03, // 0x40900CF99DC8C481
|
1.02724376596164097464e+03, // 0x40900CF99DC8C481
|
||||||
1.98997785864605384631e+03, // 0x409F17E953C6E3A6
|
1.98997785864605384631e+03, // 0x409F17E953C6E3A6
|
||||||
}
|
}
|
||||||
var qS5 = [6]float64{
|
var q0S5 = [6]float64{
|
||||||
8.27766102236537761883e+01, // 0x4054B1B3FB5E1543
|
8.27766102236537761883e+01, // 0x4054B1B3FB5E1543
|
||||||
2.07781416421392987104e+03, // 0x40A03BA0DA21C0CE
|
2.07781416421392987104e+03, // 0x40A03BA0DA21C0CE
|
||||||
1.88472887785718085070e+04, // 0x40D267D27B591E6D
|
1.88472887785718085070e+04, // 0x40D267D27B591E6D
|
||||||
@ -380,7 +376,7 @@ var qS5 = [6]float64{
|
|||||||
}
|
}
|
||||||
|
|
||||||
// for x in [4.547,2.8571]=1/[0.2199,0.35001]
|
// for x in [4.547,2.8571]=1/[0.2199,0.35001]
|
||||||
var qR3 = [6]float64{
|
var q0R3 = [6]float64{
|
||||||
4.37741014089738620906e-09, // 0x3E32CD036ADECB82
|
4.37741014089738620906e-09, // 0x3E32CD036ADECB82
|
||||||
7.32411180042911447163e-02, // 0x3FB2BFEE0E8D0842
|
7.32411180042911447163e-02, // 0x3FB2BFEE0E8D0842
|
||||||
3.34423137516170720929e+00, // 0x400AC0FC61149CF5
|
3.34423137516170720929e+00, // 0x400AC0FC61149CF5
|
||||||
@ -388,7 +384,7 @@ var qR3 = [6]float64{
|
|||||||
1.70808091340565596283e+02, // 0x406559DBE25EFD1F
|
1.70808091340565596283e+02, // 0x406559DBE25EFD1F
|
||||||
1.66733948696651168575e+02, // 0x4064D77C81FA21E0
|
1.66733948696651168575e+02, // 0x4064D77C81FA21E0
|
||||||
}
|
}
|
||||||
var qS3 = [6]float64{
|
var q0S3 = [6]float64{
|
||||||
4.87588729724587182091e+01, // 0x40486122BFE343A6
|
4.87588729724587182091e+01, // 0x40486122BFE343A6
|
||||||
7.09689221056606015736e+02, // 0x40862D8386544EB3
|
7.09689221056606015736e+02, // 0x40862D8386544EB3
|
||||||
3.70414822620111362994e+03, // 0x40ACF04BE44DFC63
|
3.70414822620111362994e+03, // 0x40ACF04BE44DFC63
|
||||||
@ -398,7 +394,7 @@ var qS3 = [6]float64{
|
|||||||
}
|
}
|
||||||
|
|
||||||
// for x in [2.8570,2]=1/[0.3499,0.5]
|
// for x in [2.8570,2]=1/[0.3499,0.5]
|
||||||
var qR2 = [6]float64{
|
var q0R2 = [6]float64{
|
||||||
1.50444444886983272379e-07, // 0x3E84313B54F76BDB
|
1.50444444886983272379e-07, // 0x3E84313B54F76BDB
|
||||||
7.32234265963079278272e-02, // 0x3FB2BEC53E883E34
|
7.32234265963079278272e-02, // 0x3FB2BEC53E883E34
|
||||||
1.99819174093815998816e+00, // 0x3FFFF897E727779C
|
1.99819174093815998816e+00, // 0x3FFFF897E727779C
|
||||||
@ -406,7 +402,7 @@ var qR2 = [6]float64{
|
|||||||
3.16662317504781540833e+01, // 0x403FAA8E29FBDC4A
|
3.16662317504781540833e+01, // 0x403FAA8E29FBDC4A
|
||||||
1.62527075710929267416e+01, // 0x403040B171814BB4
|
1.62527075710929267416e+01, // 0x403040B171814BB4
|
||||||
}
|
}
|
||||||
var qS2 = [6]float64{
|
var q0S2 = [6]float64{
|
||||||
3.03655848355219184498e+01, // 0x403E5D96F7C07AED
|
3.03655848355219184498e+01, // 0x403E5D96F7C07AED
|
||||||
2.69348118608049844624e+02, // 0x4070D591E4D14B40
|
2.69348118608049844624e+02, // 0x4070D591E4D14B40
|
||||||
8.44783757595320139444e+02, // 0x408A664522B3BF22
|
8.44783757595320139444e+02, // 0x408A664522B3BF22
|
||||||
@ -418,17 +414,17 @@ var qS2 = [6]float64{
|
|||||||
func qzero(x float64) float64 {
|
func qzero(x float64) float64 {
|
||||||
var p, q [6]float64
|
var p, q [6]float64
|
||||||
if x >= 8 {
|
if x >= 8 {
|
||||||
p = qR8
|
p = q0R8
|
||||||
q = qS8
|
q = q0S8
|
||||||
} else if x >= 4.5454 {
|
} else if x >= 4.5454 {
|
||||||
p = qR5
|
p = q0R5
|
||||||
q = qS5
|
q = q0S5
|
||||||
} else if x >= 2.8571 {
|
} else if x >= 2.8571 {
|
||||||
p = qR3
|
p = q0R3
|
||||||
q = qS3
|
q = q0S3
|
||||||
} else if x >= 2 {
|
} else if x >= 2 {
|
||||||
p = qR2
|
p = q0R2
|
||||||
q = qS2
|
q = q0S2
|
||||||
}
|
}
|
||||||
z := 1 / (x * x)
|
z := 1 / (x * x)
|
||||||
r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
|
r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
|
||||||
|
426
src/pkg/math/j1.go
Normal file
426
src/pkg/math/j1.go
Normal file
@ -0,0 +1,426 @@
|
|||||||
|
// Copyright 2010 The Go Authors. All rights reserved.
|
||||||
|
// Use of this source code is governed by a BSD-style
|
||||||
|
// license that can be found in the LICENSE file.
|
||||||
|
|
||||||
|
package math
|
||||||
|
|
||||||
|
/*
|
||||||
|
Bessel function of the first and second kinds of order one.
|
||||||
|
*/
|
||||||
|
|
||||||
|
// The original C code and the long comment below are
|
||||||
|
// from FreeBSD's /usr/src/lib/msun/src/e_j1.c and
|
||||||
|
// came with this notice. The go code is a simplified
|
||||||
|
// version of the original C.
|
||||||
|
//
|
||||||
|
// ====================================================
|
||||||
|
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||||
|
//
|
||||||
|
// Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||||
|
// Permission to use, copy, modify, and distribute this
|
||||||
|
// software is freely granted, provided that this notice
|
||||||
|
// is preserved.
|
||||||
|
// ====================================================
|
||||||
|
//
|
||||||
|
// __ieee754_j1(x), __ieee754_y1(x)
|
||||||
|
// Bessel function of the first and second kinds of order one.
|
||||||
|
// Method -- j1(x):
|
||||||
|
// 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
|
||||||
|
// 2. Reduce x to |x| since j1(x)=-j1(-x), and
|
||||||
|
// for x in (0,2)
|
||||||
|
// j1(x) = x/2 + x*z*R0/S0, where z = x*x;
|
||||||
|
// (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
|
||||||
|
// for x in (2,inf)
|
||||||
|
// j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
|
||||||
|
// y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
||||||
|
// where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
||||||
|
// as follow:
|
||||||
|
// cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
||||||
|
// = 1/sqrt(2) * (sin(x) - cos(x))
|
||||||
|
// sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||||
|
// = -1/sqrt(2) * (sin(x) + cos(x))
|
||||||
|
// (To avoid cancellation, use
|
||||||
|
// sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||||
|
// to compute the worse one.)
|
||||||
|
//
|
||||||
|
// 3 Special cases
|
||||||
|
// j1(nan)= nan
|
||||||
|
// j1(0) = 0
|
||||||
|
// j1(inf) = 0
|
||||||
|
//
|
||||||
|
// Method -- y1(x):
|
||||||
|
// 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
|
||||||
|
// 2. For x<2.
|
||||||
|
// Since
|
||||||
|
// y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
|
||||||
|
// therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
|
||||||
|
// We use the following function to approximate y1,
|
||||||
|
// y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
|
||||||
|
// where for x in [0,2] (abs err less than 2**-65.89)
|
||||||
|
// U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
|
||||||
|
// V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
|
||||||
|
// Note: For tiny x, 1/x dominate y1 and hence
|
||||||
|
// y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
|
||||||
|
// 3. For x>=2.
|
||||||
|
// y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
||||||
|
// where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
||||||
|
// by method mentioned above.
|
||||||
|
|
||||||
|
// J1 returns the order-one Bessel function of the first kind.
|
||||||
|
//
|
||||||
|
// Special cases are:
|
||||||
|
// J1(±Inf) = 0
|
||||||
|
// J1(NaN) = NaN
|
||||||
|
func J1(x float64) float64 {
|
||||||
|
const (
|
||||||
|
TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000
|
||||||
|
Two129 = 1 << 129 // 2**129 0x4800000000000000
|
||||||
|
// R0/S0 on [0, 2]
|
||||||
|
R00 = -6.25000000000000000000e-02 // 0xBFB0000000000000
|
||||||
|
R01 = 1.40705666955189706048e-03 // 0x3F570D9F98472C61
|
||||||
|
R02 = -1.59955631084035597520e-05 // 0xBEF0C5C6BA169668
|
||||||
|
R03 = 4.96727999609584448412e-08 // 0x3E6AAAFA46CA0BD9
|
||||||
|
S01 = 1.91537599538363460805e-02 // 0x3F939D0B12637E53
|
||||||
|
S02 = 1.85946785588630915560e-04 // 0x3F285F56B9CDF664
|
||||||
|
S03 = 1.17718464042623683263e-06 // 0x3EB3BFF8333F8498
|
||||||
|
S04 = 5.04636257076217042715e-09 // 0x3E35AC88C97DFF2C
|
||||||
|
S05 = 1.23542274426137913908e-11 // 0x3DAB2ACFCFB97ED8
|
||||||
|
)
|
||||||
|
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
|
||||||
|
// when compiler does it for us
|
||||||
|
// special cases
|
||||||
|
switch {
|
||||||
|
case x != x: // IsNaN(x)
|
||||||
|
return x
|
||||||
|
case x < -MaxFloat64 || x > MaxFloat64 || x == 0: // IsInf(x, 0) || x == 0:
|
||||||
|
return 0
|
||||||
|
}
|
||||||
|
|
||||||
|
sign := false
|
||||||
|
if x < 0 {
|
||||||
|
x = -x
|
||||||
|
sign = true
|
||||||
|
}
|
||||||
|
if x >= 2 {
|
||||||
|
s, c := Sincos(x)
|
||||||
|
ss := -s - c
|
||||||
|
cc := s - c
|
||||||
|
|
||||||
|
// make sure x+x does not overflow
|
||||||
|
if x < MaxFloat64/2 {
|
||||||
|
z := Cos(x + x)
|
||||||
|
if s*c > 0 {
|
||||||
|
cc = z / ss
|
||||||
|
} else {
|
||||||
|
ss = z / cc
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
|
||||||
|
// y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
|
||||||
|
|
||||||
|
var z float64
|
||||||
|
if x > Two129 {
|
||||||
|
z = (1 / SqrtPi) * cc / Sqrt(x)
|
||||||
|
} else {
|
||||||
|
u := pone(x)
|
||||||
|
v := qone(x)
|
||||||
|
z = (1 / SqrtPi) * (u*cc - v*ss) / Sqrt(x)
|
||||||
|
}
|
||||||
|
if sign {
|
||||||
|
return -z
|
||||||
|
}
|
||||||
|
return z
|
||||||
|
}
|
||||||
|
if x < TwoM27 { // |x|<2**-27
|
||||||
|
return 0.5 * x // inexact if x!=0 necessary
|
||||||
|
}
|
||||||
|
z := x * x
|
||||||
|
r := z * (R00 + z*(R01+z*(R02+z*R03)))
|
||||||
|
s := 1.0 + z*(S01+z*(S02+z*(S03+z*(S04+z*S05))))
|
||||||
|
r *= x
|
||||||
|
z = 0.5*x + r/s
|
||||||
|
if sign {
|
||||||
|
return -z
|
||||||
|
}
|
||||||
|
return z
|
||||||
|
}
|
||||||
|
|
||||||
|
// Y1 returns the order-one Bessel function of the second kind.
|
||||||
|
//
|
||||||
|
// Special cases are:
|
||||||
|
// Y1(+Inf) = 0
|
||||||
|
// Y1(0) = -Inf
|
||||||
|
// Y1(x < 0) = NaN
|
||||||
|
// Y1(NaN) = NaN
|
||||||
|
func Y1(x float64) float64 {
|
||||||
|
const (
|
||||||
|
TwoM54 = 1.0 / (1 << 54) // 2**-54 0x3c90000000000000
|
||||||
|
Two129 = 1 << 129 // 2**129 0x4800000000000000
|
||||||
|
U00 = -1.96057090646238940668e-01 // 0xBFC91866143CBC8A
|
||||||
|
U01 = 5.04438716639811282616e-02 // 0x3FA9D3C776292CD1
|
||||||
|
U02 = -1.91256895875763547298e-03 // 0xBF5F55E54844F50F
|
||||||
|
U03 = 2.35252600561610495928e-05 // 0x3EF8AB038FA6B88E
|
||||||
|
U04 = -9.19099158039878874504e-08 // 0xBE78AC00569105B8
|
||||||
|
V00 = 1.99167318236649903973e-02 // 0x3F94650D3F4DA9F0
|
||||||
|
V01 = 2.02552581025135171496e-04 // 0x3F2A8C896C257764
|
||||||
|
V02 = 1.35608801097516229404e-06 // 0x3EB6C05A894E8CA6
|
||||||
|
V03 = 6.22741452364621501295e-09 // 0x3E3ABF1D5BA69A86
|
||||||
|
V04 = 1.66559246207992079114e-11 // 0x3DB25039DACA772A
|
||||||
|
)
|
||||||
|
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
|
||||||
|
// when compiler does it for us
|
||||||
|
// special cases
|
||||||
|
switch {
|
||||||
|
case x < 0 || x != x: // x < 0 || IsNaN(x):
|
||||||
|
return NaN()
|
||||||
|
case x > MaxFloat64: // IsInf(x, 1):
|
||||||
|
return 0
|
||||||
|
case x == 0:
|
||||||
|
return Inf(-1)
|
||||||
|
}
|
||||||
|
|
||||||
|
if x >= 2 {
|
||||||
|
s, c := Sincos(x)
|
||||||
|
ss := -s - c
|
||||||
|
cc := s - c
|
||||||
|
|
||||||
|
// make sure x+x does not overflow
|
||||||
|
if x < MaxFloat64/2 {
|
||||||
|
z := Cos(x + x)
|
||||||
|
if s*c > 0 {
|
||||||
|
cc = z / ss
|
||||||
|
} else {
|
||||||
|
ss = z / cc
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
|
||||||
|
// where x0 = x-3pi/4
|
||||||
|
// Better formula:
|
||||||
|
// cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
||||||
|
// = 1/sqrt(2) * (sin(x) - cos(x))
|
||||||
|
// sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||||
|
// = -1/sqrt(2) * (cos(x) + sin(x))
|
||||||
|
// To avoid cancellation, use
|
||||||
|
// sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||||
|
// to compute the worse one.
|
||||||
|
|
||||||
|
var z float64
|
||||||
|
if x > Two129 {
|
||||||
|
z = (1 / SqrtPi) * ss / Sqrt(x)
|
||||||
|
} else {
|
||||||
|
u := pone(x)
|
||||||
|
v := qone(x)
|
||||||
|
z = (1 / SqrtPi) * (u*ss + v*cc) / Sqrt(x)
|
||||||
|
}
|
||||||
|
return z
|
||||||
|
}
|
||||||
|
if x <= TwoM54 { // x < 2**-54
|
||||||
|
return -(2 / Pi) / x
|
||||||
|
}
|
||||||
|
z := x * x
|
||||||
|
u := U00 + z*(U01+z*(U02+z*(U03+z*U04)))
|
||||||
|
v := 1 + z*(V00+z*(V01+z*(V02+z*(V03+z*V04))))
|
||||||
|
return x*(u/v) + (2/Pi)*(J1(x)*Log(x)-1/x)
|
||||||
|
}
|
||||||
|
|
||||||
|
// For x >= 8, the asymptotic expansions of pone is
|
||||||
|
// 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
|
||||||
|
// We approximate pone by
|
||||||
|
// pone(x) = 1 + (R/S)
|
||||||
|
// where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
|
||||||
|
// S = 1 + ps0*s^2 + ... + ps4*s^10
|
||||||
|
// and
|
||||||
|
// | pone(x)-1-R/S | <= 2**(-60.06)
|
||||||
|
|
||||||
|
// for x in [inf, 8]=1/[0,0.125]
|
||||||
|
var p1R8 = [6]float64{
|
||||||
|
0.00000000000000000000e+00, // 0x0000000000000000
|
||||||
|
1.17187499999988647970e-01, // 0x3FBDFFFFFFFFFCCE
|
||||||
|
1.32394806593073575129e+01, // 0x402A7A9D357F7FCE
|
||||||
|
4.12051854307378562225e+02, // 0x4079C0D4652EA590
|
||||||
|
3.87474538913960532227e+03, // 0x40AE457DA3A532CC
|
||||||
|
7.91447954031891731574e+03, // 0x40BEEA7AC32782DD
|
||||||
|
}
|
||||||
|
var p1S8 = [5]float64{
|
||||||
|
1.14207370375678408436e+02, // 0x405C8D458E656CAC
|
||||||
|
3.65093083420853463394e+03, // 0x40AC85DC964D274F
|
||||||
|
3.69562060269033463555e+04, // 0x40E20B8697C5BB7F
|
||||||
|
9.76027935934950801311e+04, // 0x40F7D42CB28F17BB
|
||||||
|
3.08042720627888811578e+04, // 0x40DE1511697A0B2D
|
||||||
|
}
|
||||||
|
|
||||||
|
// for x in [8,4.5454] = 1/[0.125,0.22001]
|
||||||
|
var p1R5 = [6]float64{
|
||||||
|
1.31990519556243522749e-11, // 0x3DAD0667DAE1CA7D
|
||||||
|
1.17187493190614097638e-01, // 0x3FBDFFFFE2C10043
|
||||||
|
6.80275127868432871736e+00, // 0x401B36046E6315E3
|
||||||
|
1.08308182990189109773e+02, // 0x405B13B9452602ED
|
||||||
|
5.17636139533199752805e+02, // 0x40802D16D052D649
|
||||||
|
5.28715201363337541807e+02, // 0x408085B8BB7E0CB7
|
||||||
|
}
|
||||||
|
var p1S5 = [5]float64{
|
||||||
|
5.92805987221131331921e+01, // 0x404DA3EAA8AF633D
|
||||||
|
9.91401418733614377743e+02, // 0x408EFB361B066701
|
||||||
|
5.35326695291487976647e+03, // 0x40B4E9445706B6FB
|
||||||
|
7.84469031749551231769e+03, // 0x40BEA4B0B8A5BB15
|
||||||
|
1.50404688810361062679e+03, // 0x40978030036F5E51
|
||||||
|
}
|
||||||
|
|
||||||
|
// for x in[4.5453,2.8571] = 1/[0.2199,0.35001]
|
||||||
|
var p1R3 = [6]float64{
|
||||||
|
3.02503916137373618024e-09, // 0x3E29FC21A7AD9EDD
|
||||||
|
1.17186865567253592491e-01, // 0x3FBDFFF55B21D17B
|
||||||
|
3.93297750033315640650e+00, // 0x400F76BCE85EAD8A
|
||||||
|
3.51194035591636932736e+01, // 0x40418F489DA6D129
|
||||||
|
9.10550110750781271918e+01, // 0x4056C3854D2C1837
|
||||||
|
4.85590685197364919645e+01, // 0x4048478F8EA83EE5
|
||||||
|
}
|
||||||
|
var p1S3 = [5]float64{
|
||||||
|
3.47913095001251519989e+01, // 0x40416549A134069C
|
||||||
|
3.36762458747825746741e+02, // 0x40750C3307F1A75F
|
||||||
|
1.04687139975775130551e+03, // 0x40905B7C5037D523
|
||||||
|
8.90811346398256432622e+02, // 0x408BD67DA32E31E9
|
||||||
|
1.03787932439639277504e+02, // 0x4059F26D7C2EED53
|
||||||
|
}
|
||||||
|
|
||||||
|
// for x in [2.8570,2] = 1/[0.3499,0.5]
|
||||||
|
var p1R2 = [6]float64{
|
||||||
|
1.07710830106873743082e-07, // 0x3E7CE9D4F65544F4
|
||||||
|
1.17176219462683348094e-01, // 0x3FBDFF42BE760D83
|
||||||
|
2.36851496667608785174e+00, // 0x4002F2B7F98FAEC0
|
||||||
|
1.22426109148261232917e+01, // 0x40287C377F71A964
|
||||||
|
1.76939711271687727390e+01, // 0x4031B1A8177F8EE2
|
||||||
|
5.07352312588818499250e+00, // 0x40144B49A574C1FE
|
||||||
|
}
|
||||||
|
var p1S2 = [5]float64{
|
||||||
|
2.14364859363821409488e+01, // 0x40356FBD8AD5ECDC
|
||||||
|
1.25290227168402751090e+02, // 0x405F529314F92CD5
|
||||||
|
2.32276469057162813669e+02, // 0x406D08D8D5A2DBD9
|
||||||
|
1.17679373287147100768e+02, // 0x405D6B7ADA1884A9
|
||||||
|
8.36463893371618283368e+00, // 0x4020BAB1F44E5192
|
||||||
|
}
|
||||||
|
|
||||||
|
func pone(x float64) float64 {
|
||||||
|
var p [6]float64
|
||||||
|
var q [5]float64
|
||||||
|
if x >= 8 {
|
||||||
|
p = p1R8
|
||||||
|
q = p1S8
|
||||||
|
} else if x >= 4.5454 {
|
||||||
|
p = p1R5
|
||||||
|
q = p1S5
|
||||||
|
} else if x >= 2.8571 {
|
||||||
|
p = p1R3
|
||||||
|
q = p1S3
|
||||||
|
} else if x >= 2 {
|
||||||
|
p = p1R2
|
||||||
|
q = p1S2
|
||||||
|
}
|
||||||
|
z := 1 / (x * x)
|
||||||
|
r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
|
||||||
|
s := 1.0 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))))
|
||||||
|
return 1 + r/s
|
||||||
|
}
|
||||||
|
|
||||||
|
// For x >= 8, the asymptotic expansions of qone is
|
||||||
|
// 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
|
||||||
|
// We approximate qone by
|
||||||
|
// qone(x) = s*(0.375 + (R/S))
|
||||||
|
// where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
|
||||||
|
// S = 1 + qs1*s^2 + ... + qs6*s^12
|
||||||
|
// and
|
||||||
|
// | qone(x)/s -0.375-R/S | <= 2**(-61.13)
|
||||||
|
|
||||||
|
// for x in [inf, 8] = 1/[0,0.125]
|
||||||
|
var q1R8 = [6]float64{
|
||||||
|
0.00000000000000000000e+00, // 0x0000000000000000
|
||||||
|
-1.02539062499992714161e-01, // 0xBFBA3FFFFFFFFDF3
|
||||||
|
-1.62717534544589987888e+01, // 0xC0304591A26779F7
|
||||||
|
-7.59601722513950107896e+02, // 0xC087BCD053E4B576
|
||||||
|
-1.18498066702429587167e+04, // 0xC0C724E740F87415
|
||||||
|
-4.84385124285750353010e+04, // 0xC0E7A6D065D09C6A
|
||||||
|
}
|
||||||
|
var q1S8 = [6]float64{
|
||||||
|
1.61395369700722909556e+02, // 0x40642CA6DE5BCDE5
|
||||||
|
7.82538599923348465381e+03, // 0x40BE9162D0D88419
|
||||||
|
1.33875336287249578163e+05, // 0x4100579AB0B75E98
|
||||||
|
7.19657723683240939863e+05, // 0x4125F65372869C19
|
||||||
|
6.66601232617776375264e+05, // 0x412457D27719AD5C
|
||||||
|
-2.94490264303834643215e+05, // 0xC111F9690EA5AA18
|
||||||
|
}
|
||||||
|
|
||||||
|
// for x in [8,4.5454] = 1/[0.125,0.22001]
|
||||||
|
var q1R5 = [6]float64{
|
||||||
|
-2.08979931141764104297e-11, // 0xBDB6FA431AA1A098
|
||||||
|
-1.02539050241375426231e-01, // 0xBFBA3FFFCB597FEF
|
||||||
|
-8.05644828123936029840e+00, // 0xC0201CE6CA03AD4B
|
||||||
|
-1.83669607474888380239e+02, // 0xC066F56D6CA7B9B0
|
||||||
|
-1.37319376065508163265e+03, // 0xC09574C66931734F
|
||||||
|
-2.61244440453215656817e+03, // 0xC0A468E388FDA79D
|
||||||
|
}
|
||||||
|
var q1S5 = [6]float64{
|
||||||
|
8.12765501384335777857e+01, // 0x405451B2FF5A11B2
|
||||||
|
1.99179873460485964642e+03, // 0x409F1F31E77BF839
|
||||||
|
1.74684851924908907677e+04, // 0x40D10F1F0D64CE29
|
||||||
|
4.98514270910352279316e+04, // 0x40E8576DAABAD197
|
||||||
|
2.79480751638918118260e+04, // 0x40DB4B04CF7C364B
|
||||||
|
-4.71918354795128470869e+03, // 0xC0B26F2EFCFFA004
|
||||||
|
}
|
||||||
|
|
||||||
|
// for x in [4.5454,2.8571] = 1/[0.2199,0.35001] ???
|
||||||
|
var q1R3 = [6]float64{
|
||||||
|
-5.07831226461766561369e-09, // 0xBE35CFA9D38FC84F
|
||||||
|
-1.02537829820837089745e-01, // 0xBFBA3FEB51AEED54
|
||||||
|
-4.61011581139473403113e+00, // 0xC01270C23302D9FF
|
||||||
|
-5.78472216562783643212e+01, // 0xC04CEC71C25D16DA
|
||||||
|
-2.28244540737631695038e+02, // 0xC06C87D34718D55F
|
||||||
|
-2.19210128478909325622e+02, // 0xC06B66B95F5C1BF6
|
||||||
|
}
|
||||||
|
var q1S3 = [6]float64{
|
||||||
|
4.76651550323729509273e+01, // 0x4047D523CCD367E4
|
||||||
|
6.73865112676699709482e+02, // 0x40850EEBC031EE3E
|
||||||
|
3.38015286679526343505e+03, // 0x40AA684E448E7C9A
|
||||||
|
5.54772909720722782367e+03, // 0x40B5ABBAA61D54A6
|
||||||
|
1.90311919338810798763e+03, // 0x409DBC7A0DD4DF4B
|
||||||
|
-1.35201191444307340817e+02, // 0xC060E670290A311F
|
||||||
|
}
|
||||||
|
|
||||||
|
// for x in [2.8570,2] = 1/[0.3499,0.5]
|
||||||
|
var q1R2 = [6]float64{
|
||||||
|
-1.78381727510958865572e-07, // 0xBE87F12644C626D2
|
||||||
|
-1.02517042607985553460e-01, // 0xBFBA3E8E9148B010
|
||||||
|
-2.75220568278187460720e+00, // 0xC006048469BB4EDA
|
||||||
|
-1.96636162643703720221e+01, // 0xC033A9E2C168907F
|
||||||
|
-4.23253133372830490089e+01, // 0xC04529A3DE104AAA
|
||||||
|
-2.13719211703704061733e+01, // 0xC0355F3639CF6E52
|
||||||
|
}
|
||||||
|
var q1S2 = [6]float64{
|
||||||
|
2.95333629060523854548e+01, // 0x403D888A78AE64FF
|
||||||
|
2.52981549982190529136e+02, // 0x406F9F68DB821CBA
|
||||||
|
7.57502834868645436472e+02, // 0x4087AC05CE49A0F7
|
||||||
|
7.39393205320467245656e+02, // 0x40871B2548D4C029
|
||||||
|
1.55949003336666123687e+02, // 0x40637E5E3C3ED8D4
|
||||||
|
-4.95949898822628210127e+00, // 0xC013D686E71BE86B
|
||||||
|
}
|
||||||
|
|
||||||
|
func qone(x float64) float64 {
|
||||||
|
var p, q [6]float64
|
||||||
|
if x >= 8 {
|
||||||
|
p = q1R8
|
||||||
|
q = q1S8
|
||||||
|
} else if x >= 4.5454 {
|
||||||
|
p = q1R5
|
||||||
|
q = q1S5
|
||||||
|
} else if x >= 2.8571 {
|
||||||
|
p = q1R3
|
||||||
|
q = q1S3
|
||||||
|
} else if x >= 2 {
|
||||||
|
p = q1R2
|
||||||
|
q = q1S2
|
||||||
|
}
|
||||||
|
z := 1 / (x * x)
|
||||||
|
r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
|
||||||
|
s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))))
|
||||||
|
return (0.375 + r/s) / x
|
||||||
|
}
|
310
src/pkg/math/jn.go
Normal file
310
src/pkg/math/jn.go
Normal file
@ -0,0 +1,310 @@
|
|||||||
|
// Copyright 2010 The Go Authors. All rights reserved.
|
||||||
|
// Use of this source code is governed by a BSD-style
|
||||||
|
// license that can be found in the LICENSE file.
|
||||||
|
|
||||||
|
package math
|
||||||
|
|
||||||
|
/*
|
||||||
|
Bessel function of the first and second kinds of order n.
|
||||||
|
*/
|
||||||
|
|
||||||
|
// The original C code and the long comment below are
|
||||||
|
// from FreeBSD's /usr/src/lib/msun/src/e_jn.c and
|
||||||
|
// came with this notice. The go code is a simplified
|
||||||
|
// version of the original C.
|
||||||
|
//
|
||||||
|
// ====================================================
|
||||||
|
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||||
|
//
|
||||||
|
// Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||||
|
// Permission to use, copy, modify, and distribute this
|
||||||
|
// software is freely granted, provided that this notice
|
||||||
|
// is preserved.
|
||||||
|
// ====================================================
|
||||||
|
//
|
||||||
|
// __ieee754_jn(n, x), __ieee754_yn(n, x)
|
||||||
|
// floating point Bessel's function of the 1st and 2nd kind
|
||||||
|
// of order n
|
||||||
|
//
|
||||||
|
// Special cases:
|
||||||
|
// y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
|
||||||
|
// y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
|
||||||
|
// Note 2. About jn(n,x), yn(n,x)
|
||||||
|
// For n=0, j0(x) is called,
|
||||||
|
// for n=1, j1(x) is called,
|
||||||
|
// for n<x, forward recursion is used starting
|
||||||
|
// from values of j0(x) and j1(x).
|
||||||
|
// for n>x, a continued fraction approximation to
|
||||||
|
// j(n,x)/j(n-1,x) is evaluated and then backward
|
||||||
|
// recursion is used starting from a supposed value
|
||||||
|
// for j(n,x). The resulting value of j(0,x) is
|
||||||
|
// compared with the actual value to correct the
|
||||||
|
// supposed value of j(n,x).
|
||||||
|
//
|
||||||
|
// yn(n,x) is similar in all respects, except
|
||||||
|
// that forward recursion is used for all
|
||||||
|
// values of n>1.
|
||||||
|
|
||||||
|
// Jn returns the order-n Bessel function of the first kind.
|
||||||
|
//
|
||||||
|
// Special cases are:
|
||||||
|
// Jn(n, ±Inf) = 0
|
||||||
|
// Jn(n, NaN) = NaN
|
||||||
|
func Jn(n int, x float64) float64 {
|
||||||
|
const (
|
||||||
|
TwoM29 = 1.0 / (1 << 29) // 2**-29 0x3e10000000000000
|
||||||
|
Two302 = 1 << 302 // 2**302 0x52D0000000000000
|
||||||
|
)
|
||||||
|
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
|
||||||
|
// when compiler does it for us
|
||||||
|
// special cases
|
||||||
|
switch {
|
||||||
|
case x != x: // IsNaN(x)
|
||||||
|
return x
|
||||||
|
case x < -MaxFloat64 || x > MaxFloat64: // IsInf(x, 0):
|
||||||
|
return 0
|
||||||
|
}
|
||||||
|
// J(-n, x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
|
||||||
|
// Thus, J(-n, x) = J(n, -x)
|
||||||
|
|
||||||
|
if n == 0 {
|
||||||
|
return J0(x)
|
||||||
|
}
|
||||||
|
if x == 0 {
|
||||||
|
return 0
|
||||||
|
}
|
||||||
|
if n < 0 {
|
||||||
|
n, x = -n, -x
|
||||||
|
}
|
||||||
|
if n == 1 {
|
||||||
|
return J1(x)
|
||||||
|
}
|
||||||
|
sign := false
|
||||||
|
if x < 0 {
|
||||||
|
x = -x
|
||||||
|
if n&1 == 1 {
|
||||||
|
sign = true // odd n and negative x
|
||||||
|
}
|
||||||
|
}
|
||||||
|
var b float64
|
||||||
|
if float64(n) <= x {
|
||||||
|
// Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
|
||||||
|
if x >= Two302 { // x > 2**302
|
||||||
|
|
||||||
|
// (x >> n**2)
|
||||||
|
// Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||||
|
// Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||||
|
// Let s=sin(x), c=cos(x),
|
||||||
|
// xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||||
|
//
|
||||||
|
// n sin(xn)*sqt2 cos(xn)*sqt2
|
||||||
|
// ----------------------------------
|
||||||
|
// 0 s-c c+s
|
||||||
|
// 1 -s-c -c+s
|
||||||
|
// 2 -s+c -c-s
|
||||||
|
// 3 s+c c-s
|
||||||
|
|
||||||
|
var temp float64
|
||||||
|
switch n & 3 {
|
||||||
|
case 0:
|
||||||
|
temp = Cos(x) + Sin(x)
|
||||||
|
case 1:
|
||||||
|
temp = -Cos(x) + Sin(x)
|
||||||
|
case 2:
|
||||||
|
temp = -Cos(x) - Sin(x)
|
||||||
|
case 3:
|
||||||
|
temp = Cos(x) - Sin(x)
|
||||||
|
}
|
||||||
|
b = (1 / SqrtPi) * temp / Sqrt(x)
|
||||||
|
} else {
|
||||||
|
b = J1(x)
|
||||||
|
for i, a := 1, J0(x); i < n; i++ {
|
||||||
|
a, b = b, b*(float64(i+i)/x)-a // avoid underflow
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if x < TwoM29 { // x < 2**-29
|
||||||
|
// x is tiny, return the first Taylor expansion of J(n,x)
|
||||||
|
// J(n,x) = 1/n!*(x/2)^n - ...
|
||||||
|
|
||||||
|
if n > 33 { // underflow
|
||||||
|
b = 0
|
||||||
|
} else {
|
||||||
|
temp := x * 0.5
|
||||||
|
b = temp
|
||||||
|
a := float64(1)
|
||||||
|
for i := 2; i <= n; i++ {
|
||||||
|
a *= float64(i) // a = n!
|
||||||
|
b *= temp // b = (x/2)^n
|
||||||
|
}
|
||||||
|
b /= a
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// use backward recurrence
|
||||||
|
// x x^2 x^2
|
||||||
|
// J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||||
|
// 2n - 2(n+1) - 2(n+2)
|
||||||
|
//
|
||||||
|
// 1 1 1
|
||||||
|
// (for large x) = ---- ------ ------ .....
|
||||||
|
// 2n 2(n+1) 2(n+2)
|
||||||
|
// -- - ------ - ------ -
|
||||||
|
// x x x
|
||||||
|
//
|
||||||
|
// Let w = 2n/x and h=2/x, then the above quotient
|
||||||
|
// is equal to the continued fraction:
|
||||||
|
// 1
|
||||||
|
// = -----------------------
|
||||||
|
// 1
|
||||||
|
// w - -----------------
|
||||||
|
// 1
|
||||||
|
// w+h - ---------
|
||||||
|
// w+2h - ...
|
||||||
|
//
|
||||||
|
// To determine how many terms needed, let
|
||||||
|
// Q(0) = w, Q(1) = w(w+h) - 1,
|
||||||
|
// Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||||
|
// When Q(k) > 1e4 good for single
|
||||||
|
// When Q(k) > 1e9 good for double
|
||||||
|
// When Q(k) > 1e17 good for quadruple
|
||||||
|
|
||||||
|
// determine k
|
||||||
|
w := float64(n+n) / x
|
||||||
|
h := 2 / x
|
||||||
|
q0 := w
|
||||||
|
z := w + h
|
||||||
|
q1 := w*z - 1
|
||||||
|
k := 1
|
||||||
|
for q1 < 1e9 {
|
||||||
|
k += 1
|
||||||
|
z += h
|
||||||
|
q0, q1 = q1, z*q1-q0
|
||||||
|
}
|
||||||
|
m := n + n
|
||||||
|
t := float64(0)
|
||||||
|
for i := 2 * (n + k); i >= m; i -= 2 {
|
||||||
|
t = 1 / (float64(i)/x - t)
|
||||||
|
}
|
||||||
|
a := t
|
||||||
|
b = 1
|
||||||
|
// estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||||
|
// Hence, if n*(log(2n/x)) > ...
|
||||||
|
// single 8.8722839355e+01
|
||||||
|
// double 7.09782712893383973096e+02
|
||||||
|
// long double 1.1356523406294143949491931077970765006170e+04
|
||||||
|
// then recurrent value may overflow and the result is
|
||||||
|
// likely underflow to zero
|
||||||
|
|
||||||
|
tmp := float64(n)
|
||||||
|
v := 2 / x
|
||||||
|
tmp = tmp * Log(Fabs(v*tmp))
|
||||||
|
if tmp < 7.09782712893383973096e+02 {
|
||||||
|
for i := n - 1; i > 0; i-- {
|
||||||
|
di := float64(i + i)
|
||||||
|
a, b = b, b*di/x-a
|
||||||
|
di -= 2
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for i := n - 1; i > 0; i-- {
|
||||||
|
di := float64(i + i)
|
||||||
|
a, b = b, b*di/x-a
|
||||||
|
di -= 2
|
||||||
|
// scale b to avoid spurious overflow
|
||||||
|
if b > 1e100 {
|
||||||
|
a /= b
|
||||||
|
t /= b
|
||||||
|
b = 1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
b = t * J0(x) / b
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if sign {
|
||||||
|
return -b
|
||||||
|
}
|
||||||
|
return b
|
||||||
|
}
|
||||||
|
|
||||||
|
// Yn returns the order-n Bessel function of the second kind.
|
||||||
|
//
|
||||||
|
// Special cases are:
|
||||||
|
// Yn(n, +Inf) = 0
|
||||||
|
// Yn(n > 0, 0) = -Inf
|
||||||
|
// Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
|
||||||
|
// Y1(n, x < 0) = NaN
|
||||||
|
// Y1(n, NaN) = NaN
|
||||||
|
func Yn(n int, x float64) float64 {
|
||||||
|
const Two302 = 1 << 302 // 2**302 0x52D0000000000000
|
||||||
|
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
|
||||||
|
// when compiler does it for us
|
||||||
|
// special cases
|
||||||
|
switch {
|
||||||
|
case x < 0 || x != x: // x < 0 || IsNaN(x):
|
||||||
|
return NaN()
|
||||||
|
case x > MaxFloat64: // IsInf(x, 1)
|
||||||
|
return 0
|
||||||
|
}
|
||||||
|
|
||||||
|
if n == 0 {
|
||||||
|
return Y0(x)
|
||||||
|
}
|
||||||
|
if x == 0 {
|
||||||
|
if n < 0 && n&1 == 1 {
|
||||||
|
return Inf(1)
|
||||||
|
}
|
||||||
|
return Inf(-1)
|
||||||
|
}
|
||||||
|
sign := false
|
||||||
|
if n < 0 {
|
||||||
|
n = -n
|
||||||
|
if n&1 == 1 {
|
||||||
|
sign = true // sign true if n < 0 && |n| odd
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if n == 1 {
|
||||||
|
if sign {
|
||||||
|
return -Y1(x)
|
||||||
|
}
|
||||||
|
return Y1(x)
|
||||||
|
}
|
||||||
|
var b float64
|
||||||
|
if x >= Two302 { // x > 2**302
|
||||||
|
// (x >> n**2)
|
||||||
|
// Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||||
|
// Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||||
|
// Let s=sin(x), c=cos(x),
|
||||||
|
// xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||||
|
//
|
||||||
|
// n sin(xn)*sqt2 cos(xn)*sqt2
|
||||||
|
// ----------------------------------
|
||||||
|
// 0 s-c c+s
|
||||||
|
// 1 -s-c -c+s
|
||||||
|
// 2 -s+c -c-s
|
||||||
|
// 3 s+c c-s
|
||||||
|
|
||||||
|
var temp float64
|
||||||
|
switch n & 3 {
|
||||||
|
case 0:
|
||||||
|
temp = Sin(x) - Cos(x)
|
||||||
|
case 1:
|
||||||
|
temp = -Sin(x) - Cos(x)
|
||||||
|
case 2:
|
||||||
|
temp = -Sin(x) + Cos(x)
|
||||||
|
case 3:
|
||||||
|
temp = Sin(x) + Cos(x)
|
||||||
|
}
|
||||||
|
b = (1 / SqrtPi) * temp / Sqrt(x)
|
||||||
|
} else {
|
||||||
|
a := Y0(x)
|
||||||
|
b = Y1(x)
|
||||||
|
// quit if b is -inf
|
||||||
|
for i := 1; i < n && b >= -MaxFloat64; i++ { // for i := 1; i < n && !IsInf(b, -1); i++ {
|
||||||
|
a, b = b, (float64(i+i)/x)*b-a
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if sign {
|
||||||
|
return -b
|
||||||
|
}
|
||||||
|
return b
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user